JPH04155872A - Semiconductor photodetective element - Google Patents

Semiconductor photodetective element

Info

Publication number
JPH04155872A
JPH04155872A JP2280633A JP28063390A JPH04155872A JP H04155872 A JPH04155872 A JP H04155872A JP 2280633 A JP2280633 A JP 2280633A JP 28063390 A JP28063390 A JP 28063390A JP H04155872 A JPH04155872 A JP H04155872A
Authority
JP
Japan
Prior art keywords
light
layer
light absorbing
semiconductor
absorbing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2280633A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Tato
伸好 田遠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2280633A priority Critical patent/JPH04155872A/en
Publication of JPH04155872A publication Critical patent/JPH04155872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To provide a photodetective element having reduced dark current and capable of integration with FETs by a method wherein semiconductor material of prescribed forbidden band is doped with rare earth elements to form a light absorbing layer. CONSTITUTION:A light absorbing layer is provided onto a semi-insulating substrate to constitute a semiconductor photodetective element, where carriers induced by light incident on a light absorbing layer are outputted through the intermediary of a pair of signal lead-out electrodes provided onto the surface of the light absorbing layer, and the light absorbing layer concerned is formed of semiconductor material whose forbidden band width is 0.8eV or above and which is doped with rare earth elements. A GaAs layer 2 is epitaxially grown on the whole surface of the substrate 1, and the epitaxial layer grown on the surface other than a photodetective section is removed. Or, a groove is provided to the substrate 1, and the GaAs layer 2 is selectively grown in the groove concerned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体受光素子に関し、特に詳細には、M S
 M (Metal Sem1conductor M
etal)構造のホトダイオードに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor photodetector, and more particularly, to a semiconductor photodetector.
M (Metal Sem1 conductor M
etal) structure.

〔従来の技術〕[Conventional technology]

光通信に用いられるホトダイオードとして代表的なもの
に、縦型のp1nシリコンホトダイオードがある。とこ
ろで、ガリウム・砒素(Ga As )などの化合物半
導体は禁制帯幅が大きいため、光通信のような長波長の
光受信には、そのまま用いることができない。そこで、
例えば特開平1−140679号では、縦型pln構造
のインジウム・リン(InP)ホトダイオードの光吸収
層に、エルビウム(E「)などの希土類元素をドープす
る技術が示されている。これによれば、Erは赤外光に
吸収効率を有しているので、長波長の光受信ができる。
A typical photodiode used in optical communications is a vertical p1n silicon photodiode. By the way, compound semiconductors such as gallium arsenic (GaAs) have a large forbidden band width, so they cannot be used as they are for long wavelength light reception such as in optical communications. Therefore,
For example, Japanese Patent Laid-Open No. 1-140679 discloses a technique of doping a light absorption layer of an indium phosphide (InP) photodiode with a vertical PLN structure with a rare earth element such as erbium (E''). , Er have absorption efficiency for infrared light, so long wavelength light can be received.

一方、MSM構造の横型ホトダイオードも知られており
、長波長の光受信を可能にする技術として、例えば特開
昭64−89376号が提案されている。このホトダイ
オードでは、長波長の光受信を行なうために、光吸収層
として禁制帯幅の小さいインジウム・ガリウム・砒素(
In Ga As )か用いられ、暗電流を低減させる
ためにアルミニウム・インジウム・砒素(AρエロAs
)のバッファ層か設けられている。そして、このバッフ
ァ層上にショットキ電極か設けられている。
On the other hand, a horizontal photodiode having an MSM structure is also known, and Japanese Patent Application Laid-open No. 89376/1983 has proposed a technique for enabling long wavelength light reception. In order to receive long-wavelength light, this photodiode uses indium, gallium, and arsenic (indium, gallium, and arsenic), which have a small forbidden band width, as the light absorption layer.
InGaAs) is used, and aluminum-indium-arsenic (AρEroAs) is used to reduce dark current.
) buffer layer is provided. A Schottky electrode is provided on this buffer layer.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかし、前者のホトダイオードは、縦型構造であるため
にFET(電界効果トランジスタ)等との集積化に適さ
す、製造工程も複雑化する。また、後者のホトダイオー
ドは、In Ga Asのような禁制帯幅の小さい半導
体層の形成か必要になるため、FET等との集積化に適
さない。また、暗電流を低減する工夫も必要になり、実
用化に適さない。
However, since the former photodiode has a vertical structure, it is suitable for integration with FETs (field effect transistors) and the like, but the manufacturing process is also complicated. Furthermore, the latter photodiode requires the formation of a semiconductor layer such as InGaAs with a small forbidden band width, and is therefore not suitable for integration with FETs or the like. Furthermore, it requires a method to reduce dark current, making it unsuitable for practical use.

