JPS6351264B2 - - Google Patents

Info

Publication number
JPS6351264B2
JPS6351264B2 JP56212312A JP21231281A JPS6351264B2 JP S6351264 B2 JPS6351264 B2 JP S6351264B2 JP 56212312 A JP56212312 A JP 56212312A JP 21231281 A JP21231281 A JP 21231281A JP S6351264 B2 JPS6351264 B2 JP S6351264B2
Authority
JP
Japan
Prior art keywords
signal
bottle
inspected
circuit
inspection area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56212312A
Other languages
Japanese (ja)
Other versions
JPS57131040A (en
Inventor
Takashi Myazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP21231281A priority Critical patent/JPS57131040A/en
Publication of JPS57131040A publication Critical patent/JPS57131040A/en
Publication of JPS6351264B2 publication Critical patent/JPS6351264B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9018Dirt detection in containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N2033/0078Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on manufactured objects
    • G01N2033/0081Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on manufactured objects containers; packages; bottles

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sorting Of Articles (AREA)

Description

【発明の詳細な説明】 この発明はビール瓶、ジユース瓶などの被検査
体に付くすり傷、異物の有無及び程度を光学的に
検出する異物検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a foreign matter detection device that optically detects the presence and extent of scratches and foreign matter on objects to be inspected such as beer bottles and youth bottles.

従来、この種の異物検出装置には胴部を検査す
るものと、底部を検査するものとがあるが、胴部
を検査するものでは被検査瓶を高速回転させつつ
外部から光を照射し、その透過光を被検査瓶の内
部に挿入した光電素子で検出するようになつてい
る。この検出装置は検出器として光電素子を用
い、被検査瓶のある領域について異物(傷を含
む)がある場合と無い場合とに透過光量の比をと
りつつ、被検査瓶の胴部全体について異物の有無
を連続的に検査している。しかしながら、このよ
うな検出装置は被検査瓶を高速回転させるため、
装置自体が大型化し、コスト高になるとともに異
物等の検出精度が悪く、さらに光電素子を瓶内部
に挿入するため、その内部空気を汚す恐れがあつ
て、食品衛生上問題があつた。
Conventionally, there are two types of foreign object detection devices of this type: one that inspects the body and the other that inspects the bottom.The type that inspects the body rotates the bottle to be inspected at high speed and irradiates it with light from the outside. The transmitted light is detected by a photoelectric element inserted inside the bottle to be inspected. This detection device uses a photoelectric element as a detector, and calculates the ratio of the amount of transmitted light between a certain area of the bottle to be inspected with and without foreign objects (including scratches), and detects foreign objects in the entire body of the bottle to be inspected. Continuously inspects for the presence or absence of However, since such a detection device rotates the bottle to be inspected at high speed,
The device itself has become larger and more expensive, and the accuracy of detecting foreign objects is poor.Furthermore, since the photoelectric element is inserted into the inside of the bottle, there is a risk of contaminating the air inside the bottle, which poses food hygiene problems.

また、別の検出装置として、高速回転されてい
る被検査瓶の一方から光をあて、その反対側に非
蓄積型の撮像管を使用したテレビジヨンカメラを
設置し、このカメラで検査するようにしたものが
ある。これは被検査瓶の位置を機械的に検出し、
被検査瓶の上部から下部までを1本の走査線で検
査するようにしたものである。しかしながら、こ
の検出装置は被検査瓶の位置検出が機械的である
ため位置検出の誤差が生じ易く、被検査瓶面を一
様に検査することが困難である。また、1台のテ
レビジヨンカメラで同時に2本以上の瓶を検査す
ることが出来ないので検査のスピードアツプを図
れず、さらに被検査瓶を高速回転させるため、装
置の大型化、コストアツプ等の問題があつた。
In addition, as another detection device, a television camera using a non-storage type image pickup tube is installed on the other side of the bottle to be inspected, which shines light from one side of the bottle being rotated at high speed. There is something I did. This mechanically detects the position of the bottle to be inspected,
This is designed to inspect the bottle to be inspected from the top to the bottom using one scanning line. However, since this detection device mechanically detects the position of the bottle to be inspected, errors in position detection are likely to occur, making it difficult to uniformly inspect the surface of the bottle to be inspected. In addition, since it is not possible to inspect two or more bottles at the same time with one television camera, it is not possible to speed up the inspection, and furthermore, since the bottles to be inspected are rotated at high speed, there are problems such as an increase in the size of the equipment and increased costs. It was hot.

