JPS635234A - Unidimensional-two-dimensional photometric apparatus - Google Patents

Unidimensional-two-dimensional photometric apparatus

Info

Publication number
JPS635234A
JPS635234A JP14897286A JP14897286A JPS635234A JP S635234 A JPS635234 A JP S635234A JP 14897286 A JP14897286 A JP 14897286A JP 14897286 A JP14897286 A JP 14897286A JP S635234 A JPS635234 A JP S635234A
Authority
JP
Japan
Prior art keywords
light
modulated
specimen
sample
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14897286A
Other languages
Japanese (ja)
Other versions
JPH0820357B2 (en
Inventor
Shigeo Minami
南 茂夫
Isao Iwasaki
功 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61148972A priority Critical patent/JPH0820357B2/en
Publication of JPS635234A publication Critical patent/JPS635234A/en
Publication of JPH0820357B2 publication Critical patent/JPH0820357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To enhance measuring efficiency and to perform accurate measurement such that the measured value at one point on the surface of a specimen being free of effect of the scattering light of the adjacent part, by irradiating the entire surfaces of the picture elements on the surface of the specimen with lights modulated by frequencies different from each other gradually. CONSTITUTION:The light emitting intensities of the indivisual light emitting regions of a light source 6 wherein minute light emitters (e) are arranged on a plane two-dimensionally are modulated by frequencies different from each other gradually and light is allowed to simultaneously illuminate the picture elements on the surface of a specimen through an optical fiber bundle 7. The transmitted or reflected light of each picture element is modulated by the same frequency as the light illuminating said picture element. When this modulated light is measured by a single light receiving element 5 through an objective lens, 1, a measuring signal wherein lights modulated by various frequencies are superposed is obtained. When the frequency of this measuring signal is analyzed by a photometric circuit comprising a Fourier transformer processor 13, an amplitude spectrum wherein the modulation frequencies of respective modulated lights are taken on a transverse axis and the intensities of the modulated lights are taken on a vertical axis is obtained and, from the corresponding relation between the modulation frequencies and the picture elements on the specimen, the intensity of the transmitted or reflected light of each picture element is obtained.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は試料面の光透過重分布を2次元的に測定するよ
うな場合に用いられる測光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a photometric device used for two-dimensionally measuring the light transmission weight distribution on a sample surface.

口、従来の技術 試料面における光学的な特性の分布を測定するには原理
的に二つの方法がある。一つは走査型顕微測光装置のよ
うな装置を用い、光スポットで試料を2次元的に走査し
試料透過光或は反射光を単一の受光素子を用いて測光す
るものである。他の一つは試料面の像を撮像素子によっ
て撮像する方法である。これらの測定方法は両者同じ測
定時間をかけるとすると試料面の画素数をnとするとき
、走査方式では一画素当たりの光量積分時間は撮像素子
を用いる方法の1/nであり、従ってS/N比は115
となり、同じS/N比を得ようとするとn倍の時間を要
することになり走査方式は測定能率が甚だ低い。他方撮
像方式では試料面全面が同時に照明されているので、一
つの画素からの透過光或は反射光は隣接する試料部分の
散乱光の影響を受けており、正確な透過率或は反射率等
の値が得られない。従って正確な測定値が要求される場
合には、隣接部分の散乱光の影響を受けない走査方式に
よる必要がある。
BACKGROUND OF THE INVENTION In principle, there are two methods for measuring the distribution of optical properties on a sample surface. One is to use a device such as a scanning microphotometer to two-dimensionally scan a sample with a light spot and measure the light transmitted or reflected from the sample using a single light-receiving element. Another method is to capture an image of the sample surface using an image sensor. Assuming that both of these measurement methods take the same measurement time, and the number of pixels on the sample surface is n, the light intensity integration time per pixel in the scanning method is 1/n of that in the method using an image sensor, and therefore the S/ N ratio is 115
Therefore, if an attempt is made to obtain the same S/N ratio, it will take n times as much time, and the measurement efficiency of the scanning method is extremely low. On the other hand, in the imaging method, the entire sample surface is illuminated at the same time, so the transmitted light or reflected light from one pixel is affected by the scattered light from adjacent sample parts, so it is difficult to determine the exact transmittance or reflectance. value cannot be obtained. Therefore, if accurate measurement values are required, it is necessary to use a scanning method that is not affected by scattered light from adjacent parts.

