JPS6351625A - Heat treatment method - Google Patents

Heat treatment method

Info

Publication number
JPS6351625A
JPS6351625A JP19601286A JP19601286A JPS6351625A JP S6351625 A JPS6351625 A JP S6351625A JP 19601286 A JP19601286 A JP 19601286A JP 19601286 A JP19601286 A JP 19601286A JP S6351625 A JPS6351625 A JP S6351625A
Authority
JP
Japan
Prior art keywords
heat
length
treated
heat treatment
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19601286A
Other languages
Japanese (ja)
Inventor
Hideo Yamanaka
英雄 山中
Junji Sakaguchi
坂口 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP19601286A priority Critical patent/JPS6351625A/en
Publication of JPS6351625A publication Critical patent/JPS6351625A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the irregularity of hFE in each semiconductor wafer of a transistor obtained by performing a heat diffusion treatment by a method wherein a radiant heat preventing member is arranged within the specific range on the entrance side of the material to be heat-treated, and the length of a substantially temp.-equalization region is made larger sufficiently. CONSTITUTION:A radiant heat preventing member 6, with which the radiation of heat of the radiant heat of the material to be heat-treated will be blocked or reduced, is arranged on the position separated by 10-30 cm from both end parts of the opposite side of the end part of the entrance and the exit of the material to be heat-treated of a heat equaliation region. Semiconductor wafers of 4 cm in diameter are arranged at the pitch of 9.52 mm on a boat 4 of 60 cm long in the heating furnace having the heat-equalization region of about 62 cm long. A semiconductor wafer similar to the materials 3 to be heat-treated, namely, dummy semiconductor wafers, are arranged as a radient heat preventing member 6 on the part located at the distances d1 and d2 from both ends of the intrinsic heat-equalization region. Then, the length L of the substantial heat-equalization region becomes 28 cm when the above-mentioned distances are d1=d2=10 cm, and the substantial lengthof the heat-equalization region is increased remarkably when compared with the heat-equlization length of 12 cm heretofore in use.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば半導体ウェファに対する不純物の熱拡散
処理等に通用する熱処理方法に関わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat treatment method that is applicable to, for example, thermal diffusion treatment of impurities to semiconductor wafers.

〔発明の概要〕[Summary of the invention]

本発明は、被熱処理体が配置されない状態で、ほぼ一様
な加熱温度領域を形成するようにした加熱炉によって熱
処理を行うに当たり、上記領域から特定された距離及び
範囲内の位置に上記領域に配置した被熱処理体を介して
輻射熱放散を遮断ないしは減する効果を有する輻射熱防
止部材を配置して実質的に加熱温度の一様な領域長の拡
大を図る。
In the present invention, when heat treatment is performed using a heating furnace that forms a substantially uniform heating temperature region without an object to be heat treated, the above-mentioned region is placed at a position within a specified distance and range from the above-mentioned region. A radiant heat prevention member having the effect of blocking or reducing radiant heat dissipation via the disposed heat treatment object is disposed to expand the length of the area where the heating temperature is substantially uniform.

〔従来の技術〕[Conventional technology]

各種半導体装置の製造過程で不純物の熱拡散処理、例え
ば固相拡散処理等の熱処理が行われる。
2. Description of the Related Art In the manufacturing process of various semiconductor devices, thermal diffusion treatment of impurities, for example, heat treatment such as solid phase diffusion treatment is performed.

この熱処理方法としては、例えば第14図に示すように
外周に加熱手段(2)、例えば抵抗加熱ヒータが炉心管
(1)の長手方向に沿う所要の範囲に渡って配置され、
その炉心管(11内に、矢印aを付して示すようにガス
例えば02ガスを流した状態で、この炉心管(1)内に
おいて、その長手方向に沿ってほぼ一様な加熱温度とな
る領域、具体的には温度のばらつきが例えば±l’c以
内にある領域(以−トこれを均熱領域という)を形成す
る。そしてこの均熱領域内に複数の被熱処理体(3)例
えば半導体ウェファが配列載置されたボート(4)を、
挿入持来たして被熱処理体(3)に対する所要の熱処理
を行うようにしている。(5)はボート(4)を出し入
れ操作する操作杆である。
In this heat treatment method, for example, as shown in FIG. 14, a heating means (2), such as a resistance heater, is arranged around the outer periphery over a required range along the longitudinal direction of the furnace core tube (1).
When a gas such as 02 gas is flowed into the core tube (11) as shown by the arrow a, the heating temperature becomes almost uniform along the longitudinal direction in the core tube (11). A region, specifically a region in which the temperature variation is within, for example, ±l'c (hereinafter referred to as a soaking region) is formed.In this soaking region, a plurality of objects to be heat treated (3), for example, are formed. A boat (4) on which semiconductor wafers are arranged,
After the insertion, the object to be heat treated (3) is subjected to the required heat treatment. (5) is an operating lever for operating the boat (4) in and out.

ところが、このような熱処理方法によって製造した半導
体装置は、加熱炉中すなわち炉心管(1)中のウェファ
の配置部位によって特性に比較的大きなばらつきが生じ
る0例えばボート(4)上に配列された各半導体ウェフ
ァにトランジスタを作製した場合、そのエミッタ接地増
幅率hFliにばらつきが生じる。すなわち、例えは夫
々ベース領域が配列形成された半導体ウェファに、各ベ
ース領域上のエミッタ形成部に窓開けがなされた540
2等の絶縁層を介して、これの上に不純物がドープされ
たドープトオキサイドを被着し、これらウェファに対し
て上述した熱処理方法によって不純物拡散を行ってエミ
ッタを形成してトランジスタを作製した場合、各ウェフ
ァの配置部位によるhpaの変化は、第15図に示すよ
うに大きなばらつきを生じる。
However, semiconductor devices manufactured by such a heat treatment method have relatively large variations in characteristics depending on the location of the wafers in the heating furnace, that is, the furnace tube (1). When transistors are fabricated on a semiconductor wafer, variations occur in the common emitter amplification factor hFli. That is, for example, in a semiconductor wafer in which base regions are formed in an array, a window is formed in the emitter forming portion on each base region.
A doped oxide doped with an impurity was deposited on the wafer through a second insulating layer, and the impurity was diffused by the above-mentioned heat treatment method to form an emitter to fabricate a transistor. In this case, the change in hpa depending on the location of each wafer causes large variations as shown in FIG.

゛第15図において横軸はウェファの配置位置で、ガス
流入は図において右側からされて熱処理が行われた場合
である。
In FIG. 15, the horizontal axis indicates the wafer placement position, and the gas flow is from the right side in the figure and heat treatment is performed.

このように半導体ウェファの加熱炉中における位置、特
に長手方向に関する位置によってh FB+が著しく変
化するのは、本来均熱領域として設定された領域に半導
体ウェファが配置しても、実際にはその均熱状態が崩れ
ていることによることを究明した。
The reason why hFB+ changes significantly depending on the position of the semiconductor wafer in the heating furnace, especially the position in the longitudinal direction, is because even if the semiconductor wafer is placed in the area originally set as the soaking area, the temperature is actually uniform. It was determined that this was due to a breakdown in thermal conditions.

すなわち、第14図で説明した加熱炉において被熱処理
体を挿入しない状態における均熱領域長(以下この均熱
領域を本来の均熱領域といい、その長さを本来の均熱長
という)が約70C11である場合、これとほぼ同等の
長さを有するボート(4)上に直径4インチの被熱処理
体(3)としてのウェファを配列して、これを本来の均
熱領域中に配置した状態で加熱炉中の長手方向の熱分布
を測定したところ、この均熱領域長、すなわち土1℃以
下の変動内をネオ均熱領域の長さは、わずか12G!1
に短縮されてしまうことがわかった。そして、上述した
加熱炉中の本来の均熱領域において、直径4インチの半
導体ウェファを本来の均熱領域のほぼ全長にわたる実効
長を有するボート上に配列して挿入した場合、最大約7
℃の温度の相違が生じてしまい、また直径3インチの半
導体ウェファを同様に配列した場合は、約最大5℃の温
度の相違が生じてしまうことがわかった。
In other words, the length of the soaking area in the heating furnace explained in FIG. 14 without inserting the object to be heat treated (hereinafter, this soaking area will be referred to as the original soaking area, and its length will be referred to as the original soaking length) is When the temperature was approximately 70C11, 4-inch diameter wafers as heat-treated objects (3) were arranged on a boat (4) having approximately the same length as this, and this was placed in the original soaking area. When we measured the heat distribution in the longitudinal direction in the heating furnace under this condition, we found that the length of this soaking area, that is, the length of the neo heating area within a variation of less than 1°C is only 12G! 1
It turns out that it can be shortened to . In the original soaking area in the heating furnace described above, if semiconductor wafers with a diameter of 4 inches are arranged and inserted on a boat having an effective length that spans almost the entire length of the original soaking area, the maximum
It has been found that when semiconductor wafers having a diameter of 3 inches are arranged in the same manner, a temperature difference of about 5° C. can occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述した熱処理方法における実質的均熱領域
長の短縮の問題を解消して、多数の被熱処理体例えば半
導体ウェファに関して均一な熱処理例えば不純物の熱拡
散を行って、例えばトランジスタの作製においてhrv
rが均一な半導体装置を収率よく製造することのできる
ようにした熱処理方法を提供するものである。
The present invention solves the problem of shortening the length of the soaking area in the heat treatment method described above, and performs uniform heat treatment, such as thermal diffusion of impurities, on a large number of objects to be heat treated, such as semiconductor wafers, and is used in the manufacture of transistors, for example. hrv
The present invention provides a heat treatment method that allows semiconductor devices with uniform r to be manufactured with good yield.

すなわち、本発明においては、社々の実験考察を行った
結果、前述したように所要の範囲にわたって本来の均熱
領域が形成されるようにした加熱炉において熱処理例え
ば拡散処理を行うべく被熱処理体、すなわち例えば半導
体ウェファを挿入配置した場合、この半導体ウェファ自
体を介しての輻射放熱によって本来の均熱領域内におい
て温度低下が生じ、これによって実質的均熱領域長の短
縮が生ずることを究明し、この究明に基づいて実質的均
熱領域長の拡大を図るようにした熱処理方法を見出すに
到った。
That is, in the present invention, as a result of various experiments and considerations, the object to be heat treated is to be subjected to heat treatment, for example, diffusion treatment, in a heating furnace that forms the original soaking area over the required range as described above. In other words, it was found that when a semiconductor wafer is inserted, for example, the temperature decreases within the original heat-uniforming area due to radiation heat dissipation through the semiconductor wafer itself, and this causes a shortening of the actual length of the heat-uniforming area. Based on this investigation, we have discovered a heat treatment method that aims to substantially expand the length of the soaking area.

(問題点を解決するための手段〕 本発明においては、前述したように、被熱処理体の非挿
入配置状態でほぼ一様な加熱温度領域すなわち本来の均
熱領域が長手方向に沿って形成されるようにした加熱炉
によってこの加熱炉中の、その本来の均熱領域に被熱処
理体を挿入配列配置して熱処理を行うようにした熱処理
方法において、その熱処理に当って加熱炉に対する被熱
処理体の出入口側に向って、あるいはこの出入口側とさ
らにこれとは反対側とのそれぞれに向って本来の均熱領
域から10cm〜30CI11の位置に被熱処理体を介
しての輻射による熱放散を遮断ないしは減する効果を有
する輻射熱防止部材を配置して目的とする熱処理を行う
(Means for Solving the Problems) In the present invention, as described above, a substantially uniform heating temperature region, that is, an original soaking region is formed along the longitudinal direction when the object to be heat treated is not inserted. In a heat treatment method, heat treatment is performed by inserting and arranging the objects to be heat treated in the original soaking area of the heating furnace using a heating furnace. To block heat dissipation due to radiation through the object to be heat treated, or at a position 10 cm to 30 CI11 from the original heat soaking area toward the entrance/exit side, or toward the entrance/exit side and the opposite side, respectively. The desired heat treatment is performed by arranging a radiant heat prevention member that has the effect of reducing radiation heat.

〔作用〕[Effect]

上述の熱処理方法による場合、加熱が中の本来の均熱領
域に配置する被熱処理体の少くとも被熱処理体の出入口
側に向って本来の均熱領域から10〜30cmM1すれ
た範囲内に被熱処理体を介しての輻射による熱放散を遮
断ないしは減する部材を配置したことによって、この輻
射による熱放散が防止ないしは激減することによって実
質的均熱領域長が本来の均熱領域長と同等ないしはそれ
以上に拡張された。
In the case of the above-mentioned heat treatment method, heating is performed at least within a range of 10 to 30 cm M1 from the original soaking area toward the entrance/exit side of the heat treatment object placed in the original soaking area inside the heat treatment object. By arranging a member that blocks or reduces heat dissipation due to radiation through the body, the heat dissipation due to radiation is prevented or drastically reduced, so that the actual length of the uniform heating area is equal to or even greater than the original length of the uniform heating area. Expanded above.

〔実施例〕〔Example〕

第1図を参照して本発明の一実施例を説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図において第14図と対応する部分には同一符号を
付して重複説明を省略するも、図において(7)はガス
導入口、(8)はガス導出口を示す。また、(9)は被
熱処理体(3)の出入口を示し、図においては蓋体(1
0)によって閉蓋した状態を示しているが、この蓋体(
lO)は必ずしも必要とするものではなく、エアーカー
テン等による実質的閉塞を行うようにすることもできる
In FIG. 1, parts corresponding to those in FIG. 14 are designated by the same reference numerals and redundant explanation will be omitted. In the figure, (7) indicates a gas inlet, and (8) indicates a gas outlet. In addition, (9) indicates the entrance and exit of the object to be heat treated (3), and in the figure, the lid body (1
0) shows the closed state of the lid, but this lid body (
lO) is not necessarily required, and it is also possible to substantially block it with an air curtain or the like.

本発明においても加熱炉の炉心管(1)内の加熱手段(
2)によって形成された本来の均だ1領域に被熱処理体
(3)例えば半導体ウェファが配列されたボート(4)
を挿入して目的とする熱処理を行う。しかしながら特に
本発明においては、その本来の均熱領域の被熱処理体出
入口側の端部あるいはこの端部とこれとは反対側の両端
部から10〜30cmの範囲で離間した位置に被熱処理
体による輻射熱による放熱を遮断ないしは減する輻射熱
防止部材(6)を配置する。この部材(6)は例えば被
熱処理体(3)の半導体ウェファと同一ウェファ、すな
わち同一の寸法形状を有するいわばダミーの半導体ウェ
ファを被熱処理体と平行に正対植立させて配置し得る。
Also in the present invention, the heating means (
The object to be heat treated (3), for example, a boat (4) in which semiconductor wafers are arranged in the original uniform area formed by step 2).
and perform the desired heat treatment. However, especially in the present invention, the object to be heat treated is placed at a position within a range of 10 to 30 cm from the end of the original soaking area on the side of the entrance/exit of the object to be heat treated, or from this end and both ends on the opposite side. A radiant heat prevention member (6) that blocks or reduces heat dissipation due to radiant heat is arranged. This member (6) may be, for example, a wafer that is the same as the semiconductor wafer of the object to be heat-treated (3), that is, a so-called dummy semiconductor wafer having the same dimensions and shape, and placed in parallel with the object to be heat-treated, directly facing the object.

この輻射熱防止部材(6)は、例えばボート(4)の延
長端に配置することもできるし、図示のように補助ボー
ト(11)を操作杆(5)に設けてこれの上に配置する
こともできる。
This radiant heat prevention member (6) can be placed, for example, at the extended end of the boat (4), or, as shown in the figure, an auxiliary boat (11) can be provided on the operating rod (5) and placed on top of this. You can also do it.

この場合においてもその熱処理例えば熱拡散は、炉心管
(11にガス例えば02ガスを例えば毎分5I!の流量
で當時送り込んだ状態で炉心管(1)内の所定部に、本
来の均熱領域を形成した安定状態を形成して、この状態
で被熱処理体を載置したボート(4)をその被熱処理体
(3)が本来の均熱領域の中心にその配列中心がほぼ位
置するように配置、するとともに、部材(6)を上述の
所定部に配置して熱処理する。
In this case as well, the heat treatment, such as thermal diffusion, is carried out in a predetermined part of the reactor core tube (1) in the original soaking area while gas, for example, 02 gas is fed into the reactor core tube (11) at a flow rate of, for example, 5 I/min. A stable state is formed, and in this state, the boat (4) on which the objects to be heat treated are placed is placed so that the center of arrangement of the objects (3) to be heat treated is approximately located at the center of the original soaking area. At the same time, the member (6) is placed at the above-mentioned predetermined portion and heat treated.

上述の熱処理方法において、今本来の均熱領域長が約6
2cmとされた加熱炉においてボート(4)の長さが6
0口のボートを用い、これの上に枠Bで示す範囲に9.
52uのピッチをもって直径4c11の半導体ウェファ
を配列し、本来の均熱領域の両端からそれぞれ距離at
及びdtに補助部材として被熱処理体(3)と同様の半
導体ウェファ、すなわちダミーの半導体ウェファを輻射
熱防止部材(6)として配置して各距%11t d 1
及びdt (d□=d2)をそれぞれ10cm 、 2
0cm 、 30cmとしたときの炉心管内の長手方向
の温度分布を測定したところそれぞれ第2図。
In the above heat treatment method, the original soaking area length is approximately 6
The length of the boat (4) in the heating furnace was set to 2 cm.
Using a 0-mouth boat, place 9. on top of it in the area shown in box B.
Semiconductor wafers with a diameter of 4c11 are arranged with a pitch of 52u, and the distance at from both ends of the original soaking area is
and dt, a semiconductor wafer similar to the object to be heat treated (3), that is, a dummy semiconductor wafer, is placed as an auxiliary member as a radiation heat prevention member (6), and each distance is %11t d1.
and dt (d□=d2) are respectively 10cm and 2
Figure 2 shows the temperature distribution measured in the longitudinal direction inside the reactor core tube at 0 cm and 30 cm, respectively.

第3図及び第4図中容曲線(21)  (31)及び(
41)に示すようになった。各図において横軸は炉心管
(1)中の長手方向位置を示し、そ−の本来の均熱領域
の中心位置を原点にとったものである。各図においてそ
の温度の分布が±1℃以内にある範囲は、それぞれ破線
Aによって囲んで示す領域となった。
Figures 3 and 4: Content curves (21) (31) and (
41). In each figure, the horizontal axis indicates the longitudinal position in the core tube (1), with the origin being the center position of the original soaking area. In each figure, the range in which the temperature distribution is within ±1°C is the area surrounded by a broken line A.

すなわち、これによれば、d1戸d2=10cmのとき
(第2図)には実質的均熱領域長りは28c+aとなり
、d 1 = d 2−20CI+のときく第3図)に
はL=80C11となり、dt =d2=30C1lの
とき(第4図)にはり、 = 66C11となり、いず
れのものも部材(6)を配置しない従来の均熱長12c
mに比し格段にその実質的均熱領域長が拡大されている
ことがわかる。
That is, according to this, when d1 and d2 = 10 cm (Fig. 2), the effective soaking area length is 28c+a, and when d1 = d2-20CI+ (Fig. 3), L = 80C11, and when dt = d2 = 30C1l (Fig. 4), the beam becomes = 66C11, and both of them have a conventional soaking length of 12c without placing the member (6).
It can be seen that the substantial length of the soaking area is significantly expanded compared to the case of m.

また、第5図は、前述したと同様に被熱処理体の半導体
ウェファと同等のダミーの半導体ウェファよりなる輻射
熱防止部材(6)を本来の均熱領域の被熱処理体出入口
側のみに距t’Jli d 1をもっζ、あるいはこれ
とは反対側のみにll’ti離d2をもつ−ζ配置した
場合における実質的均熱領域長りの測定結果を不したも
ので、これより明らかなように少くとも被熱処理体の出
入口側にdx=10〜30cmの範囲で部材(6)を配
置するときは、実質的均熱領域長りの拡張が見られる。
FIG. 5 also shows a radiation heat prevention member (6) made of a dummy semiconductor wafer equivalent to the semiconductor wafer of the object to be heat treated, placed only on the entrance/exit side of the object to be heat treated in the original soaking area at a distance t'. This is a result of measuring the length of the effective isothermal region in the case of ζ with Jli d 1 or -ζ with ll'ti distance d2 only on the opposite side, and as is clear from this. When the member (6) is arranged at least on the entrance/exit side of the object to be heat treated in a range of dx=10 to 30 cm, the length of the soaking area is substantially expanded.

また、輻射熱防止部材(6)としては、複数枚のダミー
の半導体ウェファを用いることができ、第6図、第7図
及び第8図中、曲線(61)  (71)及び(81)
は、第2図〜第4図の場合と同様に本来の均熱領域長が
約62cmとされたものにおいて部材(6)として3枚
の半導体ウェファを配置した場合の加熱炉中の長手方向
の熱分布測定曲線で、この場合においても少くとも被熱
処理体の出入口側に部材(6)を配置することによって
実質的均熱領域長りが拡大されることがわかる。すなわ
ち、第6図は3枚の半導体ウェファのダミーによる部材
(6)を、第2図〜第4図で説明したと同様の被熱処理
体の配置状態におい°ζその両側に配置した場合であり
、第7図は被熱処理体の出入口側にのみ設けた場合、第
8図はこれと反対側にのみ設けた場合を示す。
Moreover, as the radiant heat prevention member (6), a plurality of dummy semiconductor wafers can be used.
As in the case of Figs. 2 to 4, the length of the heating furnace in the longitudinal direction when three semiconductor wafers are arranged as the member (6) is shown in the case where the original length of the soaking area is approximately 62 cm. The heat distribution measurement curve shows that in this case as well, the substantial length of the soaking area can be expanded by arranging the member (6) at least on the entrance/exit side of the object to be heat treated. That is, FIG. 6 shows a case where three dummy members (6) of semiconductor wafers are placed on both sides of the object to be heat treated in the same arrangement state as explained in FIGS. 2 to 4. , FIG. 7 shows a case in which it is provided only on the entrance/exit side of the object to be heat treated, and FIG. 8 shows a case in which it is provided only on the opposite side.

これによれば、第6図及び第7図にネオように少くとも
被熱処理体の出入口側に部材(6)を設けるときは実質
的均熱領域長りがそれぞれ80c111及び70cmの
ように拡大されることが確められた。
According to this, when the member (6) is provided at least on the entrance/exit side of the object to be heat treated, as shown in Neo in FIGS. 6 and 7, the effective length of the soaking area is expanded to 80 cm and 70 cm, respectively. It was confirmed that

また、上述した各個においては、第1図で示したように
、本来の熱処理を行う被熱処理体のボート(4)とは、
別の補助ボート(11)を設けこれに輻射熱防止部材(
6)を配置するようにした場合であるが、ある場合はボ
ート(4)自体を、本来の均熱領域以上にこれら均熱領
域の両端に距1111 d を及びd2を含めた長さに
もしくは被熱処理体の出入口側に距離d1を含めた長さ
にわたって延在するボートを用い、このボート(4)に
部材(6)を配置するようにするごともできる。さらに
ある場合は、距11M1 d l及びd2で示す位置に
亘って部材(6)として被熱処理体(3)すなわち例え
ば半導体ウェファ自体を配列することもできる。第8図
〜第12図はこの場合のそれぞれの加熱炉中の長手方向
における温度分布を示すもので第8図中曲線(81)は
ボート(4)の長さを10csとした場合、第9図中曲
線(91)は同様のボート長を800とした場合、第1
0図中曲線(101)は90C1mとした場合、第11
図中曲線(111)は100値とした場合、第12図中
曲線(121)は11G amとした場合の各温度分布
の測定曲線でそれぞれ各ボート(41には直径4cmの
半導体ウェファを9.52鰭のピッチをもってその全域
に配列した場合である。
In each of the above-mentioned items, as shown in FIG. 1, the boat (4) of the object to be heat treated is
Another auxiliary boat (11) is provided and a radiant heat prevention member (
6), but in some cases, the boat (4) itself is extended beyond the original heating area to a length that includes the distance 1111 d and d2 at both ends of the heating area. It is also possible to use a boat extending over a length including the distance d1 on the entrance/exit side of the object to be heat treated, and to arrange the member (6) on this boat (4). Furthermore, in some cases, the object to be heat treated (3), ie, the semiconductor wafer itself, for example, may be arranged as the member (6) over the positions indicated by the distances 11M1 d l and d2. Figures 8 to 12 show the temperature distribution in the longitudinal direction in each heating furnace in this case, and the curve (81) in Figure 8 is the 9th curve when the length of the boat (4) is 10cs. Curve (91) in the figure shows the first curve when the boat length is 800.
The curve (101) in Figure 0 is the 11th curve when 90C1m is used.
The curve (111) in the figure is the measurement curve of each temperature distribution when the value is 100, and the curve (121) in FIG. 12 is the measurement curve of each temperature distribution when the value is 11G. This is a case where the fins are arranged over the entire area with a pitch of 52 fins.

第8図においては実質的、均熱領域長1、が20CIO
となり、第9図の例ではL =52cm、第10図の例
ではL=50am、第11図ではL=48am、第12
図ではL=43cmとなった。第13図はこれらの測定
に基づいて、本来の均熱領域長を62amとしたときの
各ボート長に対する実質的均熱領域長しの測定結果を示
すもので、これよりも明らかなように本来の均熱長より
ボート長を長くして特にその−側の長さが1O(1以上
としたとき急激に実質的均熱長りの改善が見られている
In Fig. 8, the length of the soaking area 1 is actually 20 CIO.
Therefore, in the example of Fig. 9, L = 52 cm, in the example of Fig. 10, L = 50 am, in Fig. 11, L = 48 am, and in the example of Fig. 12
In the figure, L=43cm. Based on these measurements, Figure 13 shows the measurement results of the actual soaking area length for each boat length when the original soaking area length is 62 am. When the boat length is made longer than the soaking length, especially when the length on the negative side is set to 1O (1 or more), a substantial improvement in the soaking length is seen.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明においては、加熱か中の本来の均
熱領域の少なくとも被熱処理出入口側に・ おいて1Q
aa〜30cllの範囲内に輻射熱防止部材(6)を配
置することによって実質的均熱領域長りを、従来におけ
る実質的均熱領域長に比し、十分大にすることができる
ので、本発明方法によって例えば熱拡散処理して得た例
えばトランジスタは各半導体ウェファにおいてhFIの
ばらつきが激減できるので、目的とする半導体装置を収
率よく得ることができ、工業的にその利益は大である。
As described above, in the present invention, 1Q is applied at least to the entrance/exit side to be heat treated in the original soaking area during heating.
By arranging the radiation heat prevention member (6) within the range of aa to 30 cll, the substantial length of the heat-uniforming region can be made sufficiently larger than the conventional substantial length of the heat-uniforming region. For example, in transistors obtained by thermal diffusion treatment using this method, variations in hFI can be drastically reduced in each semiconductor wafer, so that target semiconductor devices can be obtained with high yield, and this is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による熱処理方法の一実施態様の説明図
、第2図〜第4図、第6図〜第12図はそれぞれ加熱炉
中の温度分布の測定曲i図、第5図は輻射熱防止部材の
配置位置と実質的均熱領域長との関係の測定曲線図、第
13図は被熱処理体を載置するボート長と実質的均熱領
域長との関係の測定曲線図、第14図は従来方法の説明
に供する図、第15図はウェファの配置位置とhFIi
の関係を示す測定曲線図である。 +1)は炉心管、(2)は加熱手段、(3)は被熱処理
体、(4)はボート、(5)は操作杆、(6)は輻射熱
防止部材である。 同  松隈秀盛 本発明方法ψ−TX施射オ差4宮先明図第1図 第3図 第4図 第5図 湯度分沸m 第B図 温度分今図 第9図 ;A7I分40 第400 温彦分亭凹 湿度分$Z
FIG. 1 is an explanatory diagram of an embodiment of the heat treatment method according to the present invention, FIGS. 2 to 4 and 6 to 12 are diagrams of the measurement curve i of the temperature distribution in the heating furnace, respectively, and FIG. Fig. 13 is a measurement curve diagram of the relationship between the arrangement position of the radiant heat prevention member and the substantial length of the soaking area. Figure 14 is a diagram used to explain the conventional method, and Figure 15 is a diagram showing the wafer placement position and hFIi.
It is a measurement curve diagram showing the relationship. +1) is the furnace core tube, (2) is the heating means, (3) is the object to be heat treated, (4) is the boat, (5) is the operating rod, and (6) is the radiant heat prevention member. Hidenori Matsukuma Present method of the present invention ψ-TX application difference 4 Miyazaki Akira Figure 1 Figure 3 Figure 4 Figure 5 Water temperature minutes boiling m Figure B Temperature minutes Figure 9; A7I minute 40 Figure 400 Atsuhiko Buntei concave humidity $Z

Claims (1)

【特許請求の範囲】  被熱処理体の非挿入配置状態でほぼ一様な加熱温度領
域が長手方向に沿って形成されるようにした加熱炉中の
上記ほぼ一様な加熱温度領域に上記被熱処理体を挿入配
置して熱処理を行うようにした熱処理方法において、 上記加熱炉に対する上記被熱処理体の出入口側に向って
、あるいは該出入口側とこれとは反対側のそれぞれに向
って上記ほぼ一様な加熱温度領域からの距離が10cm
〜30cmとなる位置に、上記被熱処理体を介しての輻
射による熱放散を遮断ないしは減する効果を有する輻射
熱防止部材を配置して上記熱処理を行うことを特徴とす
る熱処理方法。
[Scope of Claims] The heat treatment is carried out in the substantially uniform heating temperature region in the heating furnace, which is configured to form a substantially uniform heating temperature region along the longitudinal direction when the heat treatment object is not inserted. In a heat treatment method in which heat treatment is performed by inserting and arranging a body, the above-mentioned substantially uniform treatment is performed toward the entrance/exit side of the object to be heat treated with respect to the heating furnace, or toward each of the entrance/exit side and the opposite side thereof. The distance from the heating temperature area is 10 cm.
A heat treatment method characterized in that the heat treatment is performed by arranging a radiant heat prevention member having the effect of blocking or reducing heat dissipation by radiation through the object to be heat treated at a position of ~30 cm.
JP19601286A 1986-08-21 1986-08-21 Heat treatment method Pending JPS6351625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19601286A JPS6351625A (en) 1986-08-21 1986-08-21 Heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19601286A JPS6351625A (en) 1986-08-21 1986-08-21 Heat treatment method

Publications (1)

Publication Number Publication Date
JPS6351625A true JPS6351625A (en) 1988-03-04

Family

ID=16350759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19601286A Pending JPS6351625A (en) 1986-08-21 1986-08-21 Heat treatment method

Country Status (1)

Country Link
JP (1) JPS6351625A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106569A (en) * 1974-01-11 1975-08-22
JPS5674923A (en) * 1979-11-22 1981-06-20 Oki Electric Ind Co Ltd Core tube device for furnace
JPS5751729A (en) * 1980-07-29 1982-03-26 Hitachi Chem Co Ltd Preparation of foamable vinyl polymer particle
JPS586136A (en) * 1981-07-02 1983-01-13 Nec Corp Heat treatment method for semiconductor wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106569A (en) * 1974-01-11 1975-08-22
JPS5674923A (en) * 1979-11-22 1981-06-20 Oki Electric Ind Co Ltd Core tube device for furnace
JPS5751729A (en) * 1980-07-29 1982-03-26 Hitachi Chem Co Ltd Preparation of foamable vinyl polymer particle
JPS586136A (en) * 1981-07-02 1983-01-13 Nec Corp Heat treatment method for semiconductor wafer

Similar Documents

Publication Publication Date Title
JP3125199B2 (en) Vertical heat treatment equipment
JP3137164B2 (en) Heat treatment furnace
JPS6351625A (en) Heat treatment method
JPH045822A (en) Apparatus and method for lamp annealing
US3406275A (en) Furnace having fingers interdigitatedly engaged with its heating elements
JPS5923464B2 (en) Semiconductor heat treatment equipment
JPH0554690B2 (en)
JPS5824711B2 (en) Furnace temperature control device
JPH08181082A (en) Vertical-type high-speed heat treatment device
JP2553364B2 (en) Heat treatment equipment
JPS586136A (en) Heat treatment method for semiconductor wafer
JPS6287500A (en) Diffusion furnace
JPH03208334A (en) Manufacturing device for semiconductor
JPH0571293B2 (en)
JP2676083B2 (en) heating furnace
JP2557137B2 (en) Heating equipment for semiconductor manufacturing
JP2577568B2 (en) Manufacturing method of reaction tube for heat treatment
JPH0385725A (en) Heat treatment of wafer
JPS61155297A (en) Heat treating furnace
JPS63221647A (en) Manufacture of semiconductor device
JPS622616A (en) Heat treatment method of semiconductor wafer
JPH04134816A (en) Semiconductor manufacturing equipment
JPH02257612A (en) Heat-treatment furnace
JPH0475329A (en) Heat treatment apparatus
JPS58294Y2 (en) semiconductor diffusion furnace