JPS635235A - Photometric apparatus - Google Patents
Photometric apparatusInfo
- Publication number
- JPS635235A JPS635235A JP14897386A JP14897386A JPS635235A JP S635235 A JPS635235 A JP S635235A JP 14897386 A JP14897386 A JP 14897386A JP 14897386 A JP14897386 A JP 14897386A JP S635235 A JPS635235 A JP S635235A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light source
- specimen
- scanning
- array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005375 photometry Methods 0.000 claims abstract description 4
- 239000013307 optical fiber Substances 0.000 abstract description 7
- 230000003287 optical effect Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/5907—Densitometers
- G01N21/5911—Densitometers of the scanning type
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明はたとえば走査型測光顕微鏡等に使用できる測光
装置に関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a photometric device that can be used, for example, in a scanning photometric microscope.
口、従来の技術
走査型測光顕微鏡における2次元走査方式には試料面走
査或は像面走査が用いられている。像面走査方式は試料
面全体を照明しておき、試料面の全体像を形成して、そ
の像面で走査を行う。この方式では走査は撮像管或は2
次元的な撮像素子において受光面を電気的に走査するの
で、機械的な運動部分がなく高速走査ができると言う利
点があるが、試料全面を照明しているので、試料面上の
一つの画素部分についてみると、隣接部分における散乱
光の影響が避けられない。他方試料面走査方式は試料面
を光スポットで照明走査するので、隣接画素からの散乱
光の影響が避けられる。従って測光顕微鏡とか顕微分光
装置など正確な測光値を要求される場合には、試料面走
査方式によることが必要となる。しかしこの試料面走査
方式は試料面に集光する光ビームを2次元的に撮らせる
か、光ビームを固定しておいて試料不テージをX、Y両
方向に移動させるものであるから、機械的な運動部分を
必要とし、装置が高価となり、耐久性、高速走査性等で
像面走査方式に劣り、保守も面倒である。2. Description of the Related Art A two-dimensional scanning method in a conventional scanning photometric microscope uses sample plane scanning or image plane scanning. In the image plane scanning method, the entire sample surface is illuminated to form an entire image of the sample surface, and scanning is performed using that image plane. In this method, scanning is performed using an image pickup tube or
Since the light-receiving surface of a dimensional image sensor is electrically scanned, it has the advantage of being able to scan at high speed because there are no mechanically moving parts.However, since the entire surface of the sample is illuminated, one pixel on the sample surface Regarding the parts, the influence of scattered light in adjacent parts cannot be avoided. On the other hand, in the sample surface scanning method, since the sample surface is illuminated and scanned with a light spot, the influence of scattered light from adjacent pixels can be avoided. Therefore, when accurate photometric values are required, such as with a photometric microscope or a microspectroscope, it is necessary to use the sample surface scanning method. However, with this sample surface scanning method, the light beam focused on the sample surface is photographed two-dimensionally, or the light beam is fixed and the sample stage is moved in both the X and Y directions, so mechanical This method requires many moving parts, makes the device expensive, is inferior to the image plane scanning method in terms of durability, high-speed scanning, etc., and is troublesome to maintain.
ハ0発明が解決しようとする問題点
本発明は走査のための機械的運動部分を減らし、しかも
高精度の測光が可能であるような走査型測光顕微鏡を提
供しようとするものである。Problems to be Solved by the Invention The present invention aims to provide a scanning photometric microscope that reduces the number of mechanically moving parts for scanning and is capable of highly accurate photometry.
二0問題点解決のための手段
微小光源を1次元或は2次元的にアレー状に配列した光
源体を用い、この光源体の像を試料面上に投影し、光源
体を構成する微小光源を適宜順序で1箇ずつ点灯させる
ようにした。20 Means for Solving Problems Using a light source in which minute light sources are arranged one-dimensionally or two-dimensionally in an array, the image of this light source is projected onto the sample surface, and the minute light sources constituting the light source are The lights were made to light up one by one in an appropriate order.
