JPH0820357B2 - 1-2 dimensional photometric device - Google Patents

1-2 dimensional photometric device

Info

Publication number
JPH0820357B2
JPH0820357B2 JP61148972A JP14897286A JPH0820357B2 JP H0820357 B2 JPH0820357 B2 JP H0820357B2 JP 61148972 A JP61148972 A JP 61148972A JP 14897286 A JP14897286 A JP 14897286A JP H0820357 B2 JPH0820357 B2 JP H0820357B2
Authority
JP
Japan
Prior art keywords
light
sample
pixel
sample surface
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61148972A
Other languages
Japanese (ja)
Other versions
JPS635234A (en
Inventor
茂夫 南
功 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61148972A priority Critical patent/JPH0820357B2/en
Publication of JPS635234A publication Critical patent/JPS635234A/en
Publication of JPH0820357B2 publication Critical patent/JPH0820357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Description

【発明の詳細な説明】 イ.産業上の利用分野 本発明は試料面の光透過率分布を2次元的に測定する
ような場合に用いられる測光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photometric device used for two-dimensionally measuring a light transmittance distribution on a sample surface.

ロ.従来の技術 試料面における光学的な特性の分布を測定するには原
理的に二つの方法がある。一つは走査型顕微測光装置の
ような装置を用い、光スポットで試料を2次元的に走査
し試料透過光或は反応光を単一の受光素子を用いて測光
するものである。他の一つは試料面の像を撮像素子によ
って撮像する方法である。これらの測定方法は両者同じ
測定時間をかけるとすると試料面の画素数をnとすると
き、走査方式では一画素当たりの光量積分時間は撮像素
子を用いる方法の1/nであり、従ってS/N比は となり、同じS/N比を得ようとするとn倍の時間を要す
ることになり走査方式は測定能率が甚だ低い。他方撮像
方式では試料面全面が同時に照明されているので、一つ
の画素からの透過光或は反応光は隣接する試料部分の散
乱光の影響を受けており、正確な透過率或は反応率等の
値が得られない。従って正確な測定値が要求される場合
には、隣接部分の散乱光の影響を受けない走査方式によ
る必要がある。
B. Conventional Technology There are basically two methods for measuring the distribution of optical characteristics on the sample surface. One is to use a device such as a scanning microphotometer, to two-dimensionally scan a sample with a light spot, and measure the sample transmitted light or reaction light using a single light receiving element. The other is a method of capturing an image of the sample surface with an image sensor. In these measurement methods, assuming that the same measurement time is used for both, assuming that the number of pixels on the sample surface is n, the light amount integration time per pixel in the scanning method is 1 / n of the method using the image sensor, and thus S / N ratio is Therefore, if the same S / N ratio is to be obtained, it takes n times as long, and the scanning method has a very low measurement efficiency. On the other hand, in the imaging method, the entire sample surface is illuminated at the same time, so the transmitted light or reaction light from one pixel is affected by the scattered light of the adjacent sample portion, and the accurate transmittance or reaction rate, etc. I can't get the value of. Therefore, when accurate measurement values are required, it is necessary to use a scanning method that is not affected by scattered light from adjacent portions.

ハ.発明が解決しようとする問題点 上述したように走査方式は試料面の一点の測定値が隣
接する部分の散乱光の影響を受けないので、正確な測定
値が得られるが、測定能率が低いと言う難点があり、撮
像素子を用いる方式では試料面を同時に均一照射してい
るので、一画素当たりの測定時間が永く取れ測定能率は
良いが試料面の一点の測定値は隣接部分の散乱光の影響
を受けており、正確な測定値が得難いと言う問題があ
る。従って本発明は試料を全面照射することで測定能率
を高め、しかも試料面の一点の測定値が隣接部分の散乱
光の影響を受けないで正確な測光値が得られるような1
〜2次元測光装置を提供しようとするものである。
C. Problems to be Solved by the Invention As described above, in the scanning method, since the measurement value at one point on the sample surface is not affected by the scattered light in the adjacent portion, an accurate measurement value can be obtained, but the measurement efficiency is low. However, in the method that uses the image sensor, the sample surface is uniformly illuminated at the same time, so the measurement time per pixel is long and the measurement efficiency is good, but the measured value at one point on the sample surface is It is affected, and there is a problem that it is difficult to obtain accurate measurement values. Therefore, according to the present invention, by irradiating the entire surface of the sample, the measurement efficiency is improved, and moreover, the measured value at one point on the sample surface is not affected by the scattered light in the adjacent portion, and an accurate photometric value can be obtained.
~ It is intended to provide a two-dimensional photometric device.

ニ.問題点解決のための手段 試料面上の各画素を互いに少しずつ異る周波数で変調
された光で同時に全面照明し、試料透過光或は反射光を
単一の受光素子で測光し、測光データを処理して周波数
成分に分解して各画素についての測光情報を求めるよう
にした。なお以上の説明は面状試料について行ったが、
試料上の一つの線に沿っての測定についても上と同じこ
とが言えるのはもちろんである。
D. Means for solving the problem Each pixel on the sample surface is simultaneously illuminated with light modulated at slightly different frequencies, and the transmitted or reflected light of the sample is measured with a single light receiving element. Is processed and decomposed into frequency components to obtain photometric information for each pixel. Although the above explanation was given for the planar sample,
Of course, the same can be said for measurements along one line on the sample.

ホ.作用 試料面の各画素を互いに少しずつ異る周波数で変調さ
れた光で同時に照明すると、各画素の透過光或は反射光
等はその画像を照明した光と同じ周波数で変調されてい
る。このような光を単一の受光素子で測定すると、色々
な周波数で変調された光が重畳した測定信号が得られ
る。そこでこの測定信号を周波数分析すれば、夫々の変
調光の変調周波数を横軸に各変調光の強度を縦軸にとっ
た振幅スペクトルが得られ、変調周波数と試料上の画素
との対応関係から、各画素の透過光域は反射光の強度情
報が得られる。この方式では全ての画素が測定期間中照
明されており、全ての画素について測定期間中光量積分
が行われているので、測定能率が良く、隣接画素の散乱
光は変調周波数が異なっているので、その影響はデータ
処理の過程で除去されており、正確な測光データが得ら
れる。
E. When each pixel on the sample surface is simultaneously illuminated with light modulated at a slightly different frequency, the transmitted light or reflected light of each pixel is modulated at the same frequency as the light illuminating the image. When such light is measured with a single light receiving element, a measurement signal in which light modulated at various frequencies is superimposed is obtained. Therefore, if this measurement signal is subjected to frequency analysis, an amplitude spectrum is obtained in which the horizontal axis represents the modulation frequency of each modulated light and the vertical axis represents the intensity of each modulated light. From the correspondence relationship between the modulation frequency and the pixel on the sample, The intensity information of the reflected light is obtained in the transmitted light region of each pixel. In this method, all pixels are illuminated during the measurement period, and the light amount integration is performed for all the pixels during the measurement period, so the measurement efficiency is good, and the scattered light of adjacent pixels has different modulation frequencies. The effect is removed in the process of data processing, and accurate photometric data can be obtained.

ヘ.実施例 第1図に本発明の一実施例を示す。Aは顕微測光装置
の光学系で、1は対物レンズ、2はハーフミラー、3は
接眼レンズ、4は対物レンズ透過光を受光素子5の受光
面に集光するレンズで、受光素子5は単一の受光素子
(例えば光電子増倍管のようなもの)である。Sは試料
で、Bは試料照明光学系である。試料照明光学系におい
て、6は単位光源eを平面に2次元的に配列した光源、
7はオプチカルファイバーの束で、この束の一本一本の
一端が光源6の一つ一つの単位光源eに対向させてあ
り、これらのオプチカルファイバーが集まった束7の他
端は一つの発光面fとなっており、コンデンサレンズ8
はこの発光面fの像を試料S上に形成するようになって
いる。Cは光源6の点灯制御を行う点灯回路で9はドラ
イバーであり、光源6の個々の単位光源eに対応させた
パワーアンプP1,P2…Pnとこれらのアンプを駆動する発
振器F1,F2…Fnよりなっている。発振器F1,F2…Fnの発振
周波数fo,f1…fn-1はfoを基準にして f1=fo+Δf,f2=fo+2Δf, fn-1=fo+(n−1)Δf である。即ちf1,f2,…fn-1は順にΔfずつ大となってい
る。発光体はLEDやプラズマディスプレイ型のガス放電
発光アレイである。上述した照明系の構成により、試料
Sの各点は互いに異る周波数で変調された光によって照
明されることになる。Dは測光回路であって、受光素子
5の出力はプリアンプ10,サンプリング回路11,A/D変換
器12を経てフーリェ変換プロセッサ13に取込まれ、フー
リェ変換プロセッサ13の出力データは画像形成回路14に
おいて2次元画像データに変換され、CRT15によって画
像表示される。この画像表示は試料Sの光透過率の2次
元分布像である。
F. Embodiment FIG. 1 shows an embodiment of the present invention. A is an optical system of a microscopic photometer, 1 is an objective lens, 2 is a half mirror, 3 is an eyepiece lens, 4 is a lens for condensing light transmitted through the objective lens on the light receiving surface of the light receiving element 5, and the light receiving element 5 is a single lens. One light receiving element (such as a photomultiplier tube). S is a sample, and B is a sample illumination optical system. In the sample illumination optical system, 6 is a light source in which unit light sources e are two-dimensionally arranged on a plane,
Reference numeral 7 denotes a bundle of optical fibers, one end of each bundle is opposed to each unit light source e of the light source 6, and the other end of the bundle 7 in which these optical fibers are gathered is one light emission. The surface is f, and the condenser lens 8
Forms an image of the light emitting surface f on the sample S. C is a lighting circuit for controlling lighting of the light source 6, and 9 is a driver, and power amplifiers P1, P2 ... P n corresponding to individual unit light sources e of the light source 6 and oscillators F1, F2 ... Pn for driving these amplifiers. It consists of F n . Oscillation frequency fo, f1 ... f n-1 of the oscillator F1, F2 ... F n is based on the fo f1 = fo + Δf, f2 = fo + 2Δf, f n-1 = fo + (n-1) Δf. That is, f1, f2, ... F n-1 are sequentially increased by Δf. The light emitter is an LED or plasma display type gas discharge light emitting array. With the configuration of the illumination system described above, each point of the sample S is illuminated with light modulated at different frequencies. D is a photometric circuit, and the output of the light receiving element 5 is taken into the Fourier transform processor 13 via the preamplifier 10, the sampling circuit 11, and the A / D converter 12, and the output data of the Fourier transform processor 13 is the image forming circuit 14. Is converted into two-dimensional image data and displayed as an image by the CRT 15. This image display is a two-dimensional distribution image of the light transmittance of the sample S.

第2図は試料面を画素に分割した所を示す。この図で
0,1,…nが画素で第1図の光源6の各単位光源eと1対
1に対応しており、試料の上記各画素部分の透過率をφ
(i)とする。画素0は周波数foで変調された光で照明
され1はfo+Δfで変調された光で照明され、一般に画
素iはfo+iΔfの周波数で変調された光で照明されて
いる。従って試料の画素iの部分の透過光強度は φ(i)cos{2π(fo+iΔf)t+Pi}+Ki で表され、受光素子5の出力信号I(t)は各画素の透
過光に対応する出力の和になるから の形で表され、I(t)の定常部分を除いた部分はφ
(i)を周波数間隔Δfでフーリェ変換したものになっ
ているから、I(t)の非定常部分を再びフーリェ変換
すればもとのφ(i)が求まる。φ(i)は試料の画素
部分0,1…nの透過率であるから、画素の横一列の並び
の数をlとすれば、φ(i)のデータをl個毎に区切っ
てマトリクス状に配列すれば、試料の透過率の2次元的
分布像が形成されることになる。第1図の画像形成回路
14はフーリェ変換プロセッサ13で得られるφ(i)のデ
ータから上記した透過率等の2次元分布像を形成するも
ので、CRT15にその2次元分布像が表示されるのであ
る。
FIG. 2 shows the sample surface divided into pixels. In this figure
0, 1, ... N are pixels and have a one-to-one correspondence with each unit light source e of the light source 6 of FIG. 1, and the transmittance of each pixel portion of the sample is φ.
(I). Pixel 0 is illuminated with light modulated at frequency fo, 1 is illuminated with light modulated at fo + Δf, and pixel i is generally illuminated with light modulated at frequency fo + iΔf. Therefore, the transmitted light intensity of the pixel i portion of the sample is represented by φ (i) cos {2π (fo + iΔf) t + Pi} + Ki, and the output signal I (t) of the light receiving element 5 is an output signal corresponding to the transmitted light of each pixel. Because it will be Japanese , And the part of I (t) excluding the stationary part is φ
Since (i) is Fourier transformed with the frequency interval Δf, the original φ (i) can be obtained by subjecting the non-stationary part of I (t) to Fourier transform again. Since φ (i) is the transmittance of the pixel portions 0, 1 ... N of the sample, if the number of pixels arranged in a horizontal row is l, the data of φ (i) is divided into l matrixes. By arranging them in the above manner, a two-dimensional distribution image of the transmittance of the sample is formed. Image forming circuit of FIG.
Reference numeral 14 forms a two-dimensional distribution image of the above-mentioned transmittance from the φ (i) data obtained by the Fourier transform processor 13, and the two-dimensional distribution image is displayed on the CRT 15.

今試料上の各画素を照明する光の変調信号が基準時点
t=0で位相が一致して cos2π(fo+iΔf)t で表されるとすると、試料透過光の測光出力I(t)は
基準時点t=0を中心に前後対称の形となる。従って透
過率測定のような照明光と試料光とが同一位相で変化し
ているようなときはt=0以後の測光データが得られれ
ばφ(i)を復調することができる。このように位相情
報にも着目する測光手法は、蛍光測定において全く新し
い方式の測光原理を確立するために有用である。すなわ
ち蛍光強度分布と蛍光寿命分布の両方を同時に測定しう
るという特長を持たせることができる。各画素部分の照
明光の位相が基準時点で一致して上式で表されても、蛍
光においては各画素の位相は一致せず,光検出信号をフ
ーリェ変換してえられる振幅スペクトルが蛍光強度分布
を表し、位相スペクトルが蛍光寿命の分布に関係した情
報を与えることになる。
If the modulation signal of the light illuminating each pixel on the sample is in phase at the reference time t = 0 and is represented by cos2π (fo + iΔf) t, the photometric output I (t) of the sample transmitted light is the reference time. The shape is symmetrical around t = 0. Therefore, when the illumination light and the sample light are changing in the same phase as in the transmittance measurement, φ (i) can be demodulated if the photometric data after t = 0 is obtained. In this way, the photometric method that also pays attention to the phase information is useful for establishing a completely new type of photometric principle in fluorescence measurement. That is, it is possible to provide a feature that both the fluorescence intensity distribution and the fluorescence lifetime distribution can be measured simultaneously. Even if the phase of the illumination light of each pixel portion matches at the reference time and is represented by the above formula, the phase of each pixel does not match in fluorescence, and the amplitude spectrum obtained by Fourier transform of the photodetection signal is the fluorescence intensity. It represents the distribution, and the phase spectrum will give information related to the distribution of the fluorescence lifetime.

第3図は試料面の反射率或は螢光を測定する場合の光
学系の構成を示す。第1図の各部と対応する部分には同
じ符号をつけてあるので、一々の説明は略す。前記実施
例では光源として発光素子の2次元アレイ状配列を示
し、個々の発光素子の強度を夫々の周波数で変化させる
構成としたが、広がりを持つ光源とそれに対向させた画
素区分された光変調素子アレイとで光源系を構成しても
よい。第4図はそのような光源系の一例で機械的なシャ
ッター手段を用いた。16がアレイ型光変調器で17は高輝
度放電管である。18はオプチカルファイバー束で、その
集約された端面に放電管17の光がレンズ19により集光さ
れる。オプチカルファイバー束18の各ファイバーの他端
は夫々アレイ型光変調器内の個々の変調素子に接続され
ている。個々の変調素子を通過した光は再びオプチカル
ファイバー束20によって集約され、オプチカルファイバ
ー束20の集約端面20fの像がコンデンサレンズによって
試料面に形成される。アレイ型光変調器16を構成してい
る個々の変調素子は、電気光学的結晶を用いたものや液
晶を用いるもののほか,縦横に光透過孔を穿った板と、
その各孔の前面で振動せしめられるシャッター板とより
なり、シャッター板が電磁バイブレータで振動せしめら
れる構造のものでもよい。第5図にその一例を示す。X
座標指定電極群xとY座標指定電極群yとが液晶21をは
さんで対向させてある。X座標指定電極群xの各電極は
夫々高周波発振器F1,F2…に接続され、Y座標指定電極
群yの各電極は高周波発振器F1,F2…に接続され、両電
極群間には一定の直流バイアスがかけてある。両電極の
交点では両電極の印加電圧周波数が異るので電界強度は
唸周波数で消長しており、液晶は高周波には追従できな
いので、この唸り周波数で透過率が変化する。発振器F
1,F2…の周波数間には夫々Δfの差があり、発振器f1,f
2…の各々の間にはkΔfの周波数差がある(kはX座
標指定電極数)。従って液晶の透過率変化周波数はX軸
方向には隣接画素間に夫々Δfの差があり、Y軸方向に
はkΔfの差があることになる。
FIG. 3 shows the configuration of an optical system for measuring the reflectance or fluorescence of the sample surface. The parts corresponding to the respective parts in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In the above-described embodiment, the light source is a two-dimensional array of light emitting elements, and the intensity of each light emitting element is changed at each frequency. A light source system may be configured with the element array. FIG. 4 shows an example of such a light source system using a mechanical shutter means. 16 is an array type optical modulator and 17 is a high-intensity discharge tube. Reference numeral 18 is an optical fiber bundle, and the light of the discharge tube 17 is condensed by the lens 19 on the end surface where the bundle is gathered. The other end of each fiber of the optical fiber bundle 18 is connected to an individual modulation element in the array type optical modulator. The light beams that have passed through the individual modulators are aggregated again by the optical fiber bundle 20, and the image of the aggregated end face 20f of the optical fiber bundle 20 is formed on the sample surface by the condenser lens. The individual modulation elements that constitute the array-type optical modulator 16 include those using electro-optical crystals and those using liquid crystals, as well as a plate having light transmission holes in the vertical and horizontal directions,
The shutter plate may be made to vibrate in front of each hole, and the shutter plate may be vibrated by an electromagnetic vibrator. FIG. 5 shows an example. X
The coordinate designating electrode group x and the Y coordinate designating electrode group y are opposed to each other with the liquid crystal 21 in between. Each electrode of the X coordinate designation electrode group x is connected to a high frequency oscillator F1, F2 ..., Each electrode of the Y coordinate designation electrode group y is connected to a high frequency oscillator F1, F2. It's biased. Since the applied voltage frequency of both electrodes is different at the intersection of both electrodes, the electric field strength fluctuates at the beat frequency, and since the liquid crystal cannot follow the high frequency, the transmittance changes at this beat frequency. Oscillator F
There is a difference of Δf between the frequencies of 1, F2 ...
There is a frequency difference of kΔf between each of 2 ... (k is the number of X coordinate designated electrodes). Therefore, the transmittance change frequency of the liquid crystal has a difference of Δf between adjacent pixels in the X-axis direction and a difference of kΔf in the Y-axis direction.

ト.効果 本発明測光装置は上述したような構成で、試料面全面
を同時照明して各画素点について同時に光量積分を行っ
ていることになるので、画素点を順次走査して行くのに
比し、同じ測定時間を使えば、各画素点毎の光量積分の
時間は画素点の数だけ倍加され、従って走査型1,2次元
測光装置に比しS/N比が著しく向上し、撮像方式の測光
装置の場合、試料各部の測光値が隣接部分の散乱光の影
響を受けて正確に求められないのに比し、隣接部分の影
響は照明光の変調周波数の違いによってデータ処理上弁
別されているので、正確な測光値が得られる。
G. Effect Since the photometric device of the present invention has the above-described configuration and simultaneously illuminates the entire surface of the sample to perform the light amount integration for each pixel point at the same time, compared to sequentially scanning the pixel points, If the same measurement time is used, the light intensity integration time for each pixel point is doubled by the number of pixel points, so the S / N ratio is significantly improved compared to the scanning type 1 and 2D photometer, and the photometry of the imaging method In the case of the device, the photometric value of each part of the sample is affected by the scattered light of the adjacent part and cannot be obtained accurately, whereas the effect of the adjacent part is discriminated in the data processing by the difference in the modulation frequency of the illumination light. Therefore, an accurate photometric value can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の全体構成図、第2図は試料
面の画素分解図、第3図は本発明の他の実施例の光学部
分の側面図、第4図は照明系の他の実施例の斜視図、第
5図は光変調手段の他の一例の斜視図である。 A:測光装置光学系,B:照明光学系,C:点灯回路,D:測光回
路,6:光源発光体,,9:ドライバー,F1・・・Fn:発振器
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIG. 2 is an exploded view of pixels on a sample surface, FIG. 3 is a side view of an optical portion of another embodiment of the present invention, and FIG. 4 is an illumination system. FIG. 5 is a perspective view of another embodiment of FIG. 5, and FIG. 5 is a perspective view of another example of the light modulating means. A: Photometer optical system, B: Illumination optical system, C: Lighting circuit, D: Photometric circuit, 6: Light source light emitter, 9: Driver, F1 ... Fn: Oscillator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の単位光源と、各単位光源毎に設けら
れ、互いに異なる周波数で発光強度を変調する点灯回路
と、各単位光源を試料面の各画素と一対一に対応させて
各単位光源の光を試料面に導く手段と、上記試料面の各
画素からの光をまとめて受光する一つの受光素子と、こ
の受光素子の出力をフーリェ変換する手段と、このフー
リェ変換出力の上記試料面の各画素からの光の上記変調
周波数に対応する部分を上記試料面の対応画素に対応さ
せて上記フーリェ変換出力を画像表示する手段とよりな
る1〜2次元測光装置。
1. A plurality of unit light sources, a lighting circuit which is provided for each unit light source, and modulates emission intensity at frequencies different from each other, and each unit light source is associated with each pixel on the sample surface in a one-to-one correspondence with each unit. Means for guiding the light of the light source to the sample surface, one light receiving element for collectively receiving the light from each pixel on the sample surface, means for Fourier-converting the output of the light-receiving element, and the sample for the Fourier-converted output A one- to two-dimensional photometric device comprising means for displaying an image of the Fourier transform output by making a portion corresponding to the modulation frequency of light from each pixel on the surface correspond to the corresponding pixel on the sample surface.
JP61148972A 1986-06-25 1986-06-25 1-2 dimensional photometric device Expired - Fee Related JPH0820357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148972A JPH0820357B2 (en) 1986-06-25 1986-06-25 1-2 dimensional photometric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148972A JPH0820357B2 (en) 1986-06-25 1986-06-25 1-2 dimensional photometric device