このようなことから、コンベア上を搬送される
被検査瓶を低速回転させつつ外部より照明し、そ
の反対側からテレビジヨンカメラで被検査瓶の胴
部全体を検査するようにしたものもあるが、この
処理方法では被検査瓶の端部、その中心を外れた
部分の浮影文字やマーク、硝子厚のむら、つぎ目
等部では被検査瓶を通過する光の光路長が長くな
つたり、屈折の現象でその部分が影となり、結果
的に異物と同じような信号となるので正確な検査
が出来ないといつた欠点がある。
For this reason, some systems are designed to rotate the bottles being inspected on a conveyor at low speed while illuminating them from the outside, and then inspecting the entire body of the bottle from the opposite side with a television camera. , This treatment method may cause the optical path length of the light passing through the bottle to be inspected to become longer or to be refracted at the edges of the bottle to be inspected, areas that are off-center, such as embossed letters or marks, uneven glass thickness, or seams. This phenomenon causes the area to become a shadow, resulting in a signal similar to that of a foreign object, making it difficult to perform accurate inspection.

さらに、蓄積形の撮像管を使用して、光源とし
ての照明にストロボを使用することも考えられて
いるが、撮像管の残像に制限されてスピードアツ
プを図ることができず、またストロボの交換頻度
が多くなり、被検査瓶の中心を外れた浮彫の文
字、マークおよびつぎ目等の部分は、依然として
正確な検査ができず、未解決のままとなつてい
た。
Furthermore, it has been considered to use a storage type image pickup tube and a strobe as a light source for illumination, but it is limited by the afterimage of the image pickup tube, making it impossible to increase the speed, and the need to replace the strobe. The frequency of inspection has increased, and parts such as embossed characters, marks, seams, etc. that are off the center of the bottle being inspected cannot be accurately inspected, and the problem remains unresolved.

この発明は上述した点を考慮し、硝子瓶などの
被検査体の映像信号から検査領域を自動的に決定
し、この領域を面検査することにより充分な検査
精度が得られる異物検出装置を提供することを目
的とする。
The present invention takes the above-mentioned points into consideration and provides a foreign object detection device that automatically determines an inspection area from a video signal of an object to be inspected such as a glass bottle, and performs a surface inspection of this area to obtain sufficient inspection accuracy. The purpose is to

以下、この発明の実施例について添付図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において、符号10はこの発明に係る異
物検出装置内に組み込まれた光源であり、この光
源10からの光11は拡散板12で均一に拡散さ
れた後、搬送コンベア(図示せず)上を連続的に
回転しながら搬送される被検査瓶13に照射され
る。この被検査瓶13を通過した光は集光レンズ
14で集束され、光電変換装置としての2次元
CCD(Charge Conpled Device)15に入射され
る。このCCD15には別途同期信号発生回路が
組み込まれており、多数のCCDエレメント16
(第2図)を有する。各CCDエレメント16は、
第2図に示すように、被検査瓶13の軸方向に沿
う方向Aに走査されつつ、全体として、例えば矢
印a,b,cで示すように、左から右側(B方
向)に順次走査が移行される。CCD15の各エ
レメント16からの映像信号は信号増幅器18で
増幅されたのち、映像信号VS中の異物信号の波
形を整形して出力レベルを検出する波形整形回路
(レベル検出回路)19、被検査瓶13の端部を
検出する瓶端検出回路20および検査部に搬送さ
れて来る被検査瓶13の順番を記憶する瓶順記憶
回路21にそれぞれ送られる。このうち波形整形
回路19は信号レベル比較回路を有し、映像信号
VS(第3図)から異物信号を検出して整形し、こ
の整形された映像波形信号VSAをゲート回路2
3に送るようになつている。
In FIG. 1, reference numeral 10 is a light source incorporated in the foreign object detection device according to the present invention, and after light 11 from this light source 10 is uniformly diffused by a diffusion plate 12, it is sent to a conveyor (not shown). It irradiates the bottle 13 to be inspected, which is conveyed while continuously rotating above. The light passing through the inspection bottle 13 is focused by a condenser lens 14, and is converted into a two-dimensional photoelectric conversion device.
The light is input to a CCD (Charge Completed Device) 15. This CCD 15 has a separate synchronization signal generation circuit built in, and a large number of CCD elements 16.
(Figure 2). Each CCD element 16 is
As shown in FIG. 2, while being scanned in direction A along the axial direction of the bottle 13 to be inspected, overall scanning is performed sequentially from left to right (direction B) as shown by arrows a, b, and c. will be migrated. The video signal from each element 16 of the CCD 15 is amplified by a signal amplifier 18, and then a waveform shaping circuit (level detection circuit) 19 that shapes the waveform of the foreign substance signal in the video signal VS and detects the output level, and a bottle to be inspected. The bottle end detection circuit 20 detects the end of each bottle 13, and the bottle order memory circuit 21 stores the order of the bottles 13 to be inspected being transported to the inspection section. Of these, the waveform shaping circuit 19 has a signal level comparison circuit, and
A foreign object signal is detected and shaped from VS (Fig. 3), and this shaped video waveform signal VSA is sent to the gate circuit 2.
It is now sent to 3rd.

