JPS6351362B2 - - Google Patents

Info

Publication number
JPS6351362B2
JPS6351362B2 JP56095440A JP9544081A JPS6351362B2 JP S6351362 B2 JPS6351362 B2 JP S6351362B2 JP 56095440 A JP56095440 A JP 56095440A JP 9544081 A JP9544081 A JP 9544081A JP S6351362 B2 JPS6351362 B2 JP S6351362B2
Authority
JP
Japan
Prior art keywords
moisture
electrodes
sensitive
humidity
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56095440A
Other languages
Japanese (ja)
Other versions
JPS57210603A (en
Inventor
Tsuguji Tanaka
Kenji Shimoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP56095440A priority Critical patent/JPS57210603A/en
Publication of JPS57210603A publication Critical patent/JPS57210603A/en
Publication of JPS6351362B2 publication Critical patent/JPS6351362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、湿度によつて電気抵抗が変化する
感湿物質を利用した感湿素子に関するものであ
る。 感湿素子としては、従来より塩化リチウムを感
湿物質とするものが汎用されているが、近年、金
属酸化物を用いた感湿素子が開発されている。こ
の金属酸化物系の感湿素子は、上記塩化リチウム
系の感湿素子に比較して特性の経時変化や適用で
きる相対湿度領域の大きさの面で優れるが、湿度
サイクル中で感湿抵抗体層の表面に安定な金属水
酸化物層が形成されて感度低下をきたすため、定
期的に加熱クリーニングを行なう必要がある。ま
た、温度サイクルや湿度サイクル中に基板と感湿
抵抗体層との接着が悪くなつたり、感湿抵抗体層
にひび割れを生じたりすることがある。したがつ
て、従来の金属酸化物系の感湿素子では、上記の
対策として傍熱形のヒータを付設しているが、そ
れによつて構造が複雑となることから、量産性や
製造価格の点で大きな問題を残している。 この発明は、上記欠点を改善し、広範囲の相対
湿度領域にわたつて高い感度と安定した感湿性能
を有し、かつ基板と感湿抵抗体層との接着性が良
好で、しかも量産性に富むとともに低価格化が可
能な感湿素子を提供することを目的とする。 すなわち、この発明の感湿素子は、セラミツク
などの絶縁基板上に対向する一対の電極と両電極
間にわたる感湿抵抗体層とが形成され、この感湿
抵抗体層が、リチウムを含む金属酸化物系成分粉
末と、ガラス粉末と、MnOを主成分として他に
特定の酸化物を含む粉末とを含有する組成物の焼
結体からなることを特徴とする感湿素子に係るも
のである。 上記ガラス成分としては、フリツトガラス微粉
末が好適であり、たとえばケイ酸鉛フリツト、硼
ケイ酸鉛フリツト、硼ケイ酸亜鉛フリツト、アル
カリ土類金属または亜鉛を含む硼ケイ酸鉛フリツ
トなどの微粉末が挙げられる。このようなフリツ
トガラス微粉末は、たとえばB2O3,SiO2,ZnO,
PbO,CdOなどの原料となる酸化物粉末の混合物
を高温で加熱して完全に溶融させ、これを水中に
滴下して凝固させてフリツト化し、このフリツト
を取り出してボールミルなどを用いて粒径1〜
2μ程度に粉砕することによつて得られる。 リチウムを含む金属酸化物系成分粉末として
は、LiNbO3,Li2WO4,Li2MoO4,LiZrO3
Li2TiO3,LiTa2O2,LiVO3などのリチウム系複
合酸化物粉末、ならびにLiO2にWO3,TiO2
Nb2O5,Ta2O5,MoO3,ZrO2,GeO2,TeO2
V2O5,Sb2O3などの酸化物の少なくとも1種を
加えた組成を有する粉末が挙げられ、これらも前
記ガラス成分と同様にして粒径1〜2μ程度の微
粉末とすることが推奨される。 一方、前記のMnOを主成分とする酸化物粉末
は、MnOを50モル%以上含有し、かつTiO2
SnO2,Cr2O3,Fe2O3,MgO,Sb2O5から選ばれ
る少なくとも1種を含む酸化物粉末であり、同様
に粒径1μ程度の微粉末であることが望ましい。 ガラス粉末と、リチウムを含む金属酸化物系成
分粉末および上記MnOを主成分とする酸化物粉
末との配合比は、ガラス粉末の割合が5重量%未
満では最終的に形成される感湿抵抗体層の基板に
対する接着強度と耐摩耗性が低下し、また80重量
%を越える場合は感湿素子の低湿度領域での感度
が著しく低下するので、ガラス粉末が5〜80重量
%となる範囲で適当に選択することが望ましい。 一方、リチウムを含む金属酸化物系成分と
MnOを主成分とする酸化物との配合比は、後者
が90モル%を越えると感湿素子の低湿度領域での
感度が著しく低下するため、後者すなわちMnO
を主成分とする酸化物が5〜90モル%となる範囲
で適当に選択することが望ましい。 感湿抵抗体層を形成するには、上記3成分の粉
末の混合物はビークルたとえばエチルセルローズ
やアクリル樹脂とブチルカルビトール・アセテー
トとテレピオネールなどからなるビークルを加
え、ローラやボールミルなどで充分に混合するこ
とによつて適度な粘度を有するペースト状とした
組成物を使用すればよい。 つぎに、この発明の感湿素子の具体的な構造を
図面にしたがつて説明する。 第1図は、この発明の感湿素子の一例を示すも
のであり、図中11はセラミツクなどからなる絶
縁基板、12および13はそれぞれ櫛形の形状を
有して対向する一対の電極であり、この電極12
と13のそれぞれリードアウト部12bと13b
を除く主要部12aと13aにまたがつて既述し
た焼結体よりなる感湿抵抗体層14が被覆されて
いる。15および16は、電極12と13とをお
のおの外部リード17および18に接続するため
の電極である。第2図は、第1図の2−2′断面
を示す。 このような感湿素子は、たとえばつぎの方法に
よつて製造される。まず、あらかじめ電極15お
よび16が設けられた絶縁基板11を用い、この
表面に櫛形の電極12および13をスクリーン印
刷によつて形成し、焼成炉中で850〜950℃程度に
て電極焼成する。ついで、概述したペースト状の
組成物を用いて、電極12と13の主要部12a
と13aとを完全に覆うように均一な厚みでスク
リーン印刷を行なつて被覆層を形成し、続いて絶
縁基板11と感湿抵抗体層との密着性を増すため
に焼成炉中で、ガラスの溶融する温度、たとえば
600〜1000℃の適当な温度で焼成する。この焼成
後の冷却過程で、感湿抵抗体層14は硬化すると
ともに絶縁基板11に対する密着性が良好でしか
も適度な細孔分布を有する被膜となる。この冷却
後、外部リード17および18を取り付け、続い
て特性の安定化のために熱湯中での浸漬処理と高
温高湿下での負荷エージングを行なう。 なお、上述した第1図および第2図の構成の感
湿装置とその製造操作の例においては、一対の電
極12および13を被覆する状態で感湿抵抗体層
14を形成した構成について説明しているが、こ
の発明の感湿素子は両者の形成順序を逆にして感
湿抵抗体層上に一対の電極を形成したものをも包
含する。 以下、この発明の実施例を示す。 実施例 表1に示す混合比でニオブ酸リチウムの微粉末
と硼ケイ酸鉛フリツトガラス微粉末(B2O3
SiO2:PbO重量比=10:25:65)および表1で
示すMnOを主成分とする酸化物微粉末とをボー
ルミル中で混合し、エチルセルローズとブチル・
カルビトール・アセテートからなるビークルを加
え、同じくボールミルにて均一な粘度のペースト
状組成物とした。
The present invention relates to a humidity sensing element that uses a humidity sensitive substance whose electrical resistance changes depending on humidity. Moisture-sensitive elements using lithium chloride as a moisture-sensitive substance have conventionally been widely used, but in recent years, moisture-sensitive elements using metal oxides have been developed. This metal oxide-based humidity sensing element is superior to the above-mentioned lithium chloride-based humidity sensing element in terms of changes in characteristics over time and the size of the relative humidity range to which it can be applied. A stable metal hydroxide layer is formed on the surface of the layer, resulting in a decrease in sensitivity, so it is necessary to perform periodic heating cleaning. Furthermore, during temperature cycles and humidity cycles, the adhesion between the substrate and the humidity-sensitive resistor layer may deteriorate, or cracks may occur in the humidity-sensitive resistor layer. Therefore, conventional metal oxide-based moisture sensing elements are equipped with indirect heaters as a countermeasure to the above problem, but this complicates the structure, making it difficult to mass-produce and reduce manufacturing costs. That leaves a big problem. The present invention improves the above drawbacks, has high sensitivity and stable moisture sensing performance over a wide range of relative humidity, has good adhesion between the substrate and the humidity sensitive resistor layer, and is suitable for mass production. It is an object of the present invention to provide a moisture-sensitive element that can be both abundant and low-priced. That is, in the humidity sensing element of the present invention, a pair of electrodes facing each other and a humidity sensing resistor layer extending between the two electrodes are formed on an insulating substrate such as ceramic, and this humidity sensing resistor layer is made of metal oxide containing lithium. The present invention relates to a moisture-sensitive element comprising a sintered body of a composition containing a chemical component powder, a glass powder, and a powder containing MnO as a main component and a specific oxide. As the above-mentioned glass component, a fritted glass fine powder is suitable, such as a lead silicate frit, a lead borosilicate frit, a zinc borosilicate frit, and a lead borosilicate frit containing an alkaline earth metal or zinc. Can be mentioned. Such fritted glass fine powders include, for example, B 2 O 3 , SiO 2 , ZnO,
A mixture of oxide powders, which are raw materials such as PbO and CdO, is heated at high temperature to completely melt it, and this is dropped into water to solidify and form a frit.The frit is taken out and processed using a ball mill etc. to a particle size of 1. ~
Obtained by grinding to about 2μ. Metal oxide component powders containing lithium include LiNbO 3 , Li 2 WO 4 , Li 2 MoO 4 , LiZrO 3 ,
Lithium-based composite oxide powders such as Li 2 TiO 3 , LiTa 2 O 2 , LiVO 3 , and LiO 2 with WO 3 , TiO 2 ,
Nb 2 O 5 , Ta 2 O 5 , MoO 3 , ZrO 2 , GeO 2 , TeO 2 ,
Examples include powders having a composition containing at least one oxide such as V 2 O 5 and Sb 2 O 3 , and these can also be made into fine powders with a particle size of about 1 to 2 μm in the same manner as the glass component. Recommended. On the other hand, the oxide powder mainly composed of MnO contains 50 mol% or more of MnO and contains TiO 2 ,
It is an oxide powder containing at least one selected from SnO 2 , Cr 2 O 3 , Fe 2 O 3 , MgO, and Sb 2 O 5 , and is preferably a fine powder with a particle size of about 1 μm. The blending ratio of the glass powder, the metal oxide component powder containing lithium, and the above-mentioned oxide powder mainly composed of MnO is such that if the proportion of the glass powder is less than 5% by weight, the moisture-sensitive resistor that will eventually be formed will be affected. The adhesion strength and abrasion resistance of the layer to the substrate will decrease, and if it exceeds 80% by weight, the sensitivity of the moisture-sensitive element in the low humidity region will decrease significantly. It is desirable to choose appropriately. On the other hand, metal oxide components containing lithium
The blending ratio with the oxide whose main component is MnO is such that if the latter exceeds 90 mol%, the sensitivity of the moisture sensing element in the low humidity region will decrease significantly.
It is desirable to select an appropriate amount within the range of 5 to 90 mol % of the oxide whose main component is . To form the moisture-sensitive resistor layer, a mixture of the above three component powders is added with a vehicle such as ethyl cellulose, an acrylic resin, butyl carbitol acetate, and terepionelle, and thoroughly mixed using a roller or ball mill. A paste-like composition having an appropriate viscosity may be used. Next, the specific structure of the moisture sensitive element of the present invention will be explained with reference to the drawings. FIG. 1 shows an example of the moisture sensing element of the present invention, in which 11 is an insulating substrate made of ceramic or the like, 12 and 13 are a pair of electrodes each having a comb shape and facing each other, This electrode 12
and 13 lead-out parts 12b and 13b, respectively.
The moisture sensitive resistor layer 14 made of the sintered body described above is coated over the main parts 12a and 13a except for the main parts 12a and 13a. 15 and 16 are electrodes for connecting the electrodes 12 and 13 to external leads 17 and 18, respectively. FIG. 2 shows a cross section taken along line 2-2' in FIG. Such a moisture sensitive element is manufactured, for example, by the following method. First, using an insulating substrate 11 on which electrodes 15 and 16 have been provided in advance, comb-shaped electrodes 12 and 13 are formed on the surface thereof by screen printing, and the electrodes are fired at about 850 to 950°C in a firing furnace. Next, the main parts 12a of the electrodes 12 and 13 are formed using the paste-like composition described above.
and 13a to form a coating layer with a uniform thickness, and then in order to increase the adhesion between the insulating substrate 11 and the moisture-sensitive resistor layer, a glass layer is formed in a baking furnace. The melting temperature of, e.g.
Fire at a suitable temperature of 600-1000℃. During the cooling process after firing, the moisture-sensitive resistor layer 14 hardens and becomes a film that has good adhesion to the insulating substrate 11 and has an appropriate pore distribution. After this cooling, external leads 17 and 18 are attached, followed by immersion treatment in hot water and load aging under high temperature and high humidity conditions in order to stabilize the characteristics. In addition, in the above-mentioned example of the humidity sensing device having the structure shown in FIG. 1 and FIG. However, the humidity sensing element of the present invention also includes one in which the order of formation of both is reversed and a pair of electrodes are formed on the humidity sensing resistor layer. Examples of this invention will be shown below. Example Fine powder of lithium niobate and fine powder of lead borosilicate fritted glass (B 2 O 3 :
SiO 2 :PbO weight ratio = 10:25:65) and the fine oxide powder mainly composed of MnO shown in Table 1 were mixed in a ball mill, and ethyl cellulose and butyl cellulose were mixed.
A vehicle consisting of carbitol acetate was added, and a paste composition with a uniform viscosity was prepared using a ball mill.

【表】 この組成物を、第1図および第2図で示す構成
において電極12および13が酸化ルテニウム電
極、電極15および16がAg−Pd電極であるア
ルミナ製絶縁基板上に膜厚が30〜100μmとなるよ
うにスクリーン印刷し、空気中で約350℃にて加
熱してビークル成分を揮散除去したのち、850℃
で焼結させ、冷却後に熱湯中で浸漬したのち、60
℃,90%RHにて通電下のエージングを行ない、
常法に準じて感湿素子とした。 上記実施例にて得られた感湿素子について、電
極間の電気抵抗を24℃において測定雰囲気の相対
湿度を変化させて測定した。その結果を表2で示
す。
[Table] This composition was coated on an alumina insulating substrate in the configuration shown in FIGS. 1 and 2, in which electrodes 12 and 13 were ruthenium oxide electrodes and electrodes 15 and 16 were Ag-Pd electrodes, to a film thickness of 30 to 30 mm. Screen printed to a thickness of 100μm, heated in air at approximately 350℃ to volatilize and remove vehicle components, and then heated to 850℃.
After cooling and immersing in boiling water,
Aging was performed under electric current at ℃ and 90%RH.
A moisture-sensitive element was prepared according to a conventional method. Regarding the humidity sensing element obtained in the above example, the electrical resistance between the electrodes was measured at 24° C. while changing the relative humidity of the measurement atmosphere. The results are shown in Table 2.

【表】【table】

【表】 表2の結果から、上記実施例の各素子が広範な
相対湿度領域にわたつて高感度でかつ直線性にも
優れていることがわかる。なおリチウムを含む金
属酸化物系成分粉末ならびにガラス粉末として、
既述した他の成分を用いた場合でもほぼ同様の結
果が得られている。 さらに、この発明の感湿素子は高湿雰囲気下で
の放置に対して非常に安定であり、かつ素子が汚
染した場合に水洗が可能であることも確認されて
いる。また、この素子は厚膜技術によつて生産で
き、しかも既述した従来の金属酸化物系感湿素子
におけるような間接加熱用ヒータの付設も不要で
あり、素子構成が簡単で量産化と低価格化に適す
るという工業的利用価値の高い利点を有するもの
である。
[Table] From the results in Table 2, it can be seen that each of the elements of the above examples has high sensitivity and excellent linearity over a wide range of relative humidity. In addition, as metal oxide component powder and glass powder containing lithium,
Almost similar results were obtained even when the other components mentioned above were used. Furthermore, it has been confirmed that the moisture-sensitive element of the present invention is very stable when left in a high-humidity atmosphere, and can be washed with water if the element becomes contaminated. In addition, this element can be produced using thick film technology, and does not require the installation of an indirect heater unlike the conventional metal oxide moisture-sensitive elements mentioned above, making the element configuration simple and easy to mass-produce. It has the advantage of being suitable for commercialization and has high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の感湿素子の例を示す平面
図、第2図は第1図の2−2′断面図である。 11……絶縁基板、12,13……対向する一
対の電極、14……感湿抵抗体層。
FIG. 1 is a plan view showing an example of the moisture sensitive element of the present invention, and FIG. 2 is a sectional view taken along line 2-2' in FIG. 11... Insulating substrate, 12, 13... A pair of opposing electrodes, 14... Moisture sensitive resistor layer.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツクなどの絶縁基板上に対向する一対
の電極と、両電極間にわたる感湿抵抗体層とが形
成された感湿素子において、上記感湿抵抗体層
が、リチウムを含む金属酸化物系成分粉末と、ガ
ラス粉末と、MnOを主成分としてかつTiO2
SnO2,Cr2O3,Fe2O3,MgO,Sb2O5から選ばれ
る少なくとも1種を含む酸化物粉末とを含有する
組成物の焼結体からなることを特徴とする感湿素
子。
1. A moisture-sensitive element in which a pair of electrodes facing each other and a moisture-sensitive resistor layer extending between the two electrodes are formed on an insulating substrate such as ceramic, in which the moisture-sensitive resistor layer is made of a metal oxide-based component containing lithium. powder, glass powder, MnO as the main component and TiO 2 ,
A moisture-sensitive element comprising a sintered body of a composition containing an oxide powder containing at least one selected from SnO 2 , Cr 2 O 3 , Fe 2 O 3 , MgO, and Sb 2 O 5 .
JP56095440A 1981-06-19 1981-06-19 Moisture sensitive element Granted JPS57210603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56095440A JPS57210603A (en) 1981-06-19 1981-06-19 Moisture sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56095440A JPS57210603A (en) 1981-06-19 1981-06-19 Moisture sensitive element

Publications (2)

Publication Number Publication Date
JPS57210603A JPS57210603A (en) 1982-12-24
JPS6351362B2 true JPS6351362B2 (en) 1988-10-13

Family

ID=14137753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56095440A Granted JPS57210603A (en) 1981-06-19 1981-06-19 Moisture sensitive element

Country Status (1)

Country Link
JP (1) JPS57210603A (en)

Also Published As

Publication number Publication date
JPS57210603A (en) 1982-12-24

Similar Documents

Publication Publication Date Title
US4015230A (en) Humidity sensitive ceramic resistor
US4319215A (en) Non-linear resistor and process for producing same
CN111243777B (en) Composite conductive powder and preparation method thereof
KR0133080B1 (en) Material for resistor body & non-linear resistor made thereof
JPH0310204B2 (en)
KR100289207B1 (en) Lateral high resistance for zinc oxide varistors, and methods for producing zinc oxide varistors and zinc dioxide varistors using the same
US4326187A (en) Voltage non-linear resistor
JP3840673B2 (en) Conductive paste and ceramic electronic component using the same
US4420737A (en) Potentially non-linear resistor and process for producing the same
JPS6351361B2 (en)
JPS6351362B2 (en)
JP4042003B2 (en) Sandwich type thick film thermistor
JPH0225241B2 (en)
JPS6349882B2 (en)
JPS6033282B2 (en) Voltage nonlinear resistor
JPH0464161B2 (en)
JPS58161301A (en) Moisture sensitive element
JPS6221241B2 (en)
JPH0464162B2 (en)
JPH022535B2 (en)
JPH0122964B2 (en)
JPS6243323B2 (en)
JPS5848401A (en) Humidity sensitive element
JPH0376562B2 (en)
JPS59186303A (en) Moisture sensitive element