ハ1発明が解決しようとする問題点 上述したように走査方式は試料面の一点の測定値が隣接
する部分の散乱光の影響を受けないので、正確な測定値
が得られるが、測定能率が低いと言う難点があり、撮像
素子を用いる方式では試料面を同時に均一照射している
ので、−画素当たりの測定時間が永(取れ測定能率は良
いが試料面の一点の測定値は隣接部分の散乱光の影響を
受けており、正確な測定値が得難いと言う問題がある。
C1 Problems to be Solved by the Invention As mentioned above, in the scanning method, the measured value at one point on the sample surface is not affected by the scattered light from adjacent parts, so accurate measured values can be obtained, but the measurement efficiency is low. However, in the method using an image sensor, the sample surface is uniformly irradiated at the same time, so the measurement time per pixel is long (measuring efficiency is good, but the measured value of one point on the sample surface is different from that of adjacent parts). There is a problem in that it is difficult to obtain accurate measurement values due to the influence of scattered light.

従って本発明は試料を全面照射することで測定能率を高
め、しかも試料面の一点の測定値が隣接部分の散乱光の
影響を受けないで正確な測光値が得られるような1〜2
次元測光装置を提供しようとするものである。
Therefore, the present invention improves measurement efficiency by irradiating the entire surface of the sample, and moreover, the measurement value at one point on the sample surface is not affected by the scattered light from adjacent areas, so that an accurate photometric value can be obtained.
The present invention aims to provide a dimensional photometry device.

二1問題点解決のための手段 試料面上の各画素を互いに少しずつ異る周波数で変調さ
れた光で同時に全面照明し、試料透過光或は反射光を単
一の受光素子で測光し、測光データを処理して周波数成
分に分解して各画素についての測光情報を求めるように
した。なお以上の説明は面状試料について行ったが、試
料上の一つの線に沿っての測定についても上と同じこと
が言えるのはもちろんである。
21.Means for solving the problem: illuminating each pixel on the sample surface simultaneously with light modulated at slightly different frequencies, and measuring the transmitted light or reflected light from the sample with a single light-receiving element; The photometric data is processed and decomposed into frequency components to obtain photometric information for each pixel. Although the above explanation has been made regarding a planar sample, it goes without saying that the same can be said about measurement along one line on the sample.

ホ0作用 試料面の各画素を互いに少しずつ異る周波数で変調され
た光で同時に照明すると、各画素の透過光或は反射光等
はその画像を照明した光と同じ周波数で変調されている
。このような光を単一の受光素子で測定すると、色々な
周波数で変調された光が重畳した測定信号が得られる。
When each pixel on the sample surface is illuminated at the same time with light modulated at slightly different frequencies, the transmitted light or reflected light of each pixel will be modulated at the same frequency as the light that illuminated the image. . When such light is measured with a single light receiving element, a measurement signal in which light modulated at various frequencies is superimposed is obtained.

そこでこの測定信号を周波数分析すれば、夫々の変調光
の変調周波数を横軸に各変調光の強度を縦軸にとった振
幅スペクトルが得られ、変調周波数と試料上の画素との
対応関係から、各画素の透過光或は反射光の強度情報が
得られる。この方式では全ての画素が測定期間中照明さ
れており、全ての画素について測定期間中光量積分が行
われているので、測定能率が良く、隣接画素の散乱光は
変調周波数が異なっているので、その影響はデータ処理
の過程で除去されてお、す、正確な測光データが得られ
る。
Therefore, by frequency-analyzing this measurement signal, an amplitude spectrum with the modulation frequency of each modulated light on the horizontal axis and the intensity of each modulated light on the vertical axis can be obtained, and from the correspondence between the modulation frequency and the pixels on the sample, , intensity information of transmitted light or reflected light of each pixel can be obtained. In this method, all pixels are illuminated during the measurement period, and light intensity integration is performed for all pixels during the measurement period, so measurement efficiency is good, and the scattered light of adjacent pixels has different modulation frequencies, so This effect is removed during data processing, resulting in highly accurate photometric data.