一方、瓶端検出回路20はCCD15からの映
像信号VSを基に被検査瓶13の瓶端位置を検出
すると共に、この検出信号DSを検査領域信号発
生回路24に入力している。この検査領域信号発
生回路24および瓶端検出回路20により検査領
域決定回路を構成し、瓶端検出回路20からの瓶
端検出信号DSを基にして検査領域を決定し、こ
の検査領域信号RSをゲート回路23および瓶順
記憶回路21に送るようになつている。具体的に
は、瓶端検出回路20では被検査瓶の有無により
生ずる映像信号VSのレベルの大幅な変化(減少
方向)を微分比較器等により検出して瓶端信号
(第4図)とし、この信号をワンシヨツトマルチ
などを使つて一定時間幅のパルスDS(第5図)を
作り、検査領域信号発生回路24に送る。このパ
ルスDSの後縁を基にして瓶のほぼ中央に位置す
る検査領域信号RS(第6図)を発生させるように
なつている。この検査領域信号RSは第2図に示
すように、CCD15の被検査瓶の軸方向に沿つ
た各エレメント16の例えば2列分に相当する幅
を有しており、この検査領域信号RSにより被検
査瓶13の軸方向に沿う中央帯状部分を検査領域
(幅)としてピツクアツプすることができる。な
お、上記ワンシヨツトマルチによる遅延時間(パ
ルス幅)はコンデンサCおよび抵抗Rによる時定
数を調節することにより適宜定めることができ、
これにより種々の大きさの被検査瓶を対象とする
ことができる。
On the other hand, the bottle end detection circuit 20 detects the bottle end position of the bottle to be inspected 13 based on the video signal VS from the CCD 15, and inputs this detection signal DS to the inspection area signal generation circuit 24. The inspection area signal generation circuit 24 and the bottle end detection circuit 20 constitute an inspection area determination circuit, which determines the inspection area based on the bottle end detection signal DS from the bottle end detection circuit 20, and uses this inspection area signal RS. The signal is sent to the gate circuit 23 and the bottle order storage circuit 21. Specifically, the bottle end detection circuit 20 uses a differential comparator or the like to detect a significant change (in the direction of decrease) in the level of the video signal VS caused by the presence or absence of the bottle to be inspected, and uses it as a bottle end signal (FIG. 4). This signal is used to create a pulse DS (FIG. 5) with a constant time width using a one-shot multi-function device, etc., and is sent to the inspection area signal generation circuit 24. Based on the trailing edge of this pulse DS, an inspection area signal RS (FIG. 6) located approximately in the center of the bottle is generated. As shown in FIG. 2, this inspection area signal RS has a width corresponding to, for example, two rows of each element 16 along the axial direction of the bottle to be inspected of the CCD 15, and The central band-shaped portion along the axial direction of the test bottle 13 can be picked up as the test area (width). It should be noted that the delay time (pulse width) due to the above-mentioned one-shot multi can be determined as appropriate by adjusting the time constant of the capacitor C and the resistor R.
This makes it possible to target bottles of various sizes.

しかして、検査領域信号RSが送られるゲート
回路23は、波形整形回路19からの映像波形信
号VSAのうち、検査領域信号RSに対応する信号
のみをゲートして通過させ(ピツクアツプし)、
この波形信号(ピツクアツプ信号)GSを選別信
号発生回路25に送るようになつている。この選
別信号発生回路25はゲート回路23から送られ
る映像波形信号GSを検出して被検査瓶13の良
否を判別し、この判別(選別)信号SSを欠陥瓶
記憶および排出信号発生回路26に送るようにな
つている。
The gate circuit 23 to which the inspection area signal RS is sent gates and passes (picks up) only the signal corresponding to the inspection area signal RS out of the video waveform signal VSA from the waveform shaping circuit 19.
This waveform signal (pickup signal) GS is sent to the selection signal generation circuit 25. This sorting signal generation circuit 25 detects the video waveform signal GS sent from the gate circuit 23, determines whether the bottle to be inspected 13 is good or bad, and sends this discrimination (sorting) signal SS to the defective bottle storage and discharge signal generation circuit 26. It's becoming like that.