ホ0作用
微小光源をアレー状に配列した光源体の像を試料面に投
射し、光源体における1iiの微小光源を点灯させれば
、試料面の一微小点を選択的に照明することができる。By projecting the image of a light source in which 0 action micro light sources are arranged in an array onto the sample surface and lighting up the 1ii micro light sources in the light source, one micro point on the sample surface can be selectively illuminated. .
従って光源体を構成している微小光源を適宜の順序でI
Nずつ点灯して行けば光スポットで試料面の走査を行っ
たのと同じ結果が得られ、しかも光源体の点灯ル制御は
電気的に可能である。光源体が微少光源の1次元アレー
である場合、試料或は光源体或は試料と光源体との間の
光学素子を光源体のアレー配列方向と直角の方向に駆動
する必要があるが、その駆動速度とか往復回数はアレー
上の発光点の移動速度とか発光繰返数より遥かに少なく
てすみ、実際上2次元的走査のための運動部分は最少に
することができる。Therefore, the minute light sources that make up the light source are
If the number N is turned on at a time, the same result as scanning the sample surface with a light spot can be obtained, and furthermore, the lighting of the light source can be controlled electrically. When the light source is a one-dimensional array of minute light sources, it is necessary to drive the sample, the light source, or the optical element between the sample and the light source in a direction perpendicular to the array arrangement direction of the light source. The driving speed and number of reciprocations are much smaller than the moving speed of the light emitting points on the array and the number of light emission repetitions, and the moving parts for two-dimensional scanning can actually be minimized.
へ、実施例
第1図は本発明の一実施例を示す。図でLは光源装置、
Cは照明用コンデンサレンズ系、Sは試料、Pは対物レ
ンズ、Hはハーフミラ−1Rは単一型(解像性がない)
の光センサ、Kは対物レンズ−透過光を光センサRの受
光面に集光させるレンズ、■は接眼レンズである。Embodiment FIG. 1 shows an embodiment of the present invention. In the figure, L is a light source device,
C is a condenser lens system for illumination, S is a sample, P is an objective lens, H is a half mirror, and 1R is a single type (no resolution).
K is an objective lens, which focuses the transmitted light on the light receiving surface of the photosensor R, and ■ is an eyepiece lens.
光源装置りにおいて、1は2次元アレー型光源で、LE
Dデイスプレィが用いられるが、高密度型のプラズマデ
イスプレィ型ガス放電発光アレーも用い得る。2は光フ
アイバー束で、−本一本の光ファイバーは一端がアレー
型光源1の個々の発光点に対向させてあり、反対側の端
が一つにまとめられて一つのアレー状発光面fを形成し
ており、コンデンサレンズ系Cはこの発光面fの縮小像
を試料Sの上に形成するようになっている。3は走査回
路であり、4は光源1を駆動するドライブ回路である。In the light source device, 1 is a two-dimensional array type light source, and LE
Although a D display is used, a high density plasma display type gas discharge light emitting array may also be used. Reference numeral 2 denotes an optical fiber bundle, - one end of each optical fiber is opposed to each light emitting point of the array type light source 1, and the opposite end is brought together to form one array type light emitting surface f. The condenser lens system C forms a reduced image of this light emitting surface f on the sample S. 3 is a scanning circuit, and 4 is a drive circuit for driving the light source 1.
第2図は上述実施例における制御回路を示す。FIG. 2 shows the control circuit in the above embodiment.