へ、実施例 第1図に本発明の一実施例を示す。Aは顕微測光装置の
光学系で、1は対物レンズ、2はハーフミラ−13は接
眼レンズ、4は対物レンズ透過光を受光素子5の受光面
に集光するレンズで、受光素子5は単一の受光素子(例
えば光電子増倍管のようなもの)である。Sは試料で、
Bは試料照明光学系である。試料照明光学系において、
6は微小発光体eを平面に2次元的に配列した光源、7
はオプチカルファイバーの束で、この束の一本一本の一
端が光源6の一つ一つの発光体eに対向させてあり、こ
れらのオプチカルファイバーが集まった束7の他端は一
つの発光面fとなっており、コンデンサレンズ8はこの
発光面fの像を試料S上に形成するようになっている。
Embodiment FIG. 1 shows an embodiment of the present invention. A is the optical system of the microphotometer, 1 is an objective lens, 2 is a half mirror, 13 is an eyepiece, 4 is a lens that focuses the light transmitted through the objective lens on the light receiving surface of the light receiving element 5, and the light receiving element 5 is a single one. A light-receiving element (such as a photomultiplier tube). S is the sample;
B is a sample illumination optical system. In the sample illumination optical system,
6 is a light source in which minute light emitters e are two-dimensionally arranged on a plane; 7
is a bundle of optical fibers, one end of each of the bundles faces each light emitting body e of the light source 6, and the other end of the bundle 7 where these optical fibers are gathered forms one light emitting surface. f, and the condenser lens 8 forms an image of this light emitting surface f on the sample S.

Cは光源6の点灯制御を行う点灯回路で9はドライバー
であり、光源6の個々の微小発光体eに対応させたパワ
ーアンプPL、P2・・・pn とこれらのアンプを駆
動する発振器Fl、F2・・・Fn よりなっている。
C is a lighting circuit that controls the lighting of the light source 6; 9 is a driver; power amplifiers PL, P2...pn corresponding to the individual minute light emitters e of the light source 6; and an oscillator Fl that drives these amplifiers; It consists of F2...Fn.

発振器F1.F2・・・Fnの発振周波数fo。Oscillator F1. F2...Fn oscillation frequency fo.

fl・・・fn−+ はfoを基準にしてfl=fo+
Δf、f2=fo+2Δf。
fl...fn-+ is based on fo, fl=fo+
Δf, f2=fo+2Δf.

fn−+ = f o + (11−+ )Δfである
。即ちfl、f2.・・・f n−1は順にΔ「ずつ大
となっている。発光体はLEDやプラズマデイスプレィ
型のガス放電発光アレイである。上述した照明系の構成
により、試料Sの各点は互いに異る周波数で変調された
光によって照明されることになる。Dは測光回路であっ
て、受光素子5の出力はプリアンプ10.サンプリング
回路11、A/D変換器12を経てフーリエ変換プロセ
ッサ13に取込まれ、フーリエ変換プロセッサ13の出
力データは画像形成回路14において2次元画像データ
に変換され、CRT15によって画像表示される。この
画像表示は試料Sの光透過率の2次元分布像である。
fn-+ = fo + (11-+)Δf. That is, fl, f2. . . . f n-1 increases by Δ" in order. The light emitter is an LED or a plasma display type gas discharge light emitting array. Due to the configuration of the illumination system described above, each point on the sample S is It is illuminated by light modulated at different frequencies.D is a photometric circuit, and the output of the light receiving element 5 is sent to a Fourier transform processor 13 via a preamplifier 10, a sampling circuit 11, and an A/D converter 12. The output data of the Fourier transform processor 13 is converted into two-dimensional image data in the image forming circuit 14, and the image is displayed on the CRT 15. This image display is a two-dimensional distribution image of the light transmittance of the sample S.