ところで、この欠陥瓶記憶および排出信号発生
回路26には瓶順記憶回路21からの瓶順信号
OSが送られるように接続されている。この瓶順
記憶回路21は、複数本の被検査瓶13が同時に
CCD15に投射されたとき、映像信号VSに含ま
れる同期信号および検査領域信号発生回路24か
らの検査領域信号RSを受けて被検査瓶13の検
査順序を記憶し、この記憶された瓶順信号OSを
次陥瓶記憶および排出信号発生回路26に送つて
いる。欠陥瓶記憶および排出信号発生回路26
は、瓶順記憶回路21から瓶順信号OSが送られ
ている期間中に選別信号発生回路25からの選別
信号SSの有無を記憶し、その間に選別信号SSが
例えば所定値以上に達した時に排出信号ESを発
し、この排生信号ESにより被検査瓶13が排出
口位置に搬送された時、検瓶ラインから自動的に
除去するようになつている。
By the way, this defective bottle memory and discharge signal generation circuit 26 receives the bottle order signal from the bottle order memory circuit 21.
The OS is connected to be sent. This bottle order memory circuit 21 is configured to store a plurality of bottles 13 to be inspected at the same time.
When projected onto the CCD 15, it receives the synchronization signal included in the video signal VS and the inspection area signal RS from the inspection area signal generation circuit 24, stores the inspection order of the bottles 13 to be inspected, and stores the stored bottle order signal OS. is sent to the next bottle storage and discharge signal generation circuit 26. Defective bottle memory and discharge signal generation circuit 26
stores the presence or absence of the sorting signal SS from the sorting signal generation circuit 25 during the period when the bottle order signal OS is being sent from the bottle order storage circuit 21, and when the sorting signal SS reaches, for example, a predetermined value or more during that period, A discharge signal ES is issued, and when the bottle 13 to be inspected is conveyed to the discharge port position by this discharge signal ES, it is automatically removed from the bottle inspection line.

次に、この検出装置の作用について説明する。 Next, the operation of this detection device will be explained.

光源10からの照射光11は拡散板12により
一様な明るさに拡散されて被検査瓶13に照射さ
れ、その透過光はレンズ14によりCCD15に
第2図に示すように結像される。透過光は被検査
瓶13を通過する間に強い吸収作用を受けるた
め、被検査瓶13の透過部とそれ以外の部分とは
大きな光量差となつて結像される。また、被検査
瓶13の中央部と周辺部とでは被検査瓶13の屈
折率や形状の影響を受けるので、中央部が明る
く、周辺部が暗くなり、このような光学像を
CCD15により電気信号に変換すると第3図の
ように表わされる。この第3図から理解されるよ
うに、瓶中央部の映像信号VSの出力レベルは比
較的平坦でほぼ一定であるが、両端に向うに従つ
てその出力レベルは小さくなる。このため、被検
査瓶13に付着した異物の有無によつて生ずる映
像信号VSの出力変化は被検査瓶の中央部で大き
く、周辺に行くに従つて小さくなり、周辺部では
異物とガラスとの区別が不可能に近くなる。ま
た、被検査瓶13に付随する浮彫文字、マーク、
瓶周方向のガラスの肉厚むらやつぎ目等の影響は
瓶の中央部では極めて小さい。これは、被検査瓶
13の瓶面に垂直な方向から光を照射した場合、
ガラスの肉厚むら等に起因する透過光の光量差は
小さいことによる。斜め、あるいは瓶面に平行に
照射した場合には光の透過光路長が増大するため
に途中で大きく吸収されたり、屈折などにより透
過光の光量が大きく減少する。
The irradiated light 11 from the light source 10 is diffused to a uniform brightness by the diffuser plate 12 and irradiated onto the bottle 13 to be inspected, and the transmitted light is imaged by the lens 14 on the CCD 15 as shown in FIG. Since the transmitted light is subjected to a strong absorption effect while passing through the bottle 13 to be inspected, an image is formed with a large difference in light intensity between the transmitted portion and the other portions of the bottle 13 to be inspected. In addition, since the center and periphery of the bottle 13 to be inspected are affected by the refractive index and shape of the bottle 13 to be inspected, the center is bright and the periphery is dark, making it difficult to obtain such an optical image.
When converted into an electrical signal by the CCD 15, it is expressed as shown in FIG. As can be understood from FIG. 3, the output level of the video signal VS at the center of the bottle is relatively flat and almost constant, but the output level decreases toward both ends. Therefore, the change in the output of the video signal VS caused by the presence or absence of foreign objects attached to the bottle 13 to be inspected is large at the center of the bottle to be inspected, and decreases toward the periphery. It becomes nearly impossible to tell the difference. In addition, embossed characters, marks, etc. attached to the bottle 13 to be inspected,
The effects of uneven glass thickness and seams in the circumferential direction of the bottle are extremely small in the center of the bottle. This means that when light is irradiated from a direction perpendicular to the bottle surface of the bottle 13 to be inspected,
This is because differences in the amount of transmitted light due to unevenness in the thickness of the glass are small. When the light is irradiated obliquely or parallel to the bottle surface, the transmitted optical path length of the light increases, so a large amount of light is absorbed along the way, and the amount of transmitted light is greatly reduced due to refraction and the like.