第1図の各部と対応する部分には同じ符号がつけである
。走査回路3はアドレス制御回路31とアドレスデコー
ダ32とよりなっている。アドレス制御回路31はクロ
ックパルスを計数するカウンタでもよいが、マイクロコ
ンピュータからの司令により所定のアドレス指定信号を
出力する構成であってもよい。アドレス制御回路31か
ら出力されるアドレス指定データはアドレスデコーダ3
2によって光源1の一つの発光素子に対応する駆動信号
に変換されドライバ4に入力される。光センサRの出力
はプリアンプ、A/D変換器等よりなる信号変換回路5
によってディジタル光強度信号に変換される。6は画像
メモリであって、アドレス制御回路31の出力によって
アドレス指定が行われて、上記光強度信号をメモリする
。7は画像表示の場合のXY走査信号発生回路で、メモ
リ6内のデータを画像表示する場合、メモリ6内のデー
タは走査信号発生回路7からの信号でアドレス指定され
て読出され、D/A変換器等よりなる輝度信号変換回路
8によって輝度変調信号となり、CRTに印加される。Components corresponding to those in FIG. 1 are given the same reference numerals. The scanning circuit 3 includes an address control circuit 31 and an address decoder 32. The address control circuit 31 may be a counter that counts clock pulses, but may also be configured to output a predetermined address designation signal based on commands from a microcomputer. The address designation data output from the address control circuit 31 is sent to the address decoder 3.
2 converts the signal into a drive signal corresponding to one light emitting element of the light source 1 and inputs it to the driver 4 . The output of the optical sensor R is sent to a signal conversion circuit 5 consisting of a preamplifier, A/D converter, etc.
is converted into a digital light intensity signal by Reference numeral 6 denotes an image memory, which is addressed by the output of the address control circuit 31 and stores the light intensity signal. 7 is an XY scanning signal generation circuit for image display; when the data in the memory 6 is to be displayed as an image, the data in the memory 6 is addressed and read out by a signal from the scanning signal generation circuit 7; A brightness signal conversion circuit 8 consisting of a converter etc. converts the signal into a brightness modulation signal, which is applied to the CRT.
CRTにはまた走査信号発生回路7から走査信′号が送
られ、X料Sの透過光による像がCRT上に表示される
。A scanning signal ' is also sent to the CRT from the scanning signal generating circuit 7, and an image formed by the transmitted light of the X material S is displayed on the CRT.
第3図は光源系の一例で、dは発光ダイオードであり、
2次元にアレー状に配列され、一つ一つの発光ダイオー
ドに光ファイバーが一本ずつ対向させである。第4図は
光源1の他の一実施例で、微小光源を多数並べる代わり
に電気光学的結晶シャッタや液晶シャッターアレーを用
い、光源そのものは面状光源としたものである。9が液
晶シャッターアレーで、X座標指定電極XとY座標指定
電極yが直交関係で液晶をはさんでおり、夫々の電極の
一つにアドレスデコーダ32.ドライバ4を介して電圧
が印加され、液晶の電圧印加部分が透明となって下にあ
る面状光源10の光を上方へ透過させる。この透過光は
直接第1図のコンデンサレンズ系Cによって試料上に集
光させるようにしても、第1図の例と同様オプチカルフ
ァイバー束で一旦小面積に収約した上でコンデンサレン
ズに導くようにしてもよい。面状光源10は文字通りの
面状発光面でもよい′がZ光拡散面を通常光源で均一に
照明したものでもよい。Figure 3 shows an example of a light source system, where d is a light emitting diode,
They are arranged in a two-dimensional array, with one optical fiber facing each light emitting diode. FIG. 4 shows another embodiment of the light source 1, in which an electro-optic crystal shutter or a liquid crystal shutter array is used instead of arranging a large number of minute light sources, and the light source itself is a planar light source. Reference numeral 9 denotes a liquid crystal shutter array, in which an X-coordinate designating electrode X and a Y-coordinate designating electrode y sandwich a liquid crystal in a perpendicular relationship, and an address decoder 32 . A voltage is applied via the driver 4, and the voltage-applied portion of the liquid crystal becomes transparent, allowing light from the planar light source 10 located below to pass upward. Even if this transmitted light is directly condensed onto the sample by the condenser lens system C in Figure 1, it can be condensed into a small area by an optical fiber bundle and then guided to the condenser lens as in the example in Figure 1. You may also do so. The planar light source 10 may be a literal planar light emitting surface, but it may also be one in which a Z light diffusing surface is uniformly illuminated with a normal light source.