第2図は試料面を画素に分割した所を示す。この図で0
,1.・・・nが画素で第1図の光源6の各微小発光体
eと1対1に対応しており、試料の上記各画素部分の透
過率をφ(i)とする。画素Oは周波数fOで変調され
た光で照明され1はfO+Δfで変調された光で照明さ
れ、−般に画素iはfo+iΔfの周波数で変調された
光で照明されている。従って試料の画素iの部分の透過
光強度は で表され、受光素子5の出力信号1 (t)は各画素の
透過光に対応する出力の和になるからの形で表され、I
 (t)の定常部分を除いた部分はφ(i)を周波数間
隔Δfでフーリエ変換したものになっているから、I 
(t)の非定常部分を再びフーリエ変換すればもとのφ
(i)が求まる。φ(i)は試料の画素部分0.1・・
・nの透過率であるから、画素の横一列の並びの数をe
とすれば、φ(i)のデータをe個毎に区切ってマトリ
クス状に配列すれば、試料の透過率の2次元的分布像が
形成されることになる。第1図の画像形成回路14はフ
ーリエ変換プロセッサ13で得られるφ(i)のデータ
から上記した透過率等の2次元分布像を形成するもので
、CRT15にその2次元分布像が表示されるのである
Figure 2 shows where the sample surface is divided into pixels. 0 in this diagram
,1. . . . n is a pixel, which corresponds one-to-one with each microscopic light emitter e of the light source 6 in FIG. 1, and the transmittance of each pixel portion of the sample is φ(i). Pixel O is illuminated with light modulated at frequency fO, 1 is illuminated with light modulated at fO+Δf, and - in general, pixel i is illuminated with light modulated at frequency fo+iΔf. Therefore, the transmitted light intensity of the part of pixel i of the sample is expressed as, and the output signal 1 (t) of the light receiving element 5 is the sum of the outputs corresponding to the transmitted light of each pixel.
The part of (t) excluding the stationary part is the Fourier transform of φ(i) at the frequency interval Δf, so I
If the unsteady part of (t) is Fourier transformed again, the original φ
(i) is found. φ(i) is the pixel portion of the sample 0.1...
・Since the transmittance is n, the number of horizontal rows of pixels is e
Then, if the data of φ(i) is divided into e pieces and arranged in a matrix, a two-dimensional distribution image of the transmittance of the sample will be formed. The image forming circuit 14 in FIG. 1 forms a two-dimensional distribution image of the transmittance, etc. described above from the φ(i) data obtained by the Fourier transform processor 13, and the two-dimensional distribution image is displayed on the CRT 15. It is.

今試料上の各画素を照明する光の変調信号が基準時点1
=0で位相が一致して cOozyr(イ。+イt4Jt で表されるとすると、試料透過光の測光出力I(1)は
基準時点1=0を中心に前後対称の形となる。従って透
過率測定のような照明光と試料光とが同一位相で変化し
ているようなときは1=0以後の測光データが得られれ
ばφ(i)を復調することができる。このように位相情
報にも着目する測光手法は、蛍光測定において全く新し
い方式の測光原理を確立するために有用である。すなわ
ち蛍光強度分布と蛍光寿命分布の両方を同時に測定しう
るという特長を持たせることができる。各画素部分の照
明光の位相が基準時点で一致して上式で表されても、蛍
光においては各画素の位相は一致せず、光検出信号をフ
ーリエ変換してえられる振幅スペクトルが蛍光強度分布
を表し、位相スペクトルが蛍光寿命の分布に関係した情
報を与えることになる。
Now, the modulation signal of the light that illuminates each pixel on the sample is the reference point 1.
If the phases match at =0 and are expressed as cOozyr(I.+It4Jt), the photometric output I(1) of the light transmitted through the sample will be symmetrical with respect to the reference time 1=0.Therefore, the transmitted light When the illumination light and sample light are changing in the same phase, such as in rate measurement, φ(i) can be demodulated if photometric data after 1=0 is obtained.In this way, phase information can be A photometric method that focuses on this is useful for establishing a completely new type of photometric principle in fluorescence measurement.In other words, it has the advantage of being able to measure both the fluorescence intensity distribution and the fluorescence lifetime distribution at the same time. Even if the phase of the illumination light of each pixel part matches at the reference time point and is expressed by the above equation, in fluorescence, the phase of each pixel does not match, and the amplitude spectrum obtained by Fourier transforming the photodetection signal is the fluorescence intensity. distribution, and the phase spectrum provides information related to the distribution of fluorescence lifetime.