このような関係から、被検査瓶に付着する異物
(すり傷も含む)を高精度にかつ効率的に検査す
るには、CCD15の(繰返し走査周期の短い)
走査方向と被検査瓶13の軸方向とが略同じ方向
(平行方向)を向くようにさせ、かつ検査領域も
第2図において斜線で示す被検査瓶の中央面領域
に制限する必要がある。しかして、この発明は最
適な検査預域を自動的に定めることができるもの
である。
Based on this relationship, in order to highly accurately and efficiently inspect foreign substances (including scratches) adhering to bottles to be inspected, it is necessary to use the CCD 15 (with a short repetitive scanning cycle).
It is necessary to make the scanning direction and the axial direction of the bottle 13 to be inspected point in substantially the same direction (parallel direction), and to limit the inspection area to the central area of the bottle to be inspected, which is indicated by diagonal lines in FIG. Therefore, the present invention can automatically determine the optimum inspection deposit area.

すなわち、第4図に示すように瓶端検出回路2
0で映像信号VSの出力レベルが事前に設定され
た値より、急激に低下したとき、瓶端信号を発生
する。この瓶端信号をもとに、図示しない遅延回
路(たとえばワンシヨツトマルチ)からのパルス
波形信号を受けて第6図に示す検査領域信号RS
を検査領域発生回路24で発生させ、この検査領
域信号RSをゲート回路23に加え、その期間中
波形整形回路19からの映像デジタル信号VSA
のみを通過させて、選別信号発生回路25に送つ
ている。すなわち、ゲート回路23は検査領域信
号RSに対応する映像デジタル信号VSAのみを通
過させて選別信号発生回路25に送り、ここで映
像デジタル信号を選別し、異物がある場合に選別
信号SSを発生させる。
That is, as shown in FIG.
When the output level of the video signal VS suddenly decreases from a preset value at 0, a bottle end signal is generated. Based on this bottle end signal, a pulse waveform signal from a delay circuit (for example, one-shot multi), not shown, is received and an inspection area signal RS shown in FIG.
is generated by the inspection area generation circuit 24, this inspection area signal RS is applied to the gate circuit 23, and during that period, the video digital signal VSA from the waveform shaping circuit 19 is
The signal is passed through and sent to the selection signal generation circuit 25. That is, the gate circuit 23 passes only the video digital signal VSA corresponding to the inspection area signal RS and sends it to the sorting signal generation circuit 25, which sorts the video digital signal and generates the sorting signal SS when there is a foreign object. .

一方、CCD15に複数の被検査瓶13が同時
に投影されたときは、瓶順記憶回路21に送られ
る映像信号VSから垂直同期信号を検出し、この
同期信号を基準として検査領域信号発生回路24
からの検査領域信号RSに順序づけを行ない、こ
の信号を欠陥瓶記憶および排出信号発生回路26
に供する。この発生回路26は選別信号発生回路
25からの選別信号(異物信号)SSがどの被検
査瓶で発生したかを検出し、被検査瓶に異物があ
る場合には、その被検査瓶が不良瓶排出口に達し
た時、その近傍に設けられた被検査瓶到達検出器
の検出信号と同期させて、排出信号発生回路26
から排出信号ESを送り、排出機構(図示せず)
を作動させ、不良瓶を検瓶ラインから除去するよ
うになつている。
On the other hand, when a plurality of bottles 13 to be inspected are simultaneously projected on the CCD 15, a vertical synchronization signal is detected from the video signal VS sent to the bottle order storage circuit 21, and the inspection area signal generation circuit 24 uses this synchronization signal as a reference.
The inspection area signal RS from the
Serve. This generating circuit 26 detects in which bottle to be inspected the sorting signal (foreign substance signal) SS from the sorting signal generating circuit 25 is generated, and if there is a foreign substance in the bottle to be inspected, the bottle to be inspected is a defective bottle. When reaching the discharge port, the discharge signal generating circuit 26 is synchronized with the detection signal of the inspection bottle arrival detector installed near the discharge port.
The ejection signal ES is sent from the ejection mechanism (not shown).
is activated to remove defective bottles from the bottle inspection line.

なお、上述実施例の説明においては、被検査瓶
の有無によつて生ずる映像信号VSの出力レベル
差を利用して、検査領域を被検査瓶の軸方向に沿
う中央帯状部分を検出するようにしたものについ
て述べたが、被検査瓶の形状如何によつては、軸
方向に直角な方向のみを自動的に検出しても、ま
た、被検査瓶の全領域を検出するようにしてもよ
い。
In the explanation of the above-mentioned embodiment, the inspection area is set to be a central band-shaped portion along the axial direction of the bottle to be inspected, using the output level difference of the video signal VS that occurs depending on the presence or absence of the bottle to be inspected. As described above, depending on the shape of the bottle to be inspected, it may be possible to automatically detect only the direction perpendicular to the axial direction, or it may be possible to detect the entire area of the bottle to be inspected. .

また、瓶端検出回路20からの検出信号DSは、
映像信号VSの出力レベルの変化が最初に生じた
1つのCCDエレメントから検出しても、出力レ
ベルが予め設定されたCCDエレメント数に達し
たときから検出するようにしてもよい。さらに、
第2図のA−A′で示すように垂直走査進行方向
(B方向)に沿う特定列のCCDエレメントから瓶
端検出信号を検出するようにしてもよい。
In addition, the detection signal DS from the bottle end detection circuit 20 is
The change in the output level of the video signal VS may be detected from one CCD element where it first occurs, or may be detected from when the output level reaches a preset number of CCD elements. moreover,
As shown by A-A' in FIG. 2, the bottle end detection signal may be detected from a specific row of CCD elements along the vertical scanning direction (direction B).

さらに、第6図に示す検査領域信号RSは、途
中に第5図に示すパルス波形信号を介在させなく
ても、瓶端検出信号から直接発生させるようにし
てもよく、CCDを駆動する水平同期信号に同期
させることにより発生させるようにしてもよい。
Furthermore, the inspection area signal RS shown in FIG. 6 may be generated directly from the bottle end detection signal without intervening the pulse waveform signal shown in FIG. It may also be generated by synchronizing with a signal.

ところで、上述では被検査瓶の軸方向に平行な
方向の検査領域を決定して異物を検出する場合に
ついて説明したが、被検査瓶の軸方向に直角な方
向の検査領域を決定して異物を検出することもで
きる。この場合、搬送コンベア上を連続的に搬送
される被検査瓶に光を照射して受光する部分の構
成は、第7図に示す如く被検査瓶13の上部に集
光レンズ14を、底部に拡散板12をそれぞれ配
設し、拡散板12をそれぞれ配設し、拡散板12
の下方に設けた光源10からの透過光を集光レン
ズ14の上方に設けたCCD15に入射するよう
になつている。しかして、CCD15の出力信号
を増幅器18で増幅して後の処理は上述した平行
方向の検査の場合とほぼ同一である。すなわち、
この場合の異物検出装置に組み込まれるCCD1
5の各エレメント16に結像される被検査瓶13
の像は第8図のようになり、その映像信号VSは
第9図の如くなる。この場合、映像信号VSの出
力レベルの大幅な変化をその増加方向及び減少方
向について第10図の如く瓶端検出回路20で検
出し、これを瓶端検出信号DSとして検査領域信
号発生回路24に入力する。検査領域信号発生回
路24では瓶端検出信号DSのうち、映像信号VS
の減少方向に対応するパルスP1でセツトされ、
映像信号VSの増加方向に対応するパルスP2でリ
セツトされる信号を形成し、これを検査領域信号
RSとする(第11図)。これにより被検査瓶13
の軸方向に直角な方向の検査面を決定でき、被検
査瓶13の底部に付された異物を検出することが
できる。
By the way, in the above description, we have explained the case where the inspection area is determined in the direction parallel to the axial direction of the bottle to be inspected to detect foreign substances. It can also be detected. In this case, the configuration of the part that irradiates and receives light onto the bottles to be inspected that are continuously conveyed on the conveyor is as shown in FIG. The diffuser plates 12 are respectively disposed, the diffuser plates 12 are respectively disposed, and the diffuser plates 12 are disposed respectively.
Transmitted light from a light source 10 provided below is made to enter a CCD 15 provided above a condenser lens 14. The processing after the output signal of the CCD 15 is amplified by the amplifier 18 is almost the same as the above-described inspection in the parallel direction. That is,
CCD1 incorporated in the foreign object detection device in this case
The bottle 13 to be inspected is imaged on each element 16 of 5.
The image becomes as shown in FIG. 8, and the video signal VS becomes as shown in FIG. In this case, a large change in the output level of the video signal VS is detected in the increasing and decreasing directions by the bottle end detection circuit 20 as shown in FIG. input. In the inspection area signal generation circuit 24, out of the bottle end detection signal DS, the video signal VS
is set at pulse P 1 corresponding to the decreasing direction of
A signal that is reset by pulse P2 corresponding to the increasing direction of the video signal VS is formed, and this is used as the inspection area signal.
RS (Figure 11). As a result, the bottle to be inspected 13
The inspection surface in the direction perpendicular to the axial direction of the bottle 13 can be determined, and foreign matter attached to the bottom of the bottle 13 to be inspected can be detected.