上述実施例では光源は2次元的な広がりを有するが、1
次元的な光源を用い、光源の延びている方向と直角の方
向には揺動鏡を用いるか試料ステージを移動させるかし
て走査を行ってもよい。第5図は反射或は蛍光測定系に
そのような1次元的光源装置を適用した例を示す。上述
した実施例と対応する部分には同じ符号を付し−々の説
明は省略する。1は1次元アレー状光源で、対物レンズ
Pがコンデンサレンズを兼ねており、光源1の像は試料
S上にX方向(図の紙面に垂直)に形成され、試料ステ
ージ(不図示)は試料を矢印Y方向に駆動する。光源1
の1次元的走査が一回行われる毎に試料Sは一画素ピッ
チ分ずつY方向に移動せしめられて試料面の2次元走査
が行われる。In the above embodiment, the light source has a two-dimensional spread, but the light source has a two-dimensional spread.
Scanning may be performed using a dimensional light source and using an oscillating mirror or moving the sample stage in a direction perpendicular to the direction in which the light source extends. FIG. 5 shows an example in which such a one-dimensional light source device is applied to a reflection or fluorescence measuring system. Components corresponding to those in the embodiment described above are designated by the same reference numerals, and description thereof will be omitted. 1 is a one-dimensional array light source, the objective lens P also serves as a condenser lens, the image of the light source 1 is formed on the sample S in the X direction (perpendicular to the plane of the figure), and the sample stage (not shown) is placed on the sample S. is driven in the direction of arrow Y. light source 1
Each time a one-dimensional scan is performed, the sample S is moved in the Y direction by one pixel pitch, and a two-dimensional scan of the sample surface is performed.
走査でなく一点一点を測定する方式のものもこの発明は
包含する。The present invention also includes methods that measure point by point instead of scanning.
ト、効果
本発明の測光装置は上述したような構成で、試料を光ス
ポットで測定する型であるから、試料の隣接部分の散乱
光の影響がなく正確な測光が可能であり、しかも光スポ
ットによる測定は1次元或は2次元的な広がりを持つ光
源面の発光位置の制御によって行われるので、測定のた
めの機械的運動部分は無しか或は最少にすることができ
、機械運動部分の使用による種々な問題例えば価格、保
守、耐久性、速度の問題が等が全て解消される。G. Effect The photometric device of the present invention has the above-mentioned configuration and is of the type that measures the sample with a light spot, so accurate photometry is possible without the influence of scattered light from adjacent parts of the sample. Since measurement is performed by controlling the light emitting position of a light source surface that has a one-dimensional or two-dimensional spread, the mechanical movement part for measurement can be eliminated or minimized, and the mechanical movement part Various problems associated with use, such as cost, maintenance, durability, speed, etc., are all eliminated.
透過光あるいは反射光を測光する手段が1個でよく、面
センサでは不可能である超高感度センサ(たとえば光電
子増倍管)を用いることができ光子計数モードの測定も
可能となる。Only one means for measuring transmitted light or reflected light is required, and an ultra-high sensitivity sensor (for example, a photomultiplier tube), which is impossible with a surface sensor, can be used, and measurement in photon counting mode is also possible.
第1図は本発明の一実施例装置の全体構成図、第2図は
同実施例の制御系のブロック図、第3図は光源系の一例
の側面図、第4図は光源系の他の一例の斜視図、第5図
は本発明の他の一実施例の全体構成図である。
L・・・光源装置、C・・・コンデンサレンズ、S・・
・試料、P・・・対物レンズ、R・・・光センサ、1・
・・光源、2・・・光フアイバー束、3・・・走査回路
、4・・・ドライブ回路、d・・・発光ダイオード、9
・・・液晶シャッタ代理人 弁理士 縣 浩 介
第1図
第2図
第4図
□YFIG. 1 is an overall configuration diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a block diagram of a control system of the same embodiment, FIG. 3 is a side view of an example of a light source system, and FIG. 4 is a diagram showing other parts of the light source system. FIG. 5 is a perspective view of one example, and FIG. 5 is an overall configuration diagram of another embodiment of the present invention. L...Light source device, C...Condenser lens, S...
・Sample, P... Objective lens, R... Optical sensor, 1.
...Light source, 2... Optical fiber bundle, 3... Scanning circuit, 4... Drive circuit, d... Light emitting diode, 9
...LCD shutter agent Patent attorney Hiroshi Agata Figure 1 Figure 2 Figure 4 □Y
Claims (1)
位置を制御する制御回路と、上記光源の像を試料面に投
射する手段と、試料透過光或は反射光等を測光する手段
とよりなることを特徴とする測光装置。A light source with a one-dimensional or two-dimensional spread, a control circuit that controls the position of its light emitting point, a means for projecting an image of the light source onto the sample surface, and photometry of light transmitted through the sample or reflected light, etc. A photometric device characterized by comprising means for measuring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14897386A JPS635235A (en) | 1986-06-25 | 1986-06-25 | Photometric apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14897386A JPS635235A (en) | 1986-06-25 | 1986-06-25 | Photometric apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS635235A true JPS635235A (en) | 1988-01-11 |
Family
ID=15464816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14897386A Pending JPS635235A (en) | 1986-06-25 | 1986-06-25 | Photometric apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS635235A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014085252A (en) * | 2012-10-24 | 2014-05-12 | Toyota Motor Corp | Film inspection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521313A (en) * | 1975-06-24 | 1977-01-07 | Jinei Kawamura | Rotary engine having multi-polar suctioncompression cylinders in the s ame circumference |
JPS55164336A (en) * | 1979-06-08 | 1980-12-22 | Olympus Optical Co Ltd | Inspecting material detecting method |
-
1986
- 1986-06-25 JP JP14897386A patent/JPS635235A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521313A (en) * | 1975-06-24 | 1977-01-07 | Jinei Kawamura | Rotary engine having multi-polar suctioncompression cylinders in the s ame circumference |
JPS55164336A (en) * | 1979-06-08 | 1980-12-22 | Olympus Optical Co Ltd | Inspecting material detecting method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014085252A (en) * | 2012-10-24 | 2014-05-12 | Toyota Motor Corp | Film inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7015444B2 (en) | Optical-scanning examination apparatus | |
US5469251A (en) | Apparatus for detecting fluorescence of particles in a fluid and analyzing the particles | |
JP3958835B2 (en) | Optical inspection method and apparatus | |
US7369309B2 (en) | Confocal microscope | |
JPH10311950A (en) | Scanning microscope | |
GB1492575A (en) | Devices for the non-destructive examination of heterogeneous surfaces | |
CN1076834C (en) | Image projection apparatus with an autofocusing system | |
KR100689319B1 (en) | Scanning confocal microscope | |
CN107656304B (en) | Apparatus and method for reading an imaging plate | |
JP4526988B2 (en) | Minute height measuring method, minute height measuring apparatus and displacement unit used therefor | |
KR960005090B1 (en) | Bonding wire inspection apparatus | |
CN1166940C (en) | Multispectral imaging gene chip scanner | |
US20030010930A1 (en) | Arrangement for the optical excitation of fluorescent radiation of individual specimens on a multispecimen carrier | |
JPS635235A (en) | Photometric apparatus | |
US4772127A (en) | Surface inspection apparatus | |
JPH1068901A (en) | Two-dimensional scanner device | |
JPS635234A (en) | Unidimensional-two-dimensional photometric apparatus | |
JP3592182B2 (en) | Imaging device | |
JPS63100309A (en) | Flatness measuring instrument | |
JPH0554882B2 (en) | ||
JP2002207009A (en) | Scanning type fluorometric apparatus | |
JPH03134608A (en) | Scanning type microscope | |
JPH10232352A (en) | Laser scan microscope | |
JPH07151919A (en) | Illuminator for image processing type measuring machine | |
SU1173427A1 (en) | Statistical image analyzer |