第3図は試料面の反射率或は蛍光を測定する場合の光学
系の構成を示す。第1図の各部と対応する部分には同じ
符号をつけであるので、−々の説明は略す。前記実施例
では光源として発光素子の2次元アレイ状配列を示し、
個々の発光素子の強度を夫々の周波数で変化させる構成
としたが、広がりを持つ光源とそれに対向させた画素区
分された光変調素子アレイとで光源系を構成してもよい
。第4図はそのような光源系の一例で機械的なシャッタ
ー手段を用い゛た。16がアレイ型光変調器で17は高
輝度放電管である。18はオプチカルファイバー束で、
その集約された端面に放電管17の光がレンズ19によ
り集光される。オプチカルファイバー束18の各ファイ
バーの他端は夫々アレイ型光変調器内の個′々の変調素
子に接続されている。個々の変調素子□を通過した光は
再びオプチカルファイバー束20によって集約され、オ
プチカルファイバー束20の集約端面20fの像がコン
デンサレンズによって試料面に形成される。アレイ型光
変調器16を構成している個々の変調素子は、電気光学
的結晶を用いたものや液晶を用いるもののほか、縦横に
光透過孔を穿った板と、その答礼の前面で振動せしめら
れるシャッター板とよりなり、シャッター板が電磁パイ
ブレークで振動せしめられる構造のものでもよい。第5
図にその一例を示す。X座標指定電極群XとY座標指定
電極群yとが液晶21をはさんで対向させである。X座
標指定電極群Xの各電極は夫々高周波発振器F1.F2
・・・に接続され、Y座標指定電極群yの各電極は高周
波発振器fl、f2・・・に接続され、画電極群間には
一定の直流バイアスがかけである。両電極の交点では両
電極の印加電圧周波数が異るので電界強度は唸周波数で
消長しており、液晶は高周波には追従できないので、こ
の唸り周波数で透過率が変化する。発振器Fl、F2・
・・の周波数間には夫々Δfの差があり、発振器f1、
f2・・・の各々の間にはにΔfの周波数差がある(k
はX座標指定電極数)。従って液晶の透過率変化周波数
はX軸方向には隣接画素間に夫々Δfの差があり、Y軸
方向にはにΔfの差があることになる。
FIG. 3 shows the configuration of an optical system for measuring reflectance or fluorescence on a sample surface. Components corresponding to those in FIG. 1 are designated by the same reference numerals, so explanations thereof will be omitted. In the above embodiment, a two-dimensional array of light emitting elements is shown as a light source,
Although the configuration is such that the intensity of each light emitting element is changed at each frequency, the light source system may be configured with a spread light source and a pixel-divided light modulation element array facing the light source. FIG. 4 shows an example of such a light source system using a mechanical shutter means. 16 is an array type optical modulator, and 17 is a high-intensity discharge tube. 18 is an optical fiber bundle,
The light from the discharge tube 17 is focused by a lens 19 on the end face thereof. The other end of each fiber of the optical fiber bundle 18 is connected to a respective modulation element in the array type optical modulator. The light that has passed through each modulation element □ is again collected by the optical fiber bundle 20, and an image of the collected end face 20f of the optical fiber bundle 20 is formed on the sample surface by a condenser lens. The individual modulation elements that make up the array type optical modulator 16 include those that use electro-optic crystals and liquid crystals, as well as those that use a plate with light transmission holes vertically and horizontally, and vibrate on the front surface of the plate. The shutter plate may have a structure in which the shutter plate is vibrated by an electromagnetic pie-break. Fifth
An example is shown in the figure. An X coordinate designating electrode group X and a Y coordinate designating electrode group y are opposed to each other with the liquid crystal 21 in between. Each electrode of the X coordinate designated electrode group X is connected to a high frequency oscillator F1. F2
. . , each electrode of the Y coordinate designating electrode group y is connected to a high frequency oscillator fl, f2, . . . , and a constant DC bias is applied between the picture electrode groups. At the intersection of the two electrodes, the voltage frequency applied to the two electrodes is different, so the electric field strength diminishes at the beat frequency, and since the liquid crystal cannot follow high frequencies, the transmittance changes at this beat frequency. Oscillator Fl, F2・
There is a difference of Δf between the frequencies of the oscillators f1,
There is a frequency difference of Δf between each of f2... (k
is the number of electrodes specified by the X coordinate). Therefore, in the transmittance change frequency of the liquid crystal, there is a difference of Δf between adjacent pixels in the X-axis direction, and a difference of Δf in the Y-axis direction.

ト、効果 本発明測光装置は上述したような構成で、試料面全面を
同時照明して各画素点について同時に光量積分を行って
いることになるので、画素点を順次走査して行くのに比
し、同じ測定時間を使えば、各画素点毎の光量積分の時
間は画素点の数だけ倍加され、従って走査型1,2次元
測光装置に比しS/N比が著しく向上し、撮像方式の測
光装置の場合、試料各部の測光値が隣接部分の散乱光の
影響を受けて正確に求められないのに比し、隣接部分の
影響は照明光の変調周波数の違いによってデータ処理上
弁別されているので、正確な測光値が得られる。
G. Effect The photometric device of the present invention has the above-described configuration, and simultaneously illuminates the entire sample surface and performs light intensity integration for each pixel point at the same time, compared to sequentially scanning the pixel points. However, if the same measurement time is used, the time for integrating the light intensity for each pixel point is doubled by the number of pixel points, and therefore the S/N ratio is significantly improved compared to scanning type one- and two-dimensional photometers, and the imaging method In the case of a photometric device, the photometric value of each part of the sample cannot be determined accurately because it is affected by the scattered light of adjacent parts, whereas the influence of adjacent parts is discriminated in data processing due to the difference in the modulation frequency of the illumination light. Therefore, accurate photometric values can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体構成図、第2図は試料
面の画素分解図、第3図は本発明の他の実施例の光学部
分の側面図、第4図は照明系の他の実施例の斜視図、第
5図は光変調手段の他の一例の斜視図である。
Fig. 1 is an overall configuration diagram of one embodiment of the present invention, Fig. 2 is a pixel exploded diagram of the sample surface, Fig. 3 is a side view of the optical part of another embodiment of the present invention, and Fig. 4 is an illumination system. FIG. 5 is a perspective view of another example of the light modulation means.

Claims (1)

【特許請求の範囲】[Claims] 1〜2次元配列を持った光源と、この光源の個々の光出
射領域の発光強度を互いに異る周期で変調する手段と、
上記光源の各発光領域の光を試料面の対応画素部分に投
射する手段と、試料の各画素部分からの光をまとめて受
光する受光素子と、この受光素子の出力を周波数分析す
る手段とを有する1〜2次元測光装置。
a light source having a one- to two-dimensional array; a means for modulating the emission intensity of each light emitting area of the light source at different periods;
means for projecting light from each light-emitting region of the light source onto corresponding pixel portions on the sample surface; a light-receiving element for collectively receiving light from each pixel portion of the sample; and means for frequency-analyzing the output of the light-receiving element. A one- to two-dimensional photometric device.
JP61148972A 1986-06-25 1986-06-25 1-2 dimensional photometric device Expired - Fee Related JPH0820357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148972A JPH0820357B2 (en) 1986-06-25 1986-06-25 1-2 dimensional photometric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148972A JPH0820357B2 (en) 1986-06-25 1986-06-25 1-2 dimensional photometric device

Publications (2)

Publication Number Publication Date
JPS635234A true JPS635234A (en) 1988-01-11
JPH0820357B2 JPH0820357B2 (en) 1996-03-04

Family

ID=15464791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148972A Expired - Fee Related JPH0820357B2 (en) 1986-06-25 1986-06-25 1-2 dimensional photometric device

Country Status (1)

