JPS6352285B2 - - Google Patents

Info

Publication number
JPS6352285B2
JPS6352285B2 JP57118349A JP11834982A JPS6352285B2 JP S6352285 B2 JPS6352285 B2 JP S6352285B2 JP 57118349 A JP57118349 A JP 57118349A JP 11834982 A JP11834982 A JP 11834982A JP S6352285 B2 JPS6352285 B2 JP S6352285B2
Authority
JP
Japan
Prior art keywords
flame
monitoring
distance
furnace
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57118349A
Other languages
Japanese (ja)
Other versions
JPS599429A (en
Inventor
Mitsuyo Nishikawa
Nobuo Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57118349A priority Critical patent/JPS599429A/en
Publication of JPS599429A publication Critical patent/JPS599429A/en
Publication of JPS6352285B2 publication Critical patent/JPS6352285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/18Flame sensor cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、発電用ボイラの火炉内部の燃焼状態
を監視する方法に係り、特に火力発電などに用い
るボイラに適用するに最適な火炎形状監視方法に
関する。 従来、ボイラ炉内の火炎から燃焼状態を知るた
めの方法として、燃焼時の火炎をバーナノズルの
対向壁面に取り付けられたITVを用いて監視す
る方法、炉壁に取り付けられている覗き窓から点
検する方法、伝熱管の温度管理などが主流をしめ
ており、自動監視装置としては、フレームデテク
タによるバーナ自動点火、消火の判定装置が火炉
保護のために使用されている程度であつた。 しかも、ボイラ運転中の燃焼状態の監視につい
ては、定量化された出力値がなかつたため、運転
員は経験と勘に頼らざるを得なく、迅速な対処が
できないという問題があつた。 また、ITVによる燃焼状態の監視では、炉壁
に取り付けられたITVを用いて、対向壁のバー
ナノズルを映して監視するため、運転時には火炎
が渦巻いた状態となり、燃焼状態を的確に判断す
ることが難しく、これもまた運転員の経験と勘に
頼つていた。 本発明の目的は、発電用ボイラの火炉内部の燃
焼状態を監視する方法を提供することにある。 本発明は、火炎の形状及び性状がバーナ先端か
ら火炎の根元部までの距離に応じて監視領域を定
め火炉内の燃焼状態を監視することにある。 本発明の実施例を第1図に示す。第1図におい
て、ボイラはバーナ1から供給される燃料を火炉
7で燃焼させ、伝熱管3内の水を蒸気に変える。
火炉7における燃焼状態を監視するため、例え
ば、イメージフアイバ5とその冷却装置4を火炉
7の壁面に取り付ける。視野角がθの場合の取り
付ける方向及びその角度の1例を第2図a,bに
示す。 取り付ける角度は、1本あるいは複数本のバー
ナ1の先端の火炎2の根元部を検出するような角
度であるが、イメージフアイバ5の視野角θによ
り取り付け位置が決定される。 例えば、このような構造を持つ検出部で検出さ
れた火炎1の根元部のイメージ信号(光)は、撮
像装置6でアナログ信号(電気)に変換され、
A/D変換器8でデジタル信号に変えられて電子
計算機9に取り込まれる。 本発明の実施例を第3図に示す。バーナ1が対
向あるいは複数段(列)設けられている場合に
は、複数個のイメージフアイバ5を設置して監視
する必要がある。第3図には、バーナ1が対向し
て設置されている場合の1例を示す。 イメージフアイバ5で火炎の形状を検出するの
であるが、例えば第4図a,bに示すように、バ
ーナ1の先端を含む火炎2の安定している根元の
部分などを表わす。 さらに、第4図においてバーナ1の先端から火
炎根元までの距離Lは、負荷の関数であると考え
られることから、距離Lに基づいて監視する火炎
の長さlを決定する(ここで、監視する火炎の長
さlを安定な火炎の部分と考える)。すなわち、
負荷が大きくなれば距離Lが大きくなり、監視す
る火炎の長さlを長くし、逆に、負荷が減少すれ
ば距離Lは小さくなり、監視する火炎の長さlを
短かくする。 このことから、距離Lに比例して監視する火炎
の長さlを変化させることにより、良好な火炎監
視(形状)が実現できる。 これら上記範囲を含むようにイメージフアイバ
5などで検出した火炎のイメージ信号(光)は、
撮像装置6を用いることによりアナログ信号(電
気)に変換され、さらにA/D変換器8でデジタ
ル信号に変えられて電子計算機9に取り込まれ
る。取り込まれたイメージ信号(デジタル信号)
は、先に述べた方法により火炎の安定な部分を検
出し、
The present invention relates to a method for monitoring the combustion state inside a furnace of a power generation boiler, and particularly to a flame shape monitoring method most suitable for application to a boiler used for thermal power generation. Conventionally, methods for determining the combustion status from the flame in the boiler furnace include monitoring the flame during combustion using an ITV attached to the wall facing the burner nozzle, and inspecting it through a viewing window attached to the furnace wall. The main method was to control the temperature of heat transfer tubes, and the only automatic monitoring device used was a flame detector to determine automatic burner ignition and extinguishment for furnace protection. Moreover, since there was no quantified output value for monitoring the combustion state during boiler operation, operators had to rely on their experience and intuition, and there was a problem in that they were unable to take prompt action. In addition, when monitoring the combustion status using ITV, the ITV installed on the furnace wall is used to monitor the burner nozzle on the opposite wall, so the flame swirls during operation, making it difficult to accurately judge the combustion status. This was difficult and relied on the operator's experience and intuition. An object of the present invention is to provide a method for monitoring the combustion state inside the furnace of a power generation boiler. The present invention is to monitor the combustion state in the furnace by determining a monitoring area according to the shape and properties of the flame depending on the distance from the tip of the burner to the base of the flame. An embodiment of the invention is shown in FIG. In FIG. 1, the boiler burns fuel supplied from a burner 1 in a furnace 7 to convert water in heat exchanger tubes 3 into steam.
In order to monitor the combustion state in the furnace 7, for example, an image fiber 5 and its cooling device 4 are attached to the wall of the furnace 7. An example of the mounting direction and its angle when the viewing angle is θ is shown in FIGS. 2a and 2b. The mounting angle is such that the base of the flame 2 at the tip of one or more burners 1 can be detected, and the mounting position is determined by the viewing angle θ of the image fiber 5. For example, an image signal (light) of the base of the flame 1 detected by a detection unit having such a structure is converted into an analog signal (electricity) by the imaging device 6,
The signal is converted into a digital signal by the A/D converter 8 and taken into the electronic computer 9. An embodiment of the invention is shown in FIG. When the burners 1 are provided facing each other or in multiple stages (rows), it is necessary to install and monitor a plurality of image fibers 5. FIG. 3 shows an example where the burners 1 are installed facing each other. The shape of the flame is detected by the image fiber 5, and for example, as shown in FIG. Furthermore, since the distance L from the tip of the burner 1 to the flame root in FIG. 4 is considered to be a function of the load, the length l of the flame to be monitored is determined based on the distance L (here, the length l of the flame to be monitored is The length l of the flame is considered to be the stable part of the flame). That is,
When the load increases, the distance L increases, and the length l of the flame to be monitored is lengthened; conversely, when the load decreases, the distance L decreases, and the length l of the flame to be monitored is shortened. From this, by changing the length l of the flame to be monitored in proportion to the distance L, good flame monitoring (shape) can be achieved. The image signal (light) of the flame detected by the image fiber 5 etc. to include these above ranges is as follows:
It is converted into an analog signal (electrical) by using the imaging device 6, and further converted into a digital signal by the A/D converter 8 and taken into the electronic computer 9. Captured image signal (digital signal)
detects the stable part of the flame by the method described above,

【表】【table】

【表】【table】

【表】 その安定な部分と予め記憶しておいた火炎形状
(例えば第1表)あるいは第3表に示す火炎根元
部の特徴(例えば第1表のパターンから抽出した
特徴)などを用いて比較する。第1表を用いた場
合には、火炎形状と標準パターンとの間に大小関
係が生じると対応できないという問題がある。そ
こで、さらに火炎パターンの特徴を検討し第3表
の条件でl1(火炎上流部の火炎の厚さ)、l2(火炎下
流部の火炎の厚さ)、θ1〜θ4(角度)について標準
火炎パターンから求めた各々の範囲を予め設定し
ておき、標準火炎パターンと火炎形状とが類似形
状か否かを判別することにより、火炎形状の大小
に関係無く形状が判別できるものである。 このようにして判別した結果を用いて、例えば
第2表により火炎性状を判別したり、予め求めて
おいた負荷と距離Lの関係から火炎の異常を検出
するような状態判別が可能になる。 以上のように、火炎パターンを特徴別に分類
し、予め記憶しておくことによりボイラの燃焼状
態を自動的に、そして迅速かつ的確に把握するこ
とが
[Table] Comparison using the stable part and the flame shape stored in advance (for example, Table 1) or the characteristics of the flame root shown in Table 3 (for example, the characteristics extracted from the patterns in Table 1) do. When Table 1 is used, there is a problem that it cannot be handled if there is a size relationship between the flame shape and the standard pattern. Therefore, we further investigated the characteristics of the flame pattern and determined l 1 (thickness of the flame in the upstream part of the flame), l 2 (thickness of the flame in the downstream part of the flame), and θ 1 to θ 4 (angle) under the conditions shown in Table 3. By setting each range obtained from the standard flame pattern in advance for each, and determining whether or not the standard flame pattern and the flame shape are similar shapes, the shape can be determined regardless of the size of the flame shape. . Using the results determined in this way, it becomes possible to perform state determination, such as determining the flame properties based on Table 2, or detecting flame abnormalities from the relationship between the load and distance L determined in advance. As described above, by classifying flame patterns according to their characteristics and storing them in advance, it is possible to automatically, quickly and accurately grasp the combustion state of the boiler.

【表】 できる。 また、イメージ信号を統計処理(例えば平均
化)したデータを用いても本発明と同様な効果を
得ることができる。さらに、検出部に直接撮像装
置あるいは赤外線、紫外線などの検出装置を設置
しても同様の効果を得ることができる。
[Table] Yes. Furthermore, the same effects as the present invention can be obtained by using data obtained by statistically processing (for example, averaging) image signals. Furthermore, the same effect can be obtained even if an imaging device or a detection device for infrared rays, ultraviolet rays, etc. is installed directly in the detection section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は
例えばイメージフアイバを取り付けた場合を示す
図、第3図は本発明の実施例を示す図、第4図は
火炎根元部とバーナ先端からの距離Lを示す図を
それぞれ示す。 1……バーナ、2……火炎、3……伝熱管、4
……冷却装置、5……イメージフアイバ、6……
撮像装置、7……火炉、8……A/D変換器、9
……電子計算機、10……表示装置。
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows a case where an image fiber is attached, Fig. 3 shows an embodiment of the invention, and Fig. 4 shows a flame root portion. Each figure shows the distance L from the burner tip. 1... Burner, 2... Flame, 3... Heat exchanger tube, 4
...Cooling device, 5...Image fiber, 6...
Imaging device, 7... Furnace, 8... A/D converter, 9
...Electronic computer, 10...Display device.

Claims (1)

【特許請求の範囲】[Claims] 1 火炎形状をセンサーを用いて監視する方法に
おいて、バーナー先端から火炎根元部までの距離
を検出し、該距離に比例して監視する火炎の該火
炎根元部を含む領域を定め、該定められた火炎領
域の監視をおこなうことを特徴とする火炎形状監
視方法。
1. In a method of monitoring flame shape using a sensor, the distance from the burner tip to the flame root is detected, an area including the flame root of the flame to be monitored is determined in proportion to the distance, and the area including the flame root is determined in proportion to the distance. A flame shape monitoring method characterized by monitoring a flame area.
JP57118349A 1982-07-09 1982-07-09 Flame form inspecting method Granted JPS599429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118349A JPS599429A (en) 1982-07-09 1982-07-09 Flame form inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118349A JPS599429A (en) 1982-07-09 1982-07-09 Flame form inspecting method

Publications (2)

Publication Number Publication Date
JPS599429A JPS599429A (en) 1984-01-18
JPS6352285B2 true JPS6352285B2 (en) 1988-10-18

Family

ID=14734492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118349A Granted JPS599429A (en) 1982-07-09 1982-07-09 Flame form inspecting method

Country Status (1)

Country Link
JP (1) JPS599429A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604106A1 (en) * 1986-02-10 1987-08-13 Gerhard Eichweber METHOD FOR OPTICALLY MONITORING A PROCEDURE
CN103077394B (en) * 2012-12-31 2017-02-08 天津大学 Method for automatically monitoring flame combustion stability

Also Published As

Publication number Publication date
JPS599429A (en) 1984-01-18

Similar Documents

Publication Publication Date Title
JPH0316564B2 (en)
Lu et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
CN101806626A (en) Online monitoring method for flue gas temperature of hearth outlet of power station boiler
JPS6149569B2 (en)
JPS6225934B2 (en)
JPH04223228A (en) Gas-turbine-flame detecting apparatus having device for attenuating radiation of reflected flame
JPS6036825A (en) Control method for combustion flame and device thereof
JPS6352285B2 (en)
CN101266044B (en) Method and apparatus for distinguishing coal-burning boiler coal fines timely degree property
JPS597824A (en) Method for monitoring flame pattern
CN110207817A (en) Light source sensor and monitoring system
JP2753839B2 (en) Method for monitoring and controlling combustion state
JPH0815042A (en) Operation gas temperature measuring device for gas turbine
CN1093620C (en) On-line detection device for combustion condition of large boiler
CN218379455U (en) On-line early warning and processing system for accumulated ash and coking on boiler heating surface
JP2817462B2 (en) Fire detection system
CN214370354U (en) Flame detector
CN117268550B (en) Industrial furnace combustor flame on-line identification system
JPS6339559Y2 (en)
JPH0697187B2 (en) Flame monitoring device using optical fiber
JPS61240027A (en) Flame detector
JPH01277118A (en) Completely burning point inspection method of incinerator by image processing
JPS6155518A (en) Burning diagonosing
JPH0542603B2 (en)