Publications (2)

Publication Number Publication Date
JPS635234A JPS635234A (en) 1988-01-11
JPH0820357B2 true JPH0820357B2 (en) 1996-03-04

Family

ID=15464791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148972A Expired - Fee Related JPH0820357B2 (en) 1986-06-25 1986-06-25 1-2 dimensional photometric device

Country Status (1)

Country Link
JP (1) JPH0820357B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025055U (en) * 1988-06-21 1990-01-12
JPH026730A (en) * 1988-06-25 1990-01-10 Shimadzu Corp Optical scanner
JPH0319685U (en) * 1989-07-06 1991-02-26
US6240309B1 (en) 1995-10-06 2001-05-29 Hitachi, Ltd. Optical measurement instrument for living body
CA2210703C (en) * 1995-11-17 2001-10-09 Hitachi, Ltd. Optical measurement instrument for living body
US20080310863A1 (en) * 2007-04-11 2008-12-18 Kabushiki Kaisha Toshiba Paper type determination device
US7877055B2 (en) * 2007-04-11 2011-01-25 Kabushiki Kaisha Toshiba Paper type determination device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521313A (en) * 1975-06-24 1977-01-07 Jinei Kawamura Rotary engine having multi-polar suctioncompression cylinders in the s ame circumference
JPS55164336A (en) * 1979-06-08 1980-12-22 Olympus Optical Co Ltd Inspecting material detecting method

Also Published As

Publication number Publication date
JPS635234A (en) 1988-01-11

Similar Documents

Publication Publication Date Title
US5283433A (en) Scanning confocal microscope providing a continuous display
US7072700B2 (en) Biological photometric device
JP2527540B2 (en) Device for fluorescence signal analysis and image display
JP3145487B2 (en) Particle analyzer
US4047022A (en) Auto focus with spatial filtering and pairwise interrogation of photoelectric diodes
JP2005164612A (en) Method for aligning spectral imaging system, apparatus and method for acquiring monochromatic sample image, the spectral imaging system, and intermediate spread detecting apparatus
WO2023197734A1 (en) Multi-channel super-resolution gene detector and detection method thereof
CN104634766B (en) Super-resolution device and method based on pumping-probe technology
JPH0820357B2 (en) 1-2 dimensional photometric device
JPH05126725A (en) Scanning type analysis microscope
JPH02268256A (en) Apparatus for inspecting fluorescence characteristic
US7297962B2 (en) Method for performing spacially coordinated high speed fluorometric measurements
US4881818A (en) Differential imaging device
JP3681608B2 (en) Spectroscopic sectional image measuring device
US7317194B2 (en) Microscope for performing multiple frequency fluorometric measurements
RU2292530C1 (en) Method of measuring amplitude of vibration
US6870613B1 (en) Simultaneous recording of multispectral fluorescence signatures
RU2658140C1 (en) Confocal fluorescent image spectrum analyser
US4645341A (en) Double polarized light beam spectrophotometer of light source modulation type
SU1179174A1 (en) Flame parameter meter
EP0307960B1 (en) Optical heterodyne detector
JP2748269B2 (en) Functional imaging device
SU1204879A1 (en) Arrangement for measuring flame physical parameters
SU1242721A1 (en) Device for analyzing illumination engineering and geometric parameters of matrix luminous radiation indicators
JPS635235A (en) Photometric apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees