JPH08181082A - Vertical-type high-speed heat treatment device - Google Patents

Vertical-type high-speed heat treatment device

Info

Publication number
JPH08181082A
JPH08181082A JP33530594A JP33530594A JPH08181082A JP H08181082 A JPH08181082 A JP H08181082A JP 33530594 A JP33530594 A JP 33530594A JP 33530594 A JP33530594 A JP 33530594A JP H08181082 A JPH08181082 A JP H08181082A
Authority
JP
Japan
Prior art keywords
reaction tube
heater
resistance heating
heat treatment
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33530594A
Other languages
Japanese (ja)
Inventor
Yoji Takagi
庸司 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOUYOKO KAGAKU KK
Toyoko Kagaku Co Ltd
Original Assignee
TOUYOKO KAGAKU KK
Toyoko Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOUYOKO KAGAKU KK, Toyoko Kagaku Co Ltd filed Critical TOUYOKO KAGAKU KK
Priority to JP33530594A priority Critical patent/JPH08181082A/en
Publication of JPH08181082A publication Critical patent/JPH08181082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a vertical-type high-speed heat treatment device which is capable of thermally treating many substrates at a time at a high speed, restraining impurities contained in the treated substrate from diffusing, forming a shallow junction, and causing no oxidation to the surface of the substrates even if it is made to serve as a CVD device. CONSTITUTION: A semiconductor manufacturing vertical-type high-speed thermal treatment device is equipped with a resistance heater 4 which is provided with a heat insulator on its rear and provided to the outside of a reaction tube 10, wherein a treated substrate 1 placed inside the reaction tube 10 is thermally treated at high temperatures, another resistance heater 3 is provided between the reaction tube 10 and the resistance heater 4 separate from both of them, and the resistance heater's 3 and 4 are made to form thermal zones which are separately controlled in temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体製造のための
縦型高速熱処理装置に係り、詳記すれば、処理基板を高
温で処理する時間を極端に短くし、しかも複数枚の基板
を一度に処理できるようにした縦型高速熱処理装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical rapid thermal processing apparatus for manufacturing semiconductors, and more specifically, it extremely shortens the time for processing a processed substrate at a high temperature, and moreover, allows a plurality of substrates to be processed once. The present invention relates to a vertical high-speed heat treatment apparatus capable of performing the above-mentioned processing.

【0002】[0002]

【従来の技術】従来、処理基板を高温で熱処理する縦型
高速熱処理装置は、赤外線ランプを使用したランプ加熱
により基板の昇降温を極端に速くし、枚葉で処理してい
たが、枚葉で処理する関係上生産性を上げることができ
ず、コスト高になる問題があった。また、図6に示すよ
うに、ボ−ト2に多数の基板1を搭載し、反応管10の
外側から抵抗加熱ヒ−タ19によって加熱する装置も知
られていた。
2. Description of the Related Art Conventionally, a vertical high-speed thermal processing apparatus for heat-treating a processed substrate at a high temperature makes the temperature of the substrate extremely fast by heating the lamp using an infrared lamp, and the single-wafer processing is performed. However, there is a problem in that the productivity cannot be increased due to the processing at 1, and the cost becomes high. Further, as shown in FIG. 6, a device in which a large number of substrates 1 are mounted on a boat 2 and heated by a resistance heating heater 19 from the outside of the reaction tube 10 has been known.

【0003】しかしながら、この方法は、昇降温特性の
極端に速い抵抗加熱ヒ−タ19を使用した場合でも、昇
降温速度は、せいぜい100℃/分程度であったので、
数分間程度で処理する高速熱処理(RTP)の要請には
到底対応できないと共に、高温状態での時間が長くなる
ので、処理基板内の不純物の拡散が増大し、アニ−ルを
行っても浅い接合の形成は不可能であるほか、処理基板
にスリップ(結晶欠陥)を発生させる問題があった。そ
ればかりか、この装置をCVD(化学気相成長)装置に
適用する場合は、基板1を搭載したボ−ト2を反応管1
0に挿入する時、基板1の表面を酸化する問題があっ
た。
However, according to this method, even when the resistance heating heater 19 having an extremely high temperature raising / lowering characteristic is used, the temperature raising / lowering rate is at most about 100 ° C./min.
It cannot meet the demand for rapid thermal processing (RTP) for processing within a few minutes, and the time at high temperature becomes long, so that the diffusion of impurities in the processed substrate increases and the shallow junction even if annealing is performed. In addition to being impossible to form, there was a problem that slips (crystal defects) were generated on the processed substrate. Moreover, when this apparatus is applied to a CVD (Chemical Vapor Deposition) apparatus, the boat 2 on which the substrate 1 is mounted is attached to the reaction tube 1
There was a problem that the surface of the substrate 1 was oxidized when it was inserted into 0.

【0004】[0004]

【発明が解決しようとする課題】この発明は、このよう
な問題点を解消しようとするものであり、多数の基板を
一度に高速熱処理し、処理基板内の不純物の拡散を少な
くし、浅い接合の形成を可能にすると共に、CVD装置
とする場合でも基板表面を酸化しない縦型高速熱処理装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is intended to solve such a problem, in which a large number of substrates are heat-treated at a high speed at a time, diffusion of impurities in the processed substrates is reduced, and shallow bonding is performed. It is an object of the present invention to provide a vertical high-speed heat treatment apparatus which enables the formation of a substrate and does not oxidize the substrate surface even when the CVD apparatus is used.

【0005】[0005]

【課題を解決するための手段】上記目的に沿う本発明の
構成は、反応管の外側に、裏面に断熱材を備えた抵抗加
熱ヒ−タを配設し、反応管内の処理基板を高温で熱処理
する半導体製造用縦型高速熱処理装置に於いて、前記反
応管と前記抵抗加熱ヒ−タとの間に抵抗加熱ヒ−タを間
隔付けて配設してなり、前記両抵抗加熱ヒ−タは、それ
ぞれ独立して温度制御のできる複数のゾ−ンに形成して
なることを特徴とする。
According to the structure of the present invention which meets the above object, a resistance heating heater having a heat insulating material on the back surface is provided outside the reaction tube, and the substrate to be processed in the reaction tube is heated at a high temperature. In a vertical high-speed heat treatment apparatus for manufacturing semiconductors for heat treatment, a resistance heating heater is disposed between the reaction tube and the resistance heating heater with a space between the resistance heating heater and the resistance heating heater. Is formed into a plurality of zones whose temperature can be controlled independently of each other.

【0006】[0006]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1は、本発明の実施例を示す拡散炉の縦断面図
であり、図3は、図1のA−A′断面図である。反応管
10内には、複数の基板(ウエ−ハ)1を搭載したボ−
ト2が内装されている。反応管10の外周には、インナ
−ヒ−タ3とアウタ−ヒ−タ4が円筒状に配設されてい
る。インナ−ヒ−タ3とアウタ−ヒ−タ4は、低熱容量
で昇降温特性の優れた抵抗加熱ヒ−タを使用している。
尚、図4中符号20は、円筒状の外筒を示すものである
が、図1に於いては省略されている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a vertical sectional view of a diffusion furnace showing an embodiment of the present invention, and FIG. 3 is a sectional view taken along the line AA ′ of FIG. Inside the reaction tube 10, a board on which a plurality of substrates (wafers) 1 are mounted is mounted.
To 2 is interior. An inner heater 3 and an outer heater 4 are cylindrically arranged on the outer periphery of the reaction tube 10. The inner heater 3 and the outer heater 4 use resistance heating heaters having a low heat capacity and excellent temperature rising / falling characteristics.
Reference numeral 20 in FIG. 4 indicates a cylindrical outer cylinder, but it is omitted in FIG.

【0007】インナ−ヒ−タ3は、図4に示すように、
耐熱性材料からパイプ状に形成した支柱14に、ヒ−タ
素線17を間隔付けて巻き付け、適当な個所で固定する
ことにより構成している。ヒ−タ素線17をこのように
間隔付けて支柱14に巻き付けることにより、ヒ−タ素
線17の冷却が容易になると共に、ヒ−タ素線17の寿
命が短くなるのを避けることができる。図5は、インナ
−ヒ−タ3の他の例を示すものであり、パイプ状の支柱
14をリング状に形成し、これを上下方向に多数配設
し、該上下の両支柱14間に波形に形成したヒ−タ素線
17を間隔付けて固定した例を示す。
The inner heater 3 is, as shown in FIG.
The heater wires 17 are wound around the pillar 14 formed of a heat-resistant material in the shape of a pipe at intervals and fixed at appropriate positions. By winding the heater wires 17 around the columns 14 at such intervals, it is possible to easily cool the heater wires 17 and avoid shortening the life of the heater wires 17. it can. FIG. 5 shows another example of the inner heater 3, in which a pipe-shaped support 14 is formed in a ring shape, and a large number of the support 14 are arranged in the up-down direction. An example is shown in which the heater wires 17 formed in a wave shape are fixed at intervals.

【0008】このようにインナ−ヒ−タ3は、ヒ−タ素
線17と支柱14とから構成し、裏面に断熱材を固定し
ていないので、昇降温特性が極めて良好となっている。
パイプ状の支柱14には、多数の貫通孔16が穿設さ
れ、該貫通孔16から、冷却エア−を噴出させ、ヒ−タ
素線17を急冷し得るように構成している。アウタ−ヒ
−タ4は、図1及び図4に示すように、円筒状に形成さ
れ、裏面に近接して断熱材18が固定されている。イン
ナ−ヒ−タ3とアウタ−ヒ−タ4との間に、更にインナ
−ヒ−タ3を介装させることもできるが、このようにし
ても特に利点はない。インナ−ヒ−タ3とアウタ−ヒ−
タ4は、独立して温度を制御する複数のゾ−ンに分割さ
れ、各ゾ−ンには、それぞれ熱電対温度センサ5,6が
配設されている。反応管10内の処理基板1の近傍にも
内温測定熱電対センサ7が配設されている。
As described above, since the inner heater 3 is composed of the heater wire 17 and the support 14 and the heat insulating material is not fixed to the back surface thereof, the temperature raising / lowering characteristic is extremely good.
A large number of through holes 16 are bored in the pipe-like support 14, and cooling air is ejected from the through holes 16 so that the heater wire 17 can be rapidly cooled. As shown in FIGS. 1 and 4, the outer-heater 4 is formed in a cylindrical shape, and the heat insulating material 18 is fixed near the back surface. The inner heater 3 may be further interposed between the inner heater 3 and the outer heater 4, but this arrangement has no particular advantage. Inner Heater 3 and Outer Heater
The rotor 4 is divided into a plurality of zones that control the temperature independently, and thermocouple temperature sensors 5 and 6 are provided in each zone. An internal temperature measuring thermocouple sensor 7 is also arranged in the vicinity of the processing substrate 1 in the reaction tube 10.

【0009】インナ−ヒ−タ3とアウタ−ヒ−タ4と
で、反応管10を加熱する際、内温測定熱電対センサ7
で均熱すべき領域が同じ昇温速度になるように、熱電対
温度センサ5,6を使用して、インナ−ヒ−タ3とアウ
タ−ヒ−タ4との各ゾ−ンの出力バランスを制御し得る
ように構成している。インナ−ヒ−タ3及びアウタ−ヒ
−タ4下端部には、図1に示すように、冷却用エア−導
入管11,11′が配設され、冷却用エア−は、反応管
10とインナ−ヒ−タ3との間及びインナ−ヒ−タ3と
アウタ−ヒ−タ4との間を通つて、上端に設けた排気ダ
クト8,8′を通つて外部に排気される。
When the reaction tube 10 is heated by the inner heater 3 and the outer heater 4, the internal temperature measuring thermocouple sensor 7 is used.
The output balance of each zone of the inner heater 3 and the outer heater 4 is made by using the thermocouple temperature sensors 5 and 6 so that the areas to be soaked at the same temperature increase rate. Is configured so that it can be controlled. As shown in FIG. 1, cooling air-introducing pipes 11 and 11 'are arranged at the lower ends of the inner heater 3 and the outer heater 4, and the cooling air is connected to the reaction pipe 10. The air is exhausted to the outside through the exhaust ducts 8 and 8'provided at the upper end through the inner heater 3 and the inner heater 3 and the outer heater 4.

【0010】[0010]

【作用】次に、上記のように構成された本発明の作用を
説明する。必要に応じて不活性ガス等を図1の矢印で示
すように上方から導入し、600〜700℃の比較的低
温の状態で、複数の基板1を搭載したボ−ト2を上昇さ
せて、反応管10内に導入し、図1の処理位置に達した
ら、インナ−ヒ−タ3及びアウタ−ヒ−タ4をフルパワ
−にして、例えば200℃/分の昇温温度で一気に90
0℃以上(通常内温測定熱電対センサで測定した温度で
900〜1200℃)の処理温度に上昇させる。この
際、処理基板1の近傍に設置した内温測定熱電対センサ
7で、均熱すべき領域が同じ昇温速度になるように、イ
ンナ−ヒ−タ3とアウタ−ヒ−タ4の各ゾ−ンに配設し
た熱電対センサ5,6の信号から、インナ−ヒ−タ3と
アウタ−ヒ−タ4の各ゾ−ンの出力バランスを制御す
る。
Next, the operation of the present invention constructed as above will be described. If necessary, an inert gas or the like is introduced from above as shown by the arrow in FIG. 1, and the boat 2 having the plurality of substrates 1 mounted thereon is raised at a relatively low temperature of 600 to 700 ° C. When it is introduced into the reaction tube 10 and reaches the processing position shown in FIG. 1, the inner heater 3 and the outer heater 4 are set to full power, and the temperature is raised at a temperature of 200 ° C./min for 90 minutes at a stroke.
The processing temperature is raised to 0 ° C. or higher (usually 900 to 1200 ° C. at the temperature measured by the thermocouple sensor for measuring internal temperature). At this time, each of the inner heater 3 and the outer heater 4 is controlled by the inner temperature measuring thermocouple sensor 7 installed near the processing substrate 1 so that the regions to be soaked have the same temperature rising rate. The output balance of each zone of the inner heater 3 and the outer heater 4 is controlled by the signals of the thermocouple sensors 5 and 6 arranged in the zone.

【0011】熱処理終了後、インナ−ヒ−タ3とアウタ
−ヒ−タ4の出力を切り、該両ヒ−タ3,4の下端部に
配設したエア−導入管11,11′から冷却用エア−を
導入し、同時にインナ−ヒ−タ3の支柱14の孔から冷
却用エア−を噴出させ、冷却用エア−を図1の矢印で示
すように上昇させて、熱風を上端の排気ダクト8,8′
から外部に排出する。このように冷却することによっ
て、処理基板を例えば100℃/分程度の降温速度で、
一気に600〜700℃の低温まで降温させることがで
きる。ついで、ボ−ト2を下降させて反応管10外に出
して室温まで冷却し、処理が終了する。
After the heat treatment is completed, the outputs of the inner heater 3 and the outer heater 4 are cut off, and the air is introduced from the air introduction pipes 11 and 11 'arranged at the lower ends of the heaters 3 and 4, respectively. The cooling air is introduced from the holes of the support 14 of the inner heater 3 at the same time, the cooling air is raised as shown by the arrow in FIG. 1, and the hot air is exhausted at the upper end. Duct 8,8 '
To the outside. By cooling in this manner, the processed substrate is cooled at a temperature lowering rate of, for example, about 100 ° C./min.
The temperature can be lowered to a low temperature of 600 to 700 ° C at a stroke. Then, the boat 2 is lowered to the outside of the reaction tube 10 and cooled to room temperature, and the treatment is completed.

【0012】上記のように処理することによって、基板
が900℃以上となっている時間を数分間とすることが
できるので、生産性を向上させることができると共に、
処理基板内の不純物の拡散を少なくし、製造する半導体
の要求特性を充分に満足した製品が得られる。図2は、
減圧CVD装置の場合の本発明の実施例を示す縦断面図
である。減圧CVD装置の場合は、自然酸化膜が形成さ
れない約500℃の温度でボ−ト2を上昇させて、反応
管10内に挿入し、ハッチ13を閉じ、不活性ガス等を
下方から矢印で示すように導入して真空引きをする以外
は、上記と同様に実施することができる。このようにし
て、同様に短時間で成膜処理をすることができると共
に、真空引きしてから高温状態で成膜するものであるの
で、自然酸化膜が形成されない成膜処理をすることがで
きる。
By performing the above-mentioned treatment, the time when the substrate is kept at 900 ° C. or higher can be set to several minutes, so that the productivity can be improved and at the same time,
It is possible to obtain a product in which the diffusion of impurities in the processed substrate is reduced and the required characteristics of the semiconductor to be manufactured are sufficiently satisfied. Figure 2
It is a longitudinal section showing an example of the present invention in the case of a low pressure CVD apparatus. In the case of a low pressure CVD apparatus, the boat 2 is raised at a temperature of about 500 ° C. at which a natural oxide film is not formed, is inserted into the reaction tube 10, the hatch 13 is closed, and an inert gas or the like is drawn from below by an arrow. It can be carried out in the same manner as described above, except for introducing and vacuuming as shown. In this way, the film formation process can be performed in a similar manner in a short time, and since the film formation is performed in a high temperature state after evacuation, a film formation process in which a natural oxide film is not formed can be performed. .

【0013】[0013]

【効果】本発明によれば、抵抗加熱ヒ−タの昇降温時間
を極端に速くできるので、処理基板を高温状態にしてお
く時間を短くできるから、処理基板内の不純物の拡散を
少なくでき、アニ−ルを行っても浅い接合の形成が可能
になると共に、ランプアニ−ル装置のような従来の装置
と比べて短時間に多数の基板処理をすることができるか
ら、生産性が飛躍的に向上する。また、昇降温もランプ
アニ−ル装置のように急激ではないので、基板(ウエ−
ハ)のスリップの発生を防止することができる。更に、
減圧CVD装置とした場合でも、自然酸化膜を成長させ
ずにボ−トを反応管に挿入し、成膜処理することができ
るので、ポリシリコンや窒化膜を形成するのに特に有用
である。
[Effects] According to the present invention, since the temperature rising / falling time of the resistance heating heater can be extremely shortened, the time for which the processing substrate is kept in a high temperature state can be shortened, so that the diffusion of impurities in the processing substrate can be reduced, Even if annealing is performed, a shallow junction can be formed, and a large number of substrates can be processed in a short time as compared with a conventional apparatus such as a lamp annealing apparatus, so that the productivity is dramatically increased. improves. Moreover, since the temperature rise and fall is not as rapid as in the lamp anneal device, the substrate (wafer)
It is possible to prevent the occurrence of (c) slip. Furthermore,
Even when the low pressure CVD apparatus is used, the boat can be inserted into the reaction tube without growing the natural oxide film and the film forming process can be performed, which is particularly useful for forming the polysilicon or the nitride film.

【0014】[0014]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す縦断面図である。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す縦断面図である。FIG. 2 is a vertical sectional view showing another embodiment of the present invention.

【図3】図1のA−A′断面図である。FIG. 3 is a sectional view taken along the line AA ′ in FIG.

【図4】本発明に使用するヒ−タの拡大詳細正面図であ
る。
FIG. 4 is an enlarged detailed front view of the heater used in the present invention.

【図5】本発明に使用する他のヒ−タの拡大詳細正面図
である。
FIG. 5 is an enlarged detailed front view of another heater used in the present invention.

【図6】従来の拡散炉の縦断面図である。FIG. 6 is a vertical sectional view of a conventional diffusion furnace.

【符号の説明】[Explanation of symbols]

1 基板(ウエ−ハ) 2 ボ−ト 3 内側の抵抗加熱ヒ−タ(インナ−
ヒ−タ) 4 外側の抵抗加熱ヒ−タ(アウタ−
ヒ−タ) 5,6,7 熱電対温度センサ 10 反応管
1 substrate (wafer) 2 boat 3 inner resistance heating heater (inner)
Heater 4 Outside resistance heating heater (outer)
Heater) 5, 6, 7 Thermocouple temperature sensor 10 Reaction tube

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】反応管の外側に、裏面に断熱材を備えた抵
抗加熱ヒ−タを配設し、反応管内の処理基板を高温で熱
処理する半導体製造用縦型高速熱処理装置に於いて、前
記反応管と前記抵抗加熱ヒ−タとの間に抵抗加熱ヒ−タ
を間隔付けて配設してなり、前記両抵抗加熱ヒ−タは、
それぞれ独立して温度制御のできる複数のゾ−ンに形成
してなることを特徴とする縦型高速熱処理装置。
1. A vertical high-speed heat treatment apparatus for semiconductor manufacturing, wherein a resistance heating heater having a heat insulating material on its back surface is provided outside a reaction tube, and a processed substrate in the reaction tube is heat-treated at a high temperature. A resistance heating heater is arranged with a space between the reaction tube and the resistance heating heater, and both resistance heating heaters are:
A vertical high-speed heat treatment apparatus, characterized in that it is formed into a plurality of zones whose temperatures can be controlled independently.
【請求項2】前記内側の抵抗加熱ヒ−タは、耐熱性の支
柱にヒ−タ素線を間隔付けて固定してなる請求項1に記
載の縦型高速熱処理装置。
2. The vertical high-speed heat treatment apparatus according to claim 1, wherein the resistance heating heater on the inner side is formed by fixing heat-resistant support columns with heater element wires at intervals.
【請求項3】前記支柱に冷却エア−を噴出させる多数の
孔を穿設してなる請求項2に記載の縦型高速熱処理装
置。
3. The vertical rapid thermal processing apparatus according to claim 2, wherein a large number of holes for ejecting cooling air are formed in the support column.
【請求項4】前記反応管と前記抵抗加熱ヒ−タ間の熱を
排気するため、冷却エア−を下部から導入し、上部の排
気ダクトから排出するように構成してなる請求項1に記
載の縦型高速熱処理装置。
4. In order to exhaust heat between the reaction tube and the resistance heating heater, cooling air is introduced from the lower part and exhausted from an upper exhaust duct. Vertical high-speed heat treatment equipment.
【請求項5】前記反応管内と、前記抵抗加熱ヒ−タの独
立して温度制御し得る複数のゾ−ンの各ゾ−ンに、熱電
対温度センサ−を配設してなる請求項1に記載の縦型高
速熱処理装置。
5. A thermocouple temperature sensor is arranged in each zone of the reaction tube and a plurality of zones of the resistance heating heater which can be independently temperature controlled. Vertical high-speed heat treatment apparatus described in.
JP33530594A 1994-12-22 1994-12-22 Vertical-type high-speed heat treatment device Pending JPH08181082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33530594A JPH08181082A (en) 1994-12-22 1994-12-22 Vertical-type high-speed heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33530594A JPH08181082A (en) 1994-12-22 1994-12-22 Vertical-type high-speed heat treatment device

Publications (1)

Publication Number Publication Date
JPH08181082A true JPH08181082A (en) 1996-07-12

Family

ID=18287040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33530594A Pending JPH08181082A (en) 1994-12-22 1994-12-22 Vertical-type high-speed heat treatment device

Country Status (1)

Country Link
JP (1) JPH08181082A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020179A1 (en) * 1995-11-30 1997-06-05 Komatsu Ltd. Dispersion type multi-temperature control system and fluid temperature control device applicable to the system
JP2003515961A (en) * 1999-11-30 2003-05-07 ウエファーマスターズ, インコーポレイテッド Small batch furnace
JP2005183823A (en) * 2003-12-22 2005-07-07 Hitachi Kokusai Electric Inc Substrate processing equipment
JP2007081428A (en) * 2006-12-08 2007-03-29 Hitachi Kokusai Electric Inc Substrate processing equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020179A1 (en) * 1995-11-30 1997-06-05 Komatsu Ltd. Dispersion type multi-temperature control system and fluid temperature control device applicable to the system
US6157778A (en) * 1995-11-30 2000-12-05 Komatsu Ltd. Multi-temperature control system and fluid temperature control device applicable to the same system
JP2003515961A (en) * 1999-11-30 2003-05-07 ウエファーマスターズ, インコーポレイテッド Small batch furnace
JP2005183823A (en) * 2003-12-22 2005-07-07 Hitachi Kokusai Electric Inc Substrate processing equipment
JP2007081428A (en) * 2006-12-08 2007-03-29 Hitachi Kokusai Electric Inc Substrate processing equipment

Similar Documents

Publication Publication Date Title
JP3125199B2 (en) Vertical heat treatment equipment
JP4365017B2 (en) Method for controlling temperature drop rate of heat treatment apparatus and heat treatment apparatus
JP3421660B2 (en) Heat treatment apparatus and method
JP3598032B2 (en) Vertical heat treatment apparatus, heat treatment method, and heat insulation unit
JPH1064836A (en) Vertical thermal treatment furnace
JPH07209093A (en) Thermometer
JP3474258B2 (en) Heat treatment apparatus and heat treatment method
JPH06295915A (en) Manufacturing device for semiconductor device and manufacture of semiconductor device
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JP2668001B2 (en) Heat treatment method and apparatus
JP3474261B2 (en) Heat treatment method
JPH08181082A (en) Vertical-type high-speed heat treatment device
JP4669465B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
JPS63232422A (en) Thermal treatment equipment for semiconductor wafer
JP2003031515A (en) Substrate processing apparatus and method of manufacturing semiconductor device
JPH11260744A (en) Heat treating furnace
JP4104070B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
JP2693465B2 (en) Semiconductor wafer processing equipment
JP3497317B2 (en) Semiconductor heat treatment method and apparatus used therefor
JP3081886B2 (en) Film formation method
JP3534518B2 (en) Semiconductor heat treatment method and apparatus used therefor
JP2011103469A (en) Substrate processing apparatus, method of manufacturing semiconductor device, heating device, and heat insulating material
JPH05206043A (en) Heat treatment method
JPH06216056A (en) Vertical furnace
JP2557137B2 (en) Heating equipment for semiconductor manufacturing