本発明は、かかる従来技術の欠点を克服することを課題
とする。
The present invention aims to overcome these drawbacks of the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半絶縁性基板上に光吸収層が形成され、当該
光吸収層側から入射した光によるキャリアを当該光吸収
層側に設けた少なくとも一対の信号取出電極を介して出
力する半導体受光素子において、光吸収層は禁制帯幅か
0.8eV以上の半導体材料からなり、希土類元素がド
ープされていることを特徴とする。
The present invention provides a semiconductor light receiving device in which a light absorption layer is formed on a semi-insulating substrate, and carriers caused by light incident from the light absorption layer side are outputted through at least a pair of signal extraction electrodes provided on the light absorption layer side. In the device, the light absorption layer is made of a semiconductor material with a forbidden band width of 0.8 eV or more, and is characterized in that it is doped with a rare earth element.

〔作用〕[Effect]

本発明によれば、基板の表面構造として受光素子か構成
され、光吸収層には希土類元素かトープされるので、光
吸収層は禁制帯幅の大きな半導体材料で構成できる。
According to the present invention, a light-receiving element is formed as the surface structure of the substrate, and the light-absorbing layer is doped with a rare earth element, so that the light-absorbing layer can be formed of a semiconductor material with a large forbidden band width.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は実施例に係る半導体受光素子の断面図であり、
同図(a)は受光部をメサ構造としたもの、同図(b)
は受光部を埋込み構造としたものである。同図(a)に
図示の通り、半絶縁性半導体基板として、例えばGa 
As基板1の上面には、光吸収層としてのGa As層
2がエピタキシャル成長され、その上面には信号出力用
の電極3A、3Bか設けられている。ここで、Ga A
s層2は希土類元素の一例としてErを含み、これが長
波長の信号光に対して感度を有している。また、電極3
A、3BはGa As層2に対して、オーミック接触も
しくはショットキ接触している。
FIG. 1 is a cross-sectional view of a semiconductor light-receiving element according to an example,
The same figure (a) shows the light receiving part with a mesa structure, the same figure (b)
In this example, the light receiving part is embedded. As shown in Figure (a), the semi-insulating semiconductor substrate is made of, for example, Ga
A GaAs layer 2 as a light absorption layer is epitaxially grown on the upper surface of the As substrate 1, and electrodes 3A and 3B for signal output are provided on the upper surface. Here, Ga A
The s-layer 2 contains Er as an example of a rare earth element, and is sensitive to long wavelength signal light. In addition, electrode 3
A and 3B are in ohmic contact or Schottky contact with the GaAs layer 2.

第1図(a)のメサ構造は、基板1の全面にGa As
層2をエピタキシャル成長させた後、受光部以外のエピ
タキシャル層をエツチングで除去して形成できる。また
、同図(b)の埋込み構造は、基板1にエツチングで溝
部を形成し、この溝部にGa As層2を選択成長して
形成できる。この埋込構造によれば、素子の表面を平坦
にできる。
The mesa structure shown in FIG. 1(a) has GaAs on the entire surface of the substrate 1.
After the layer 2 is epitaxially grown, the epitaxial layer other than the light-receiving portion can be removed by etching. The buried structure shown in FIG. 2B can be formed by etching a groove in the substrate 1 and selectively growing the GaAs layer 2 in the groove. According to this buried structure, the surface of the element can be made flat.

上記の半導体受光素子によれば、信号光として赤外光が
入射されると、Ga As層2にドープされたErによ
りキャリアが発生する。ここで、Ga Asは禁制帯幅
か大きいので、GaAs基板1てキャリアが生成するこ
とはない。Ga As層2で生成したキャリアは、電極
3Aと3Bの間のバイアス電圧による電界で移動し、電
極3Aと3Bから外部に取り出される。なお、Ga A
sは禁制帯幅が大きいので、暗電流を低く抑えることか
できる。
According to the semiconductor light-receiving device described above, when infrared light is incident as signal light, carriers are generated by Er doped in the GaAs layer 2. Here, since GaAs has a large forbidden band width, carriers are not generated in the GaAs substrate 1. The carriers generated in the GaAs layer 2 are moved by the electric field caused by the bias voltage between the electrodes 3A and 3B, and are taken out from the electrodes 3A and 3B. In addition, Ga A
Since s has a large forbidden band width, dark current can be kept low.

本発明については、種々の変形が可能である。Various modifications are possible to the present invention.

例えば、光吸収層はGa Asに限定されず、禁制帯幅
か0.8eV以上のものであれば、各種のものを用い得
る。また、ドーピングされるのはErに限らす、ツリウ
ム(Tm )等であってもよい。ドーパントを変えるこ
とにより、感度のある光の波長を変えることかできる。
For example, the light absorption layer is not limited to GaAs, and various materials can be used as long as the forbidden band width is 0.8 eV or more. Further, the material to be doped is not limited to Er, but may also be thulium (Tm) or the like. By changing the dopant, the wavelength of light to which it is sensitive can be changed.

また、基板はウェーハ上に純粋なGa Asをエピタキ
シャル成長させたものであってもよく、この場合にはE
r等をドープしたGa As層2がGa Asエピタキ
シャル成長層の上に形成される。
Further, the substrate may be made by epitaxially growing pure GaAs on a wafer, in which case E
A GaAs layer 2 doped with r etc. is formed on the GaAs epitaxial growth layer.

電極3Aと、3Bをオーミック電極としたときと、ショ
ットキ電極としたときでは、吸収波長が異なるためスペ
クトルの異なる信号光に感度をもつ。ここで、Ga A
sはショットキ障壁が一般に高くなるので、暗電流を極
めて小さくできる。
When the electrodes 3A and 3B are used as ohmic electrodes and when they are used as Schottky electrodes, the absorption wavelengths are different, so that they are sensitive to signal light having different spectra. Here, Ga A
Since the Schottky barrier of s generally becomes high, the dark current can be made extremely small.

本発明の半導体受光素子は半導体チップの表面構造とし
て形成されるため、他の素子との集積化に適している。
Since the semiconductor light receiving element of the present invention is formed as a surface structure of a semiconductor chip, it is suitable for integration with other elements.

また、長波長の光によってGaAs自体からはキャリア
か生じないので、光アイソレーションやシールドの工夫
を特に施す必要かない。
Further, since carriers are not generated from GaAs itself due to long wavelength light, there is no need to take special measures for optical isolation or shielding.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り、本発明の半導体受光素子に
よれば、基板の表面構造として受光素子か構成され、光
吸収層には希土類元素がドープされるので、光吸収層は
禁制帯幅が0.8eV以上の半導体材料で構成できる。
As explained above in detail, according to the semiconductor light receiving device of the present invention, the light receiving device is formed as the surface structure of the substrate, and the light absorption layer is doped with a rare earth element, so the light absorption layer has a forbidden band width. It can be made of a semiconductor material with a voltage of 0.8 eV or more.

このため、暗電流の低減か可能になるたけてなく、FE
T等の集積化も容易になる。
For this reason, it is possible to reduce the dark current, and the FE
Integration of T etc. becomes easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る半導体受光素子の断面図
である。 1−・−GaAs基板、2−=GaAs層、3A、B・
・・電極。 代理人弁理士   長谷用  芳  樹実施イ列の構跋 第り図
FIG. 1 is a sectional view of a semiconductor light receiving element according to an embodiment of the present invention. 1-.-GaAs substrate, 2-=GaAs layer, 3A, B.
··electrode. Representative Patent Attorney Yoshiki Hase A detailed diagram of the implementation sequence

Claims (1)

【特許請求の範囲】 1、半絶縁性基板上に光吸収層が形成され、当該光吸収
層側から入射した光によるキャリアを当該光吸収層側に
設けた少なくとも一対の信号取出電極を介して出力する
半導体受光素子において、前記光吸収層は禁制帯幅が0
.8eV以上の半導体材料からなり、希土類元素がドー
プされていることを特徴とする半導体受光素子。 2、前記信号取出電極は、前記光吸収層にオーミック接
触またはショットキ接触している請求項1記載の半導体
受光素子。
[Claims] 1. A light absorption layer is formed on a semi-insulating substrate, and carriers caused by light incident from the light absorption layer side are transmitted through at least one pair of signal extraction electrodes provided on the light absorption layer side. In the output semiconductor light-receiving device, the light absorption layer has a forbidden band width of 0.
.. A semiconductor light-receiving element characterized in that it is made of a semiconductor material with a voltage of 8 eV or more and is doped with a rare earth element. 2. The semiconductor light receiving element according to claim 1, wherein the signal extraction electrode is in ohmic contact or Schottky contact with the light absorption layer.
JP2280633A 1990-10-19 1990-10-19 Semiconductor photodetective element Pending JPH04155872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280633A JPH04155872A (en) 1990-10-19 1990-10-19 Semiconductor photodetective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280633A JPH04155872A (en) 1990-10-19 1990-10-19 Semiconductor photodetective element

Publications (1)

Publication Number Publication Date
JPH04155872A true JPH04155872A (en) 1992-05-28

Family

ID=17627775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280633A Pending JPH04155872A (en) 1990-10-19 1990-10-19 Semiconductor photodetective element

Country Status (1)

Country Link
JP (1) JPH04155872A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126738A (en) * 2016-01-13 2017-07-20 ソニー株式会社 Light receiving device, method of manufacturing the same, imaging device, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126738A (en) * 2016-01-13 2017-07-20 ソニー株式会社 Light receiving device, method of manufacturing the same, imaging device, and electronic device

Similar Documents

Publication Publication Date Title
EP1470575B1 (en) Mesa structure avalanche photodiode
US4442444A (en) Avalanche photodiodes
US4656494A (en) Avalanche multiplication photodiode having a buried structure
US6326654B1 (en) Hybrid ultraviolet detector
US4814847A (en) Ingaas semiconductor structures
US4390889A (en) Photodiode having an InGaAs layer with an adjacent InGaAsP p-n junction
CA2050435C (en) Photo-sensing device
US6759694B1 (en) Semiconductor phototransistor
US5001335A (en) Semiconductor photodetector device and method of manufacturing the same
US5942771A (en) Semiconductor photodetector
US4346394A (en) Gallium arsenide burrus FET structure for optical detection
KR100303471B1 (en) Avalanche photodetector device and method for manufacturing the same
CA1228663A (en) Photodetector with isolated avalanche region
US4729963A (en) Fabrication method for modified planar semiconductor structures
JPH038117B2 (en)
Tarof et al. Planar InP-InGaAs single-growth avalanche photodiodes with no guard rings
US4416053A (en) Method of fabricating gallium arsenide burris FET structure for optical detection
US7009224B2 (en) Metamorphic long wavelength high-speed photodiode
JPS61226973A (en) Avalanche photodiode
US4505765A (en) Manufacturing method for a planar photodiode with hetero-structure
KR20050027751A (en) Photo-diode and method for fabricating the same
JPH04155872A (en) Semiconductor photodetective element
JPS60110177A (en) Manufacture of semiconductor photodetector
CA1298640C (en) Avalanche photodiodes and methods for their manufacture
JP2848345B2 (en) Infrared detector