なお、上述では被検査瓶の下方向から光を照射
して上部で受光するようにしているが、逆に被検
査瓶の上方向から光を照射して下部で受光するよ
うにすることも可能である。
Note that in the above example, the light is irradiated from below the bottle to be inspected and the light is received at the top, but it is also possible to irradiate the light from above the bottle to be inspected and receive the light at the bottom. It is.

また、上記各実施例においては光電変換装置と
して2次元CCDを例にとつて説明したが、非蓄
積形撮像管を使用するようにしてもよい。また、
被検査物は必ずしも瓶容器に限定されるものでは
ない。
Further, in each of the above embodiments, a two-dimensional CCD is used as an example of the photoelectric conversion device, but a non-storage type image pickup tube may also be used. Also,
The object to be inspected is not necessarily limited to bottles and containers.

以上述べたようにこの発明に係る異物検出装置
においては、硝子瓶などの被検査体の有無により
生ずる光電変換装置からの映像出力信号により、
被検査体の軸方向に直角な方向又は軸方向に平行
な方向の検査領域を検査領域回路で自動的に決定
するようにしたから、最適な検査領域を自動的に
検出することができ、被検査体の最適な検査領域
面を効果的に面検査することができる。したがつ
て、被検査体の検査速度が向上し、検出精度を確
実に向上させることができる。
As described above, in the foreign object detection device according to the present invention, the image output signal from the photoelectric conversion device generated depending on the presence or absence of an object to be inspected such as a glass bottle is used to detect
Since the inspection area circuit automatically determines the inspection area in the direction perpendicular to or parallel to the axial direction of the object to be inspected, the optimum inspection area can be automatically detected and the inspection area can be automatically determined. The optimal inspection area surface of the inspection object can be effectively inspected. Therefore, the inspection speed of the object to be inspected can be improved, and the detection accuracy can be reliably improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る異物検出装置の実施例
を示す図、第2図は上記異物検出装置に組み込ま
れる光電変換装置、例えばCCDの各エレメント
に結像される被検査瓶の像を示す図、第3図は第
2図のA−A′線に沿う光電変換装置からの映像
信号の出力レベルを示す図、第4図は前記異物検
出装置に組み込まれる瓶端検出回路からの瓶端信
号を示す図、第5図はワンシヨツトマルチなどの
遅延回路からのパルス波形を示す図、第6図は検
査領域信号発生回路からの検査領域信号を示す波
形図、第7図はこの発明に係る異物検出装置の他
の実施例を部分的に示す図、第8図はこの検出装
置に組み込まれるCCDの各エレメントに結像さ
れる被検査瓶の像を示す図、第9図は第8図に対
応する映像信号の出力レベルを示す図、第10図
は第9図に対応する瓶端検出信号に例を示す図、
第11図は第10図に対応する検査領域信号の例
を示す波形図である。 10……光源、13……被検査瓶、15……
CCD(光電変換装置)、16……CCDエレメント、
19……波形整形回路(レベル検出回路)、20
……瓶端検出回路、21……瓶順記憶回路、23
……ゲート回路、24……検査領域信号発生回
路、25……選別信号発生回路、26……欠陥瓶
記憶および排出信号発生回路。
FIG. 1 shows an embodiment of the foreign object detection device according to the present invention, and FIG. 2 shows an image of a bottle to be inspected formed on each element of a photoelectric conversion device, such as a CCD, incorporated in the foreign object detection device. Figure 3 is a diagram showing the output level of the video signal from the photoelectric conversion device along line A-A' in Figure 2, and Figure 4 is a diagram showing the output level of the video signal from the photoelectric conversion device along line A-A' in Figure 2. FIG. 5 is a diagram showing the pulse waveform from a delay circuit such as a one-shot multi, FIG. 6 is a waveform diagram showing the inspection area signal from the inspection area signal generation circuit, and FIG. 7 is a diagram showing the pulse waveform from a delay circuit such as a one shot multi. A diagram partially showing another embodiment of such a foreign object detection device, FIG. 8 is a diagram showing an image of a bottle to be inspected formed on each element of a CCD incorporated in this detection device, and FIG. 10 is a diagram showing an example of the bottle end detection signal corresponding to FIG. 9,
FIG. 11 is a waveform diagram showing an example of the inspection area signal corresponding to FIG. 10. 10...Light source, 13...Bottle to be inspected, 15...
CCD (photoelectric conversion device), 16...CCD element,
19... Waveform shaping circuit (level detection circuit), 20
... Bottle end detection circuit, 21 ... Bottle order memory circuit, 23
...Gate circuit, 24...Inspection area signal generation circuit, 25...Selection signal generation circuit, 26...Defective bottle storage and discharge signal generation circuit.

Claims (1)

【特許請求の範囲】 1 連続的に搬送される硝子瓶などの被検査体の
光学像を2次元に配置された複数の光電変換素子
上に結像させて電気信号に変換する光電変換装置
と、 この光電変換装置からの映像信号の出力レベル
を検出するレベル検出回路と、 前記光電変換装置からの映像信号により前記被
検査体の端位置を検出する端検出回路と、 この端検出回路により検出された端検出信号を
基準として所定の検査領域を決定する検査領域決
定回路と、 この検査領域決定回路により決定された検査領
域信号に対応する前記レベル検出回路からの出力
信号をピツクアツプして前記被検査体の良否を判
別し、選別信号を出力する選別回路とを有し、 この選別信号により前記被検査体の異物の有無
を判別し得るようにしたことを特徴とする異物検
出装置。
[Claims] 1. A photoelectric conversion device that forms an optical image of a continuously transported object to be inspected, such as a glass bottle, on a plurality of two-dimensionally arranged photoelectric conversion elements and converts it into an electrical signal. , a level detection circuit that detects the output level of the video signal from the photoelectric conversion device; an edge detection circuit that detects the edge position of the object to be inspected based on the video signal from the photoelectric conversion device; and detection by the edge detection circuit. an inspection area determination circuit that determines a predetermined inspection area based on the detected edge detection signal; and an inspection area determination circuit that picks up an output signal from the level detection circuit that corresponds to the inspection area signal determined by this inspection area determination circuit, and picks up the output signal from the level detection circuit to detect the target area. What is claimed is: 1. A foreign object detection device comprising: a sorting circuit that determines whether an object to be inspected is good or bad and outputs a sorting signal; and the presence or absence of a foreign object in the object to be inspected can be determined based on the sorting signal.
JP21231281A 1981-12-24 1981-12-24 Foreign matter detector Granted JPS57131040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21231281A JPS57131040A (en) 1981-12-24 1981-12-24 Foreign matter detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21231281A JPS57131040A (en) 1981-12-24 1981-12-24 Foreign matter detector

Publications (2)

Publication Number Publication Date
JPS57131040A JPS57131040A (en) 1982-08-13
JPS6351264B2 true JPS6351264B2 (en) 1988-10-13

Family

ID=16620466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21231281A Granted JPS57131040A (en) 1981-12-24 1981-12-24 Foreign matter detector

Country Status (1)

Country Link
JP (1) JPS57131040A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827241B2 (en) * 1987-09-08 1996-03-21 日産自動車株式会社 Surface defect detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312093A (en) * 1976-07-21 1978-02-03 Sumitomo Electric Ind Ltd Fire-spread preventing composition for electric cable
JPS53122487A (en) * 1977-03-31 1978-10-25 Hitachi Shipbuilding Eng Co Testing method for bottom of empty bottle
JPS5465085A (en) * 1977-10-13 1979-05-25 Ti Fords Ltd Pin tester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312093A (en) * 1976-07-21 1978-02-03 Sumitomo Electric Ind Ltd Fire-spread preventing composition for electric cable
JPS53122487A (en) * 1977-03-31 1978-10-25 Hitachi Shipbuilding Eng Co Testing method for bottom of empty bottle
JPS5465085A (en) * 1977-10-13 1979-05-25 Ti Fords Ltd Pin tester

Also Published As

Publication number Publication date
JPS57131040A (en) 1982-08-13

Similar Documents

Publication Publication Date Title
US4376951A (en) Foreign matter detecting device
JPH04220551A (en) Method and apparatus for inspecting flaw of transparent body
US20100085426A1 (en) Machine for Inspecting Glass Containers
CA2053176A1 (en) Method of and apparatus for inspecting bottle or the like
JPH0535811B2 (en)
US6424414B1 (en) Method and apparatus for detecting refractive defects in transparent containers
US20110007149A1 (en) Machine For Inspecting Glass Containers At An Inspection Station Using An Addition Of A Plurality Of Illuminations Of Reflected Light
JPH08226902A (en) Container inspection machine
JPH0815163A (en) Visual inspecting apparatus for cylindrical object
JPH0634573A (en) Bottle inspector
JPH11211442A (en) Method and device for detecting defect of object surface
JP2678411B2 (en) Nori inspection method and device
JP2000019130A (en) Defect inspection device for glass container
JPH0634574A (en) Bottle inspector
JPS6212463B2 (en)
JPH04118546A (en) Bottle inspection device
JPS6351264B2 (en)
JPH04216445A (en) Device for inspecting bottle
JP2946765B2 (en) Fruit sorting equipment
JP5425387B2 (en) Machine for inspecting glass containers
JPH03194454A (en) Container internal surface inspection device
JP2000346813A (en) Inspection device for surface of article
JPH06118026A (en) Method for inspecting vessel inner surface
JP5266118B2 (en) Defect inspection method and defect inspection apparatus for object surface
JPS5927859B2 (en) Glass bottle body defect inspection device