Country Link
JP (1) JPH0820357B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026730A (en) * 1988-06-25 1990-01-10 Shimadzu Corp Optical scanner
JPH025055U (en) * 1988-06-21 1990-01-12
JPH0319685U (en) * 1989-07-06 1991-02-26
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
US6240309B1 (en) 1995-10-06 2001-05-29 Hitachi, Ltd. Optical measurement instrument for living body
JP2008261835A (en) * 2007-04-11 2008-10-30 Toshiba Corp Paper type discrimination apparatus and image forming apparatus using it
JP2008261836A (en) * 2007-04-11 2008-10-30 Toshiba Corp Paper type discrimination apparatus and image forming apparatus using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521313A (en) * 1975-06-24 1977-01-07 Jinei Kawamura Rotary engine having multi-polar suctioncompression cylinders in the s ame circumference
JPS55164336A (en) * 1979-06-08 1980-12-22 Olympus Optical Co Ltd Inspecting material detecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521313A (en) * 1975-06-24 1977-01-07 Jinei Kawamura Rotary engine having multi-polar suctioncompression cylinders in the s ame circumference
JPS55164336A (en) * 1979-06-08 1980-12-22 Olympus Optical Co Ltd Inspecting material detecting method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025055U (en) * 1988-06-21 1990-01-12
JPH026730A (en) * 1988-06-25 1990-01-10 Shimadzu Corp Optical scanner
JPH0319685U (en) * 1989-07-06 1991-02-26
US6240309B1 (en) 1995-10-06 2001-05-29 Hitachi, Ltd. Optical measurement instrument for living body
US6640133B2 (en) 1995-10-06 2003-10-28 Hitachi, Ltd. Optical measurement instrument for living body
US7142906B2 (en) 1995-10-06 2006-11-28 Hitachi, Ltd. Optical measurement instrument for living body
US7774047B2 (en) 1995-10-06 2010-08-10 Hitachi, Ltd. Optical measurement instrument for living body
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
GB2311854A (en) * 1995-11-17 1997-10-08 Hitachi Ltd Instrument for optical measurement of living body
GB2311854B (en) * 1995-11-17 2000-03-22 Hitachi Ltd Optical measurement instrument for living body
JP2008261835A (en) * 2007-04-11 2008-10-30 Toshiba Corp Paper type discrimination apparatus and image forming apparatus using it
JP2008261836A (en) * 2007-04-11 2008-10-30 Toshiba Corp Paper type discrimination apparatus and image forming apparatus using it

Also Published As

Publication number Publication date
JPH0820357B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
EP0842497B1 (en) Imaging measurement system
US7491943B2 (en) Method and apparatus for UV imaging
JP3145487B2 (en) Particle analyzer
US5283433A (en) Scanning confocal microscope providing a continuous display
US20040110206A1 (en) Waveform modulated light emitting diode (LED) light source for use in a method of and apparatus for screening to identify drug candidates
US9801548B2 (en) Apparatus and method for fluorescence imaging and tomography using spatially structured illumination
EP0458601A1 (en) Method of and apparatus for measuring spectral absorption in opaque specimens and method of and apparatus for measuring microscopic absorption distribution
CN104634766B (en) Super-resolution device and method based on pumping-probe technology
US10228287B2 (en) Measuring polarisation via a gating frequency
US4441816A (en) Optical double-slit particle measuring system
EP0588301A2 (en) Optical measuring apparatus
US4744660A (en) Apparatus for measuring difference in shallow level
JPH05126725A (en) Scanning type analysis microscope
JPS635234A (en) Unidimensional-two-dimensional photometric apparatus
US4881818A (en) Differential imaging device
JP3681608B2 (en) Spectroscopic sectional image measuring device
JP2520665B2 (en) Fluorescence microspectrometer
JPH08131445A (en) Optical measuring instrument
CN212159566U (en) Hyperspectral living body fluorescence molecule imaging system
US6870613B1 (en) Simultaneous recording of multispectral fluorescence signatures
RU2292530C1 (en) Method of measuring amplitude of vibration
SU1179174A1 (en) Flame parameter meter
RU2658140C1 (en) Confocal fluorescent image spectrum analyser
JP2018509640A (en) Lighting in digital pathology scans
JP2748269B2 (en) Functional imaging device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees