JPH0815163A - Visual inspecting apparatus for cylindrical object - Google Patents

Visual inspecting apparatus for cylindrical object

Info

Publication number
JPH0815163A
JPH0815163A JP15140194A JP15140194A JPH0815163A JP H0815163 A JPH0815163 A JP H0815163A JP 15140194 A JP15140194 A JP 15140194A JP 15140194 A JP15140194 A JP 15140194A JP H0815163 A JPH0815163 A JP H0815163A
Authority
JP
Japan
Prior art keywords
band
cylindrical object
shaped optical
optical image
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15140194A
Other languages
Japanese (ja)
Inventor
Naotaka Sakamoto
直孝 坂本
Tatsuhiko Sato
辰彦 佐藤
Katsumi Kato
勝美 加藤
Ryuta Nanba
竜太 難波
Yasuaki Motoyama
靖朗 本山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUEBRAIN KK
Asahi Breweries Ltd
Original Assignee
HUEBRAIN KK
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUEBRAIN KK, Asahi Breweries Ltd filed Critical HUEBRAIN KK
Priority to JP15140194A priority Critical patent/JPH0815163A/en
Publication of JPH0815163A publication Critical patent/JPH0815163A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/909Investigating the presence of flaws or contamination in a container or its contents in opaque containers or opaque container parts, e.g. cans, tins, caps, labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9036Investigating the presence of flaws or contamination in a container or its contents using arrays of emitters or receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To reduce the inspecting cost by qualitatively and rapidly inspecting the external appearance of a cylindrical object. CONSTITUTION:A plurality of light sources 3 are developed separately at both the sides of a conveying passage 1 in a circumferential direction on the way of the passage 1, and all inclined with respect to the axis of a cylindrical object 2. A plurality of cameras 6 are provided between the sources 3. When the object 3 reaches a predetermined reference point C, a plurality of banded optical images are projected on the periphery of the object 2, and imaged by the cameras 6. Accordingly, the presence or absence of a defect can be judged by measuring the lightness changes of the vicinities of both the sides of the images 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばビール缶等の筒
状物の表面を検査するのに用いて好適な筒状物の外観検
査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for inspecting the appearance of a cylindrical object suitable for inspecting the surface of a cylindrical object such as a beer can.

【0002】[0002]

【従来の技術】筒状物としては、例えばビール、ジュー
ス等の各種飲料を充填するための飲料用缶の他、種々の
缶や容器等が知られている。一般に、これらの筒状物
は、表面の傷や凹み等の有無が目視によって検査された
後に、出荷等されるようになっている。
2. Description of the Related Art As a tubular material, various cans and containers are known in addition to beverage cans for filling various beverages such as beer and juice. Generally, these cylindrical objects are shipped after being visually inspected for the presence of scratches or dents on the surface.

【0003】肉眼は瞬間的な微分反応に対して感度が高
く、頭脳の情報処理能力は極めて高いため、熟練した検
査員によれば、高速搬送途中の筒状物から微小な傷や凹
み等を有する不良品を検出することも可能であり、良品
と不良品との間の限界領域での高度な判断も速やかに行
うことができる。しかし、単調でありながら緊張感が要
求される目視検査作業は、検査員に著しい疲労を与える
ため、時として著しい外観上の欠陥がある不良品が見逃
される可能性がある上に、各自の熟練度によって検査精
度にバラツキが生じる。また、熟練作業員の育成や確保
が難しいばかりか、製造コスト低減の障害にもなり得
る。
Since the naked eye is highly sensitive to a momentary differential reaction and the information processing ability of the brain is extremely high, a trained inspector, according to a trained inspector, can detect minute scratches or dents from a cylindrical object during high-speed transportation. It is also possible to detect the defective product that it has, and it is possible to quickly make a high-level judgment in the limit region between the good product and the defective product. However, the visual inspection work, which is monotonous but requires a feeling of tension, causes a great deal of fatigue to the inspector, and in some cases defective products with remarkable appearance defects may be overlooked. The inspection accuracy varies depending on the degree. Further, not only is it difficult to train and secure skilled workers, but it can also be an obstacle to reducing manufacturing costs.

【0004】そこで、このような目視による外観検査の
自動化を図ったものが、例えば特開平1−206242
号公報等によって知られている。この公報記載の技術で
は、特別な線状光源を用いることにより、筒状物の表面
に軸線に対して傾斜する線状光像を形成し、該筒状物の
回転中における線状光像の変形具合から良否を判断して
いる。即ち、良品の筒状物であれば、線状光像に変形が
生じないが、傷や凹み等の欠陥のある不良品の場合は、
その部分で光像が乱れて変形するため、この変形量を検
出することにより、良否を判断することができる。
In view of this, there is a system for automating the visual inspection as described above, for example, Japanese Patent Laid-Open No. 1-206242.
It is known from the official gazette. In the technique described in this publication, a linear light image that is inclined with respect to the axis is formed on the surface of the cylindrical object by using a special linear light source, and the linear light image of the linear object during rotation of the cylindrical object is formed. The quality is judged based on the degree of deformation. That is, if the product is a good cylindrical product, the linear optical image is not deformed, but if it is a defective product having defects such as scratches and dents,
Since the optical image is distorted and deformed at that portion, it is possible to judge pass / fail by detecting this deformation amount.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した前記
公報に記載のものでは、筒状物を回転させて検査するた
め、搬送ラインの途中に外観検査のための回転ステージ
を設ける必要があり、機械的構成が大幅に複雑化する。
また、筒状物を回転させつつ単一のカメラによって撮像
するため、1個あたりに要する検査時間が長くなる。さ
らに、筒状物を回転させることによって、新たな欠陥を
与えかねない。
However, in the one described in the above-mentioned publication, since the cylindrical object is rotated and inspected, it is necessary to provide a rotary stage for visual inspection in the middle of the transfer line, Mechanical configuration is significantly complicated.
Moreover, since the image is taken by a single camera while rotating the cylindrical object, the inspection time required for each one becomes long. Further, rotating the cylindrical object may give a new defect.

【0006】一方、筒状物の外観に欠陥が生じる原因と
しては種々のものが考えられるが、近年は各工程での自
動化が進んでいるため、人為的要因による突発不良より
も、振動や熱等によって機械的調整等に狂いが生じた結
果、外観品質が低下する可能性の方が高い。この場合、
不良品は連続的に発生するため、発生初期の段階で検出
できれば、そのロットだけを再検査することにより、一
定の外観品質を保持することが可能である。従って、全
自動の無人化ラインであればともかく、筒状物を全周に
わたって厳密に定量的に検査する必要性は必ずしもない
上に、精査する分だけ検査コストが上昇し、筒状物の製
造コストが増大する。
On the other hand, there are various possible causes of defects in the appearance of the tubular product. In recent years, however, automation in each process is progressing, and vibration and heat are more likely to occur than sudden failure due to human factors. There is a higher possibility that the appearance quality will be deteriorated as a result of the mechanical adjustment or the like being misaligned. in this case,
Since defective products are continuously generated, if they can be detected at an early stage of generation, it is possible to maintain a certain appearance quality by reinspecting only the lot. Therefore, regardless of whether it is a fully automatic unmanned line, it is not always necessary to strictly and quantitatively inspect the cylindrical object over the entire circumference, and the inspection cost increases due to the close inspection, and the cylindrical object is manufactured. The cost increases.

【0007】本発明は、かかる従来技術の問題に鑑みて
なされたもので、筒状物の外観を速やかに検査できるよ
うにした外観検査装置の提供を目的とする。本発明の他
の目的は、高速搬送状態にある筒状物の外観欠陥を定性
的に検査することにより、検査コストを低減することに
ある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide an appearance inspection apparatus capable of quickly inspecting the appearance of a cylindrical object. Another object of the present invention is to reduce the inspection cost by qualitatively inspecting the appearance defect of the cylindrical object in the high-speed conveyance state.

【0008】[0008]

【課題を解決するための手段】そこで、本発明に係る筒
状物の外観検査装置は、筒状物を搬送する搬送路と、こ
の搬送路の周囲に離間して設けられ、前記筒状物の表面
に帯状光像を形成する複数の光源と、前記帯状光像が形
成された前記筒状物の表面を搬送状態で撮像する複数の
撮像手段と、これら各撮像手段が撮像した画像中の明度
を計測する明度計測手段と、この明度計測手段が計測し
た明度変化に基づいて欠陥の有無を判定する判定手段と
を含んで構成している。
SUMMARY OF THE INVENTION Therefore, a tubular object appearance inspection apparatus according to the present invention is provided with a conveying path for conveying a cylindrical object and a space around the conveying path, and the cylindrical object is provided. A plurality of light sources for forming a band-shaped optical image on the surface of the, a plurality of imaging means for imaging the surface of the cylindrical object on which the band-shaped optical image is formed in a transport state, among the images captured by each of these imaging means. The brightness measuring means for measuring the brightness and the determining means for judging the presence or absence of a defect based on the brightness change measured by the brightness measuring means are included.

【0009】また、請求項2に係るものでは、筒状物を
搬送する搬送路と、この搬送路の周囲に離間して設けら
れ、前記筒状物の表面に帯状光像を形成する複数の光源
と、前記帯状光像が形成された前記筒状物の表面を搬送
状態で撮像する複数の撮像手段と、これら各撮像手段が
撮像した各帯状光像の両側近傍の明度を計測する明度計
測手段と、この明度計測手段が計測した明度変化に基づ
いて欠陥の有無を判定する判定手段とを含んで構成して
いる。
Further, according to a second aspect of the present invention, there is provided a conveying path for conveying the cylindrical object and a plurality of conveying paths provided around the conveying path so as to be spaced apart from each other so as to form a band-shaped optical image on the surface of the cylindrical object. A light source, a plurality of image pickup means for picking up the surface of the cylindrical object on which the band-shaped light image is formed in a transport state, and a lightness measurement for measuring the lightness in the vicinity of both sides of each band-shaped light image picked up by each of these image pickup means. And a determining means for determining the presence or absence of a defect based on the change in brightness measured by the brightness measuring means.

【0010】さらに、請求項3に係るものでは、筒状物
を搬送する搬送路と、この搬送路の周囲に離間して位置
すると共に前記筒状物の軸線に対し所定角度傾斜して設
けられ、前記筒状物の表面に帯状光像を形成する複数の
帯状光源と、前記帯状光像が形成された前記筒状物の表
面を搬送状態で撮像する複数の撮像手段と、これら各撮
像手段が撮像した各帯状光像の両側近傍の明度を計測す
る明度計測手段と、この明度計測手段が計測した明度変
化に基づいて欠陥の有無を判定する判定手段とを含んで
構成している。
Further, according to a third aspect of the present invention, a transport path for transporting the tubular material, a transport path which is spaced apart from the transport path, and is inclined by a predetermined angle with respect to the axis of the tubular material. A plurality of band-shaped light sources that form a band-shaped optical image on the surface of the cylindrical object, a plurality of imaging means that images the surface of the cylindrical object on which the band-shaped optical image is formed in a transport state, and each of these imaging means It includes lightness measuring means for measuring the lightness in the vicinity of both sides of each band-shaped light image captured by, and judging means for judging the presence or absence of a defect based on the lightness change measured by the lightness measuring means.

【0011】さらにまた、前記撮像手段の走査方向を前
記帯状光像の長手方向に対して平行に配置するのが好ま
しい。
Furthermore, it is preferable that the scanning direction of the image pickup means is arranged parallel to the longitudinal direction of the band-shaped optical image.

【0012】[0012]

【作用】筒状物が搬送路により搬送されて所定位置に達
すると、各光源からの光線が筒状物の表面に入射して反
射し、これにより帯状の光像が映しだされる。そして、
撮像手段が、これら複数の帯状光像が映り込んだ筒状物
を、搬送状態のままで所定のタイミングで撮像すると、
判定手段は、この撮像された画像中の明度変化に基づい
て筒状物の表面欠陥を判定する。
When the cylindrical object is conveyed by the conveying path and reaches the predetermined position, the light rays from the respective light sources are incident on the surface of the cylindrical object and reflected, whereby a band-shaped optical image is projected. And
When the imaging means images the tubular object in which the plurality of band-shaped light images are reflected at a predetermined timing while being in the transport state,
The determination means determines the surface defect of the cylindrical object based on the change in brightness in the captured image.

【0013】また、請求項2の構成によれば、判定手段
は、明度計測手段により計測された各帯状光像の両側近
傍の明度変化に基づいて、筒状物の表面欠陥の有無を判
定することができる。即ち、帯状光像が形成された部位
に欠陥がある場合には、この欠陥に応じて光像が乱れ、
該帯状光像の両側近傍の明度が高くなる。また、帯状光
像が形成された部位に欠陥が無くて、その両側近傍にの
み欠陥が生じた場合には、当該欠陥で光源からの光が反
射するため、欠陥部分の明度が高くなる。従って、帯状
光像の形状や直線性に影響を与えない欠陥をも有効に検
出することができる。
According to the second aspect of the present invention, the determining means determines the presence or absence of the surface defect of the cylindrical object based on the change in brightness near both sides of each strip-shaped optical image measured by the brightness measuring means. be able to. That is, when there is a defect in the part where the band-shaped optical image is formed, the optical image is disturbed according to this defect,
The brightness is increased near both sides of the band-shaped light image. Further, when there is no defect in the region where the band-shaped optical image is formed and defects are generated only in the vicinity of both sides of the region, light from the light source is reflected by the defect, so that the brightness of the defective portion becomes high. Therefore, it is possible to effectively detect even a defect that does not affect the shape or linearity of the band-shaped optical image.

【0014】さらに、請求項3の構成によれば、帯状光
像を筒状物の軸線に対して所定角度傾斜して配設したた
め、欠陥による反射を増幅することができ、検査精度を
高めることができる。
Further, according to the third aspect of the invention, since the band-shaped optical image is arranged at a predetermined angle with respect to the axis of the cylindrical object, the reflection due to the defect can be amplified and the inspection accuracy can be improved. You can

【0015】一方、撮像手段の走査方向を帯状光像の長
手方向に対して平行に配置し、両者の向きを揃えれば、
帯状光像の直線性を正確かつ速やかに検出することが可
能となる。
On the other hand, if the scanning direction of the image pickup means is arranged parallel to the longitudinal direction of the band-shaped optical image and the directions of both are aligned,
It is possible to accurately and promptly detect the linearity of the band-shaped optical image.

【0016】[0016]

【実施例】以下、図1〜図15に基づいて本発明の実施
例を詳述する。
Embodiments of the present invention will be described in detail below with reference to FIGS.

【0017】まず、図1は本発明の第1の実施例に係る
筒状物の外観検査装置の全体構成を示す構成説明図であ
って、例えばテーブルトップチェーンコンベア等からな
る搬送路1には、複数の筒状物2が互いに離間して正立
状態で載置されており、充填工程や梱包工程等の次工程
に向けて矢示A方向に搬送されている。ここで、本明細
書にいう「筒状物」とは、円筒状、角筒状のものに限ら
ず、円錐状をも含む概念であり、中空筒状のものに限ら
ず、中実筒状のものも含まれる。例示列挙すれば、筒状
物2には、ビールやジュース等のアルミニウム缶及びス
チール缶、ビン、コップ、パイプ、リング等の各種筒状
の容器や部材が含まれる。
First, FIG. 1 is a structural explanatory view showing the overall construction of a cylindrical appearance inspection apparatus according to a first embodiment of the present invention. The plurality of tubular objects 2 are placed in an upright state with being separated from each other, and are conveyed in the direction of arrow A toward the next step such as the filling step and the packing step. Here, the “cylindrical object” as used in the present specification is a concept including not only a cylindrical shape and a rectangular cylindrical shape but also a conical shape, and is not limited to a hollow cylindrical shape but a solid cylindrical shape. Also included are. For example, the tubular product 2 includes various tubular containers and members such as aluminum cans and steel cans of beer and juice, bottles, cups, pipes, rings and the like.

【0018】搬送路1の途中には、複数の光源3が所定
の基準点Cを中心に周方向に離間して設けられている。
より具体的には、これら各光源3は例えば直管式蛍光灯
を筒状のケーシングに収容してなり、搬送路1の進行方
向両側で5本ずつ半円状に展開し、互いに相手方の光源
3と直径方向で対向している。
A plurality of light sources 3 are provided in the middle of the conveying path 1 and are spaced apart from each other in the circumferential direction around a predetermined reference point C.
More specifically, each of the light sources 3 is, for example, a straight tube type fluorescent lamp housed in a tubular casing, and five light sources are deployed in a semicircular shape on both sides of the transport path 1 in the traveling direction, so that the light sources of the other party are opposed to each other. 3 in the diametrical direction.

【0019】また、図2の配置説明図に示す如く、各光
源3は、筒状物2の軸線X−Xと平行な軸線X1−X1
ら所定角度θ1だけ傾斜している。この傾斜角度θ1は、
検査対象となる欠陥の種類や大きさ等に応じて定められ
るものであるが、例えば30〜60°の範囲で設定され
る。この所定角度θ1を40〜50°の範囲に設定する
と、欠陥での反射を効果的に増幅できる。より好ましく
は42〜46°程度に設定すると良い。ここで、各光源
3は、所謂スリット光源として特別に形成したものでは
ないが、これに限らず、光ファイバの端部を線状に配設
したり、発光ダイオードを線状に配設したり、あるいは
蛍光灯にスリット板を設けたり等して、各光源3をスリ
ット光源として形成してもよい。なお、蛍光灯を用いる
場合、電極付近の輝度が中央部よりも低下するため、筒
状物2の高さ寸法よりも数倍長い蛍光灯を用いて、照明
を行うのが望ましい。
Further, as shown in the layout explanatory view of FIG. 2, each light source 3 is inclined by a predetermined angle θ 1 from an axis line X 1 -X 1 parallel to the axis line X-X of the tubular body 2. This tilt angle θ 1 is
Although it is determined according to the type and size of the defect to be inspected, it is set in the range of 30 to 60 °, for example. When the predetermined angle θ 1 is set in the range of 40 to 50 °, the reflection at the defect can be effectively amplified. More preferably, it should be set to about 42 to 46 °. Here, each light source 3 is not specially formed as a so-called slit light source, but is not limited to this, and the end portion of the optical fiber may be linearly arranged, or the light emitting diode may be linearly arranged. Alternatively, each light source 3 may be formed as a slit light source by providing a slit plate on the fluorescent lamp. When a fluorescent lamp is used, the brightness in the vicinity of the electrodes is lower than that in the central portion, so it is desirable to use a fluorescent lamp that is several times longer than the height dimension of the tubular member 2 for illumination.

【0020】そして、これら各光源3が、図3の機能ブ
ロック図に示す照明用電源4から給電を受けて発光する
と、この光が筒状物2の周面でそれぞれ反射し、これに
より筒状物2の周面に帯状の反射光像5(帯状光像5)
が周方向に離間して形成されるようになっている。
When each of the light sources 3 emits light by being supplied with electric power from the illumination power source 4 shown in the functional block diagram of FIG. 3, the light is reflected by the peripheral surface of the tubular body 2 and thereby the tubular shape is obtained. Band-shaped reflected light image 5 (band-shaped light image 5) on the peripheral surface of the object 2.
Are spaced apart in the circumferential direction.

【0021】検査ステージの中心である基準点Cの外周
側には、撮像手段としての複数のカメラ6が周方向に離
間して設けられている。これらの各カメラ6は、例えば
CCD素子(電荷結合素子)を用いたランダムシャッタ
式CCDカメラとして構成されており、搬送路1の両側
にそれぞれ2台ずつ配設され、互いに相手方のカメラ6
と直径方向で対向している。また、図2に示す如く、各
カメラ6は、光源3の間に設けられ、その先端のレンズ
7が光源3と略同一面上に位置している。換言すれば、
カメラ6と光源3とは、検査に係る筒状物2(基準点C
に位置する筒状物2)からの距離が共に略等しくなるよ
うに設置されている。なお、カメラ6としては、CCD
素子に限らず撮像管等を用いてもよい。
On the outer peripheral side of the reference point C, which is the center of the inspection stage, a plurality of cameras 6 as image pickup means are provided at intervals in the circumferential direction. Each of these cameras 6 is configured as a random shutter CCD camera using, for example, a CCD device (charge coupled device), and two cameras are provided on each side of the transport path 1 so that the cameras 6 of the other party can receive each other.
And diametrically opposite. Further, as shown in FIG. 2, each camera 6 is provided between the light sources 3, and the lens 7 at the tip thereof is located substantially on the same plane as the light source 3. In other words,
The camera 6 and the light source 3 are the cylindrical object 2 (reference point C
Are installed so that the distances from the tubular object 2) located at are substantially equal to each other. The camera 6 is a CCD
Not limited to the element, an image pickup tube or the like may be used.

【0022】さらに、各カメラ6は、図5と共に後述す
る如く、その走査方向が帯状光像5の長手方向と平行に
なるように、即ち、帯状光像5が筒状物2の軸線と略平
行に形成される場合には、この筒状物2の軸線と直交す
るように、約90°傾けて配置されており、視野内に例
えば4本の帯状光像5を収めるように、光学系(レンズ
7)が設定されている。そして、これらの各カメラ6が
所定のトリガ信号でそれぞれ電子的にシャッタを切るこ
とにより、1つの筒状物2の周面が4方向から撮像され
るようになっている。
Further, as will be described later with reference to FIG. 5, each camera 6 is arranged so that its scanning direction is parallel to the longitudinal direction of the band-shaped optical image 5, that is, the band-shaped optical image 5 is substantially aligned with the axis of the cylindrical object 2. When they are formed in parallel, they are arranged at an angle of about 90 ° so as to be orthogonal to the axis of this cylindrical object 2, and the optical system is arranged so that, for example, four band-shaped optical images 5 are accommodated in the visual field. (Lens 7) is set. Then, each of these cameras 6 electronically releases the shutter by a predetermined trigger signal, so that the peripheral surface of one cylindrical object 2 is imaged from four directions.

【0023】画像処理用のコントロールユニット8は、
例えばCPU等の演算回路、ROM,RAM等の記憶回
路、入出力回路等を含んだマイクロコンピュータシステ
ムとして構成されており、モニタ9やキーボード(いず
れも図示せず)等が接続されている。図3を参照して説
明すると、このコントロールユニット8は、A/D変換
された各カメラ6からのビデオ信号を記憶する多値の画
像メモリ(フレームメモリ)10と、各画像メモリ10
を切換えるための切換部11と、この切換部11によっ
て選択された各画像メモリ10に対して後述のウインド
ウ17(検査領域)を設定するウインドウ設定部12
と、このウインドウ17内に設定される後述の明度計測
線S1,S2上の明度を計測する計測線設定部13と、こ
の計測線設定部13が計測した明度変化に基づいて外観
の良否を判定する判定部14とから大略構成されてい
る。また、搬送路1の途中には、基準点Cに対応して光
電スイッチ、近接スイッチ等からなるトリガセンサ15
が設けられ、このトリガセンサ15はカメラ6に外部同
期信号を供給する同期回路16に接続されている。そし
て、トリガセンサ15が基準点Cに到達した筒状物2を
検出することにより、各カメラ6は撮像を行うようにな
っている。
The control unit 8 for image processing is
For example, it is configured as a microcomputer system including an arithmetic circuit such as a CPU, a storage circuit such as a ROM and a RAM, an input / output circuit, and the like, and is connected with a monitor 9 and a keyboard (none of which are shown). Referring to FIG. 3, the control unit 8 includes a multi-valued image memory (frame memory) 10 for storing the A / D converted video signal from each camera 6, and each image memory 10.
And a window setting section 12 for setting a window 17 (inspection area) described below for each image memory 10 selected by the switching section 11.
And a measurement line setting unit 13 for measuring the lightness on the lightness measurement lines S 1 and S 2 which will be described later and set in the window 17, and whether the appearance is good or bad based on the change in lightness measured by the measurement line setting unit 13. The determination unit 14 for determining the Further, in the middle of the transport path 1, a trigger sensor 15 including a photoelectric switch, a proximity switch, etc. corresponding to the reference point C is provided.
The trigger sensor 15 is connected to a synchronizing circuit 16 which supplies an external synchronizing signal to the camera 6. Then, the trigger sensor 15 detects the tubular object 2 that has reached the reference point C, so that each camera 6 takes an image.

【0024】次に、本実施例による装置の作動につい
て、図4〜図13を参照しつつ詳細に説明する。
Next, the operation of the apparatus according to this embodiment will be described in detail with reference to FIGS.

【0025】筒状物2が搬送路1により搬送されて、各
光源3が展開した検査ステージ中の基準点Cに到達する
と、トリガセンサ15はこれを検出し、コントロールユ
ニット8にトリガ信号を出力する。そして、この筒状物
2の周面に各光源3からの光線が入射して反射し、これ
により図4に示す如く、筒状物2の周面には合計10本
の帯状光像5が周方向に離間して形成される(図中では
4本のみ図示)。
When the cylindrical object 2 is conveyed by the conveying path 1 and reaches the reference point C in the inspection stage where each light source 3 is developed, the trigger sensor 15 detects this and outputs a trigger signal to the control unit 8. To do. Then, the light rays from the respective light sources 3 are incident on and reflected by the peripheral surface of the cylindrical object 2, and as a result, as shown in FIG. 4, a total of 10 strip-shaped optical images 5 are formed on the peripheral surface of the cylindrical object 2. They are formed so as to be separated in the circumferential direction (only four are shown in the figure).

【0026】ここで、各光源3は、上述した通り筒状物
2の軸線に対して所定角度θ1だけ傾斜しているが、周
面に映り込んだ帯状光像5の前記軸線に対する傾斜角θ
2は例えば5°以下程度と小さい。従って、光源3が角
度θ1だけ傾くことにより、帯状光像5の幅が広がるも
のの、帯状光像5自体は、実質的に筒状物2の軸線に対
して平行状態にある。
Here, each light source 3 is tilted by a predetermined angle θ 1 with respect to the axis of the cylindrical object 2 as described above, but the tilt angle of the band-shaped optical image 5 reflected on the peripheral surface with respect to the axis. θ
2 is small, for example, about 5 ° or less. Therefore, although the width of the band-shaped optical image 5 is expanded by tilting the light source 3 by the angle θ 1 , the band-shaped optical image 5 itself is substantially parallel to the axis of the cylindrical object 2.

【0027】さて、この筒状物2が良品で、傷、凹み、
座屈等の欠陥が無い場合には、各光源3の光線が正常に
反射するため、帯状光像5は直管式蛍光灯からなる光源
3の形状を反映して、直線状に映り込む。
By the way, this tubular member 2 is a good product, and has scratches, dents,
When there is no defect such as buckling, the light rays of the respective light sources 3 are normally reflected, so that the band-shaped optical image 5 reflects the shape of the light source 3 composed of the straight tube fluorescent lamp and is reflected in a straight line.

【0028】そして、各カメラ6は、同期回路16から
のトリガ信号に応じて筒状物2を撮像する。ここで、各
カメラ6は、筒状物2の軸線に対して垂直となるように
略直角に傾けられているため、図5に示す如く、その走
査方向は帯状光像5の長手方向に対して平行になってい
る。また、この結果、画像メモリ10の横の走査方向
(読出し方向)も帯状光像5の長手方向に沿ったものと
なっている。なお、本明細書にいう「平行」とは、完全
なる平行の他、実質的な平行関係をも含む概念である。
Each camera 6 picks up an image of the cylindrical object 2 in response to the trigger signal from the synchronizing circuit 16. Here, since each camera 6 is tilted at a substantially right angle so as to be perpendicular to the axis of the tubular object 2, its scanning direction is relative to the longitudinal direction of the band-shaped optical image 5, as shown in FIG. Parallel to each other. As a result, the horizontal scanning direction (reading direction) of the image memory 10 is also along the longitudinal direction of the band-shaped optical image 5. It should be noted that the term “parallel” as used herein is a concept that includes not only perfect parallelism but also substantially parallel relationship.

【0029】そして、このように各画像メモリ10に取
り込まれた画像データは、切換部11を介して順次後段
の回路に送られ、必要な処理がなされる。即ち、この多
階調の画像データは、まずウインドウ設定部12に送り
込まれ、このウインドウ設定部12によって、図5に示
す如く、各帯状光像5の周囲にスリット状のウインドウ
17がそれぞれ設定される。
The image data thus captured in each image memory 10 is sequentially sent to the subsequent circuit via the switching section 11 and subjected to necessary processing. That is, the multi-gradation image data is first sent to the window setting section 12, and the window setting section 12 sets slit-shaped windows 17 around each band-shaped optical image 5, as shown in FIG. It

【0030】次に、計測線設定部13では、図6に拡大
して示す如く、このウインドウ17で切り取られた画像
データ中の帯状光像5の両側に、所定画素だけ離間して
直線状の明度計測線S1,S2を設定し、これら各明度計
測線S1,S2に沿った画素の明度を読み出していく。こ
こで、帯状光像5は筒状物2の軸線に対して僅かに角度
θ2だけ傾いているものの、実質的に筒状物2の軸線に
対して平行関係にあるとみなすことができるため、これ
ら各明度計測線S1,S2は、筒状物2の軸線に対して平
行となるように、帯状光像5から離間して設定されてい
る。
Next, in the measurement line setting unit 13, as shown in an enlarged view in FIG. 6, a straight line is formed on both sides of the band-shaped optical image 5 in the image data cut out in the window 17 with a predetermined pixel spacing. The brightness measurement lines S 1 and S 2 are set, and the brightness of the pixels along these brightness measurement lines S 1 and S 2 are read out. Here, although the band-shaped optical image 5 is slightly inclined with respect to the axis of the cylindrical object 2 by an angle θ 2 , it can be regarded as being substantially parallel to the axis of the cylindrical object 2. The lightness measurement lines S 1 and S 2 are set apart from the band-shaped optical image 5 so as to be parallel to the axis of the cylindrical object 2.

【0031】筒状物2が良品の場合、帯状光像5は筒状
物2の軸線に沿って直線状に延びるため、該帯状光像5
に対応した画素の明度は高くなる。しかし、図7,図8
に示す如く、光源3からの光が直接あたらない各明度計
測線S1,S2に沿った画素の明度は低くなり、全範囲に
わたって略一定となる。
When the cylindrical object 2 is a good product, the band-shaped optical image 5 extends linearly along the axis of the cylindrical member 2, so that the band-shaped optical image 5 is obtained.
The brightness of the pixel corresponding to is high. However, FIGS.
As shown in, the lightness of the pixels along the lightness measurement lines S 1 and S 2 to which the light from the light source 3 does not directly reach becomes low, and becomes substantially constant over the entire range.

【0032】さて一方、筒状物2が周面に傷や凹み等の
欠陥を有する不良品の場合は、図9に示す如く、その欠
陥によって画像メモリ10中の明度に変化が生じる。比
較的大きい凹み等の欠陥18Aと、比較的小さい凹み等
の欠陥18Bと、微小な突き傷等の欠陥18Cとの3種
類の欠陥を例示して考察すると、欠陥18A及び18B
は帯状光像5上にあるため、これらの欠陥18A,18
Bにより帯状光像5が乱れて直線性が失われ、光像の一
部が各明度計測線S1,S2を横切る。しかし、他の欠陥
18Cは、帯状光像5から離れており、その大きさも微
小なため、帯状光像5に対して殆ど影響を与えず、当該
欠陥18Cに対応した部分のみがスポット的に明るくな
るだけである。
On the other hand, in the case where the tubular member 2 is a defective product having defects such as scratches and dents on the peripheral surface, the defect causes a change in the brightness in the image memory 10, as shown in FIG. Considering three types of defects, a defect 18A having a relatively large dent, a defect 18B having a relatively small dent, and a defect 18C having a minute puncture, the defects 18A and 18B are considered.
Are present on the band-shaped optical image 5, these defects 18A, 18
The band-shaped optical image 5 is disturbed by B and linearity is lost, and a part of the optical image crosses the respective brightness measurement lines S 1 and S 2 . However, since the other defect 18C is distant from the band-shaped optical image 5 and has a small size, it hardly affects the band-shaped optical image 5 and only the portion corresponding to the defect 18C is bright in spot. It just becomes.

【0033】従って、図10に示す如く、これらの欠陥
18A,18B,18Cを有する不良品の筒状物2がカ
メラ6を介して画像メモリ10内に取り込まれ、図11
に示す如く明度計測線S1,S2が設定されると、これら
各明度計測線S1,S2に沿った画素の明度は、図12,
図13に示す如く変化する。
Therefore, as shown in FIG. 10, the defective cylindrical article 2 having these defects 18A, 18B, and 18C is taken into the image memory 10 through the camera 6, and as shown in FIG.
When the lightness measurement lines S 1 and S 2 are set as shown in FIG. 12, the lightness of the pixels along these lightness measurement lines S 1 and S 2 are
It changes as shown in FIG.

【0034】この明度変化を詳述すると、帯状光像5上
に実質的に位置する欠陥18A,18Bによって、帯状
光像5の一部が第1の明度計測線S1を横切るため、こ
の明度計測線S1に沿った画素の明度は、図12に示す
如く、欠陥18A,18Bに対応した部分のみが局所的
に明るくなる。
This change in brightness will be described in detail. Since the defects 18A and 18B substantially located on the band-shaped light image 5 cause a part of the band-shaped light image 5 to cross the first lightness measurement line S 1 , this lightness is changed. As shown in FIG. 12, the brightness of the pixel along the measurement line S 1 is locally brightened only in the portions corresponding to the defects 18A and 18B.

【0035】一方、帯状光像5上に位置する比較的小さ
な欠陥18Bによって、帯状光像5の一部が第2の明度
計測線S2を横切ると共に、微小な欠陥18Cでも光が
反射するため、この明度計測線S2に沿った画素の明度
は、図13に示す如く、欠陥18B,18Cに対応した
部分のみが局所的に明るくなる。
On the other hand, due to the relatively small defect 18B located on the band-shaped optical image 5, a part of the band-shaped optical image 5 crosses the second lightness measuring line S 2 and light is reflected by the minute defect 18C. As for the brightness of the pixels along the brightness measurement line S 2 , only the portions corresponding to the defects 18B and 18C are locally bright, as shown in FIG.

【0036】従って、判定部14は、各明度計測線
1,S2の明度変化に基づいて、欠陥18A,18B,
18Cの有無を検出し、良否の判定信号を出力する。
Therefore, the judging section 14 determines the defects 18A, 18B, and 18B based on the change in the brightness of the brightness measuring lines S 1 and S 2 .
The presence / absence of 18C is detected and a pass / fail judgment signal is output.

【0037】この判定処理には、種々のものが考えられ
るが、第1に、例えば各明度計測線S1,S2のうち、複
数ドットにわたって所定レベル以上の明度が検出された
場合には、欠陥ありと判断して不良信号を出力すること
ができる。これは、いわゆる1段オンオフ制御として理
解できる。
Various kinds of judgment processing can be considered. First, for example, in the case where the brightness of a predetermined level or more is detected over a plurality of dots in each of the brightness measurement lines S 1 and S 2 , It is possible to determine that there is a defect and output a defective signal. This can be understood as so-called one-stage on / off control.

【0038】第2に、帯状光像5の両側に、複数本の明
度計測線を設定し、どの計測線に所定レベル以上の明度
が現れたかを検出して、欠陥の大きさを段階的に判定す
ることができる。即ち、大きな欠陥であれば、帯状光像
5から離れた外側の明度計測線にまで局所的な明部が発
生し、小さな欠陥であれば、帯状光像5に近い内側の明
度計測線にしか明部が生じないため、欠陥のランク分け
を行うことが可能である。これは、多段オンオフ制御と
して把握できる。
Secondly, a plurality of lightness measurement lines are set on both sides of the band-shaped optical image 5, and it is detected which measurement line has a lightness of a predetermined level or higher, and the size of the defect is stepwise. Can be determined. That is, in the case of a large defect, a local bright portion is generated up to the outer lightness measurement line distant from the band-shaped light image 5, and in the case of a small defect, only the inner lightness measurement line close to the band-shaped light image 5 is generated. Since no bright part is generated, it is possible to rank defects. This can be understood as multistage on / off control.

【0039】以上のように、判定部14で、欠陥の判定
がなされると、コントロールユニット8は、この判定出
力に基づいて警告等を点灯したり、不良品の筒状物2を
排除したりする。また、欠陥の検出結果を統計的に分析
し、例えば上部、中央部、下部のうち、どの部位に欠陥
が多く生じたかを解析することも可能である。
As described above, when the determination section 14 determines a defect, the control unit 8 turns on a warning or the like based on the determination output, or excludes the defective cylindrical object 2. To do. Further, it is also possible to statistically analyze the defect detection result and to analyze in which of the upper part, the central part and the lower part many defects occur.

【0040】このように構成される本実施例によれば、
以下の効果を奏する。
According to the present embodiment configured as described above,
The following effects are obtained.

【0041】第1に、搬送路1の途中に複数の光源3を
周方向に展開し、搬送途中の筒状物2を搬送状態のまま
非回転状態で撮像し、この画像データに基づいて検査す
る構成のため、前記公報に記載の技術とは異なり、全体
の機械的構成を大幅に簡素化できる上に、速やかに外観
検査を行うことができる。また、回転による新たな欠陥
が生じるおそれを廃して、オンライン検査を行うことが
できる。
First, a plurality of light sources 3 are developed in the circumferential direction in the middle of the conveying path 1, the cylindrical object 2 in the middle of conveying is imaged in the non-rotating state in the conveying state, and inspection is performed based on this image data. Due to this configuration, unlike the technique described in the above publication, the entire mechanical configuration can be greatly simplified, and the appearance inspection can be performed quickly. In addition, the online inspection can be performed without the risk of new defects due to rotation.

【0042】第2に、筒状物2の周面に複数の帯状光像
5を形成し、これら各帯状光像5を複数のカメラ6で撮
像して検査を行う構成のため、筒状物2の外観品質を定
性的に速やかに評価することができる。これにより、欠
陥の発生傾向を早期に検出して、製造機械の調整等を行
うことができる上に、検査コストを低減して筒状物2の
製造コストを下げることが可能となる。
Secondly, since a plurality of band-shaped optical images 5 are formed on the peripheral surface of the cylindrical object 2 and each of the band-shaped optical images 5 is picked up by a plurality of cameras 6 for inspection, the cylindrical object is formed. The appearance quality of No. 2 can be qualitatively and promptly evaluated. As a result, it is possible to detect a defect occurrence tendency at an early stage, adjust the manufacturing machine, and reduce the inspection cost to reduce the manufacturing cost of the tubular article 2.

【0043】第3に、帯状光像5自体の直線性、即ち当
該光像5の変形を直接的に検出して欠陥の有無を判定す
るのではなく、帯状光像5の両側近傍に設定した明度計
測線S1,S2に沿って明度を計測することにより欠陥検
査を行う構成のため、検査範囲を広げることができ、検
査精度を大幅に向上することができる。
Thirdly, the linearity of the band-shaped optical image 5 itself, that is, the deformation of the band-shaped optical image 5 is not directly detected to determine the presence or absence of a defect, but is set near both sides of the band-shaped optical image 5. Since the defect inspection is performed by measuring the lightness along the lightness measurement lines S 1 and S 2 , the inspection range can be expanded and the inspection accuracy can be significantly improved.

【0044】仮に、帯状光像5自身の明度変化に基づい
て検査するとすれば、帯状光像5の形状に影響を与える
欠陥18A,18は検出できるが、帯状光像5の形状に
変化を与えない欠陥18Cを検出することができない。
勿論、光源3の数量を増やして多数の帯状光像5を形成
すれば、このような欠陥18Cを検出する機会を高くで
きるが、その分だけ全体構造が複雑化し、コストも増大
する。これに対し、本実施例では、帯状光像5の両側近
傍の明度変化に基づいて検査するため、少なくとも第1
の明度計測線S1と第2の明度計測線S2との間まで、検
査範囲を広げることができる。従って、本実施例によれ
ば、光源3の数量を増大せずに、検査範囲を大きく設定
することができ、検査精度を大幅に高めて効率的にオン
ライン検査を行うことができる。
If the inspection is performed based on the change in brightness of the band-shaped optical image 5 itself, the defects 18A, 18 affecting the shape of the band-shaped optical image 5 can be detected, but the shape of the band-shaped optical image 5 is changed. No defect 18C can be detected.
Of course, if the number of light sources 3 is increased and a large number of band-shaped optical images 5 are formed, the chance of detecting such defects 18C can be increased, but the entire structure is complicated and the cost is increased accordingly. On the other hand, in the present embodiment, since the inspection is performed based on the change in brightness near both sides of the band-shaped light image 5, at least the first
It is possible to extend the inspection range to between the lightness measurement line S 1 and the second lightness measurement line S 2 . Therefore, according to the present embodiment, it is possible to set a large inspection range without increasing the number of light sources 3, and it is possible to significantly improve the inspection accuracy and efficiently perform online inspection.

【0045】第4に、光源3を筒状物2の軸線に対し角
度θ1だけ傾斜させて配設する構成のため、欠陥による
反射を大きくでき、検査精度を高めることができる。
Fourthly, since the light source 3 is arranged so as to be inclined with respect to the axis of the cylindrical member 2 by an angle θ 1 , reflection due to a defect can be increased and inspection accuracy can be improved.

【0046】第5に、カメラ6の走査方向を帯状光像5
の長手方向に対して平行となるように設定したため、デ
ータ処理時間を短縮することができ、より一層速やかに
外観検査を行うことができる。また、これに加えて、明
度計測線S1,S2を筒状物2の軸線に対して平行に設定
する構成のため、これら各明度計測線S1,S2の長手方
向と走査方向とを略一致させることができ、効率的にデ
ータ処理を行うことができる。
Fifth, the scanning direction of the camera 6 is changed to the band-shaped optical image 5
Since it is set to be parallel to the longitudinal direction of, the data processing time can be shortened and the appearance inspection can be performed more quickly. In addition to this, since the brightness measurement lines S 1 and S 2 are set parallel to the axis of the tubular body 2 , the longitudinal direction and the scanning direction of each of the brightness measurement lines S 1 and S 2 are set. Can be substantially matched, and data processing can be efficiently performed.

【0047】第6に、本実施例では、特別なスリット光
源を用いるのではなく、単に直管式蛍光灯からなる光源
3を用いる構成のため、全体構造が比較的簡易であり、
装置の製造コストを低減することができる。
Sixth, in the present embodiment, since the light source 3 which is simply a straight tube fluorescent lamp is used instead of using a special slit light source, the overall structure is relatively simple,
The manufacturing cost of the device can be reduced.

【0048】次に、図14及び図15に基づいて本発明
の第2の実施例を説明する。なお、本実施例では上述し
た第1の実施例と同一の構成要素に同一の符号を付し、
その説明を省略するものとする。本実施例の特徴は、チ
ューブ状の搬送路によって搬送される筒状物2を検査す
る点にある。
Next, a second embodiment of the present invention will be described with reference to FIGS. 14 and 15. In this embodiment, the same components as those in the first embodiment described above are designated by the same reference numerals,
The description will be omitted. The feature of this embodiment is that the cylindrical object 2 conveyed by the tube-shaped conveying path is inspected.

【0049】即ち、本実施例による搬送路21は、例え
ばアクリル樹脂等の透光性材料等から長尺なチューブ状
に形成されており、筒状物2は搬送路21内を空気圧等
の流体力によって搬送される。そして、光源3は、搬送
路21を取り囲むようにして互いに周方向に離間して1
2本配置されていると共に、筒状物2の軸線に対して前
記角度θ1だけ傾斜している。また、同様に、カメラ6
も搬送路21を取り囲むようにして各光源3の間に設け
られ、そのレンズ7は光源3と略同一面上に位置してい
る。
That is, the transport path 21 according to this embodiment is formed in a long tube shape from a translucent material such as acrylic resin, and the tubular member 2 flows in the transport path 21 due to air pressure or the like. It is transported by physical strength. The light sources 3 are spaced apart from each other in the circumferential direction so as to surround the transport path 21.
Two of them are arranged and are inclined by the angle θ 1 with respect to the axis of the tubular member 2. Similarly, the camera 6
Is also provided between the light sources 3 so as to surround the transport path 21, and the lens 7 thereof is located substantially on the same plane as the light source 3.

【0050】かくして、このように構成される本実施例
でも、上述した第1の実施例と同様の効果を奏する。こ
れに加えて、本実施例では、チューブ状の搬送路21の
外周に複数の光源3及びカメラ6を配置したため、欠陥
の検出精度(検出確率)をさらに向上することができ
る。
Thus, in this embodiment having the above-described structure, the same effect as that of the first embodiment described above can be obtained. In addition to this, in the present embodiment, since the plurality of light sources 3 and the camera 6 are arranged on the outer periphery of the tubular transport path 21, the defect detection accuracy (detection probability) can be further improved.

【0051】なお、前記各実施例では、光源3及びカメ
ラ6の数量を具体的に例示したが、本発明はこれに限る
ものではなく、筒状物2の外形寸法や要求検査精度等の
諸条件を考慮して、適宜設定することができる。
Although the numbers of the light sources 3 and the cameras 6 are specifically illustrated in each of the above-described embodiments, the present invention is not limited to this, and various aspects such as the outer dimensions of the cylindrical object 2 and required inspection accuracy can be obtained. It can be set as appropriate in consideration of the conditions.

【0052】また、前記各実施例では、光源3を筒状物
2の軸線に対して角度θ1だけ傾斜させる場合を述べた
が、本発明はこれに限らず、光源3を筒状物2の軸線に
対して平行に配置してもよい。
In each of the above embodiments, the case where the light source 3 is tilted by the angle θ 1 with respect to the axis of the cylindrical object 2 has been described, but the present invention is not limited to this, and the light source 3 is changed to the cylindrical object 2. You may arrange | position parallel to the axis line of.

【0053】さらに、前記各実施例では、帯状光像5の
両側近傍に明度計測線S1,S2を設定し、これら各明度
計測線S1,S2に沿った画素の明度が所定レベル以上に
達したときに「欠陥あり」と判定する場合を例に挙げて
説明したが、本発明はこれに限らず、各明度計測線
1,S2の明度レベル変化を検出し、波形解析的に判定
することも可能である。即ち、明度計測線S1,S2に現
れた変化(ピーク)を、その高さ、その幅、高さに対す
る幅の割合、傾きの角度等に基づいて解析し、実際の欠
陥の種類及び大きさと対応させることにより、より詳細
に欠陥を判断することもできる。
Further, in each of the above embodiments, the lightness measurement lines S 1 and S 2 are set near both sides of the band-shaped light image 5, and the lightness of the pixels along these lightness measurement lines S 1 and S 2 is at a predetermined level. It has been described as an example where the CPU 51 determines "Yes defect" when it reaches the above, the present invention is not limited thereto, and detects the brightness level change of the brightness measurement lines S 1, S 2, waveform analysis It is also possible to make a positive determination. That is, the changes (peaks) appearing on the brightness measurement lines S 1 and S 2 are analyzed based on the height, the width, the ratio of the width to the height, the angle of inclination, and the like, and the actual defect type and size. It is also possible to judge the defect in more detail by associating with the above.

【0054】[0054]

【発明の効果】以上詳述した通り、本発明に係る筒状物
の外観検査装置によれば、筒状物の表面欠陥を速やか
に、かつ定性的に検査することができ、全体の機械的構
造を簡素化して、検査コストを低減することができる。
As described in detail above, according to the apparatus for inspecting the appearance of a tubular article according to the present invention, the surface defects of the tubular article can be inspected quickly and qualitatively, and the overall mechanical The structure can be simplified and the inspection cost can be reduced.

【0055】また、帯状光像自体の明度変化に基づいて
欠陥を判断するのではなく、帯状光像の両側近傍の明度
変化に基づいて判断する構成のため、検査範囲を広くす
ることができ、検査精度を向上することができる。
Since the defect is not judged based on the change in brightness of the band-shaped light image itself but is judged based on the change in brightness near both sides of the band-shaped light image, the inspection range can be widened. The inspection accuracy can be improved.

【0056】さらに、撮像手段の走査方向を帯状光像の
長手方向に対して平行に配置し、両者の向きを揃える構
成のため、データ処理時間を短縮して一層速やかに検査
を行うことができる。
Furthermore, since the scanning direction of the image pickup means is arranged parallel to the longitudinal direction of the band-shaped optical image and the directions of both are aligned, the data processing time can be shortened and the inspection can be carried out more quickly. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係る筒状物の外観検査
装置の全体構成を示す構成説明図である。
FIG. 1 is a configuration explanatory view showing an overall configuration of a cylindrical appearance inspection device according to a first embodiment of the present invention.

【図2】図1中の光源およびカメラ等の配置を示す配置
説明図である。
FIG. 2 is an arrangement explanatory diagram showing an arrangement of a light source, a camera and the like in FIG.

【図3】図1中に示すコントロールユニット等の機能ブ
ロック図である。
FIG. 3 is a functional block diagram of a control unit and the like shown in FIG.

【図4】筒状物の周面に帯状光像が形成された生画像を
示す説明図である。
FIG. 4 is an explanatory diagram showing a raw image in which a band-shaped optical image is formed on the peripheral surface of a cylindrical object.

【図5】画像メモリに格納された多値化画像を示す説明
図である。
FIG. 5 is an explanatory diagram showing a multi-valued image stored in an image memory.

【図6】明度計測線等を拡大して示す説明図である。FIG. 6 is an explanatory diagram showing an enlarged brightness measurement line and the like.

【図7】第1の明度計測線に沿った画素の明度変化を示
す特性図である。
FIG. 7 is a characteristic diagram showing changes in brightness of pixels along a first brightness measurement line.

【図8】第2の明度計測線に沿った画素の明度変化を示
す特性図である。
FIG. 8 is a characteristic diagram showing a change in brightness of pixels along a second brightness measurement line.

【図9】不良品の筒状物に帯状光像が形成された場合の
生画像を示す図4と同様の説明図である。
FIG. 9 is an explanatory view similar to FIG. 4, showing a raw image when a band-shaped optical image is formed on a defective cylindrical object.

【図10】画像メモリ内に格納された不良品の筒状物の
多値化画像を示す図5と同様の説明図である。
FIG. 10 is an explanatory diagram similar to FIG. 5, showing a multi-valued image of a defective tubular product stored in the image memory.

【図11】不良品の筒状物における帯状光像と明度計測
線との関係を示す図6と同様の説明図である。
FIG. 11 is an explanatory view similar to FIG. 6, showing the relationship between the band-shaped optical image and the brightness measurement line in a defective cylindrical object.

【図12】第1の明度計測線に沿った画素の明度変化を
示す特性図である。
FIG. 12 is a characteristic diagram showing a change in brightness of pixels along a first brightness measurement line.

【図13】第2の明度計測線に沿った画素の明度変化を
示す特性図である。
FIG. 13 is a characteristic diagram showing a change in brightness of pixels along a second brightness measurement line.

【図14】本発明の第2の実施例に係る筒状物の外観検
査装置の全体構成を示す構成説明図である。
FIG. 14 is a configuration explanatory view showing the overall configuration of a tubular-body appearance inspection apparatus according to a second embodiment of the present invention.

【図15】図12中のXV−XV方向断面図である。15 is a sectional view taken along line XV-XV in FIG.

【符号の説明】[Explanation of symbols]

1,21…搬送路 2…筒状物 3…光源 5…カメラ(撮像手段) 13…計測線設定部(明度計測手段) 14…判定部(判定手段) S1,S2…明度計測線1, 21 ... Conveyance path 2 ... Cylindrical object 3 ... Light source 5 ... Camera (imaging means) 13 ... Measurement line setting section (brightness measuring means) 14 ... Judgment section (judging means) S 1 , S 2 ... Brightness measurement line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 辰彦 愛知県名古屋市守山区西川原町318 アサ ヒビール株式会社名古屋工場内 (72)発明者 加藤 勝美 愛知県名古屋市守山区西川原町318 アサ ヒビール株式会社名古屋工場内 (72)発明者 難波 竜太 愛知県名古屋市守山区西川原町318 アサ ヒビール株式会社名古屋工場内 (72)発明者 本山 靖朗 東京都大田区大森北2−13−1 アサヒビ ール株式会社酒類開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuhiko Sato 318 Nishikawara-machi, Moriyama-ku, Nagoya, Aichi Asahi Breweries, Ltd. Nagoya factory (72) Katsumi Kato 318 Nishikawara-cho, Moriyama-ku, Aichi, Nagoya Asahi Breweries, Ltd. Nagoya Factory (72) Inventor Ryuta Namba 318 Nishikawara-cho, Moriyama-ku, Nagoya, Aichi Prefecture Asahi Breweries Ltd.Nagoya Factory (72) Inventor Yasuro Motoyama 2-13-1, Omorikita, Ota-ku, Tokyo Asahi Biru Co., Ltd. Liquor Development Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 筒状物を搬送する搬送路と、この搬送路
の周囲に離間して設けられ、前記筒状物の表面に帯状光
像を形成する複数の光源と、前記帯状光像が形成された
前記筒状物の表面を搬送状態で撮像する複数の撮像手段
と、これら各撮像手段が撮像した画像中の明度を計測す
る明度計測手段と、この明度計測手段が計測した明度変
化に基づいて欠陥の有無を判定する判定手段とを含んで
構成された筒状物の外観検査装置。
1. A transport path for transporting a tubular object, a plurality of light sources which are provided around the transport path and are spaced apart from each other, and which form a band-shaped optical image on the surface of the tubular object, and the band-shaped optical image. A plurality of image pickup means for picking up an image of the surface of the formed tubular object in a transport state, a lightness measuring means for measuring the lightness in an image picked up by each of these image pickup means, and a lightness change measured by the lightness measuring means. An appearance inspection apparatus for a cylindrical object, comprising: a determination unit that determines the presence or absence of a defect based on the determination.
【請求項2】 筒状物を搬送する搬送路と、この搬送路
の周囲に離間して設けられ、前記筒状物の表面に帯状光
像を形成する複数の光源と、前記帯状光像が形成された
前記筒状物の表面を搬送状態で撮像する複数の撮像手段
と、これら各撮像手段が撮像した各帯状光像の両側近傍
の明度を計測する明度計測手段と、この明度計測手段が
計測した明度変化に基づいて欠陥の有無を判定する判定
手段とを含んで構成された筒状物の外観検査装置。
2. A transport path for transporting a cylindrical object, a plurality of light sources which are provided around the transport path and are spaced apart from each other, and which form a band-shaped optical image on the surface of the cylindrical object, and the band-shaped optical image. A plurality of image pickup means for picking up an image of the surface of the formed tubular object in a transport state, a lightness measuring means for measuring the lightness in the vicinity of both sides of each strip-shaped optical image picked up by each of these image pickup means, and the lightness measuring means. An appearance inspection apparatus for a cylindrical object, comprising: a determination unit that determines the presence or absence of a defect based on the measured change in brightness.
【請求項3】 筒状物を搬送する搬送路と、この搬送路
の周囲に離間して位置すると共に前記筒状物の軸線に対
し所定角度傾斜して設けられ、前記筒状物の表面に帯状
光像を形成する複数の帯状光源と、前記帯状光像が形成
された前記筒状物の表面を搬送状態で撮像する複数の撮
像手段と、これら各撮像手段が撮像した各帯状光像の両
側近傍の明度を計測する明度計測手段と、この明度計測
手段が計測した明度変化に基づいて欠陥の有無を判定す
る判定手段とを含んで構成された筒状物の外観検査装
置。
3. A conveying path for conveying a cylindrical object, and a conveying path which is spaced apart from the circumference of the conveying path and is provided at a predetermined angle with respect to the axis of the cylindrical object, and is provided on the surface of the cylindrical object. A plurality of band-shaped light sources that form a band-shaped optical image, a plurality of imaging means that images the surface of the cylindrical object on which the band-shaped optical image is formed in a transport state, and a band-shaped optical image captured by each of these imaging means. A visual inspection device for a cylindrical object, comprising: a brightness measuring means for measuring the brightness in the vicinity of both sides; and a judging means for judging the presence / absence of a defect based on the brightness change measured by the brightness measuring means.
【請求項4】 前記撮像手段の走査方向を前記帯状光像
の長手方向に対して平行に配置したことを特徴とする請
求項1〜請求項3のいずれかに記載の筒状物の外観検査
装置。
4. The appearance inspection of a tubular article according to claim 1, wherein a scanning direction of the image pickup means is arranged parallel to a longitudinal direction of the band-shaped optical image. apparatus.
JP15140194A 1994-07-04 1994-07-04 Visual inspecting apparatus for cylindrical object Pending JPH0815163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15140194A JPH0815163A (en) 1994-07-04 1994-07-04 Visual inspecting apparatus for cylindrical object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15140194A JPH0815163A (en) 1994-07-04 1994-07-04 Visual inspecting apparatus for cylindrical object

Publications (1)

Publication Number Publication Date
JPH0815163A true JPH0815163A (en) 1996-01-19

Family

ID=15517791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15140194A Pending JPH0815163A (en) 1994-07-04 1994-07-04 Visual inspecting apparatus for cylindrical object

Country Status (1)

Country Link
JP (1) JPH0815163A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003307A (en) * 2005-06-22 2007-01-11 Mitsutech Kk Inspection device of glossy cylindrical surface
JP2008292430A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Appearance inspecting method and appearance inspecting device
DE102008053876A1 (en) * 2008-10-30 2010-05-06 Khs Ag Bottle seam and embossing alignment
EP2251268A3 (en) * 2009-05-12 2011-01-05 Krones AG Device for recognising ridges and/or grooves on bottles, in particular in a labelling machine
DE102010032166A1 (en) 2010-07-23 2012-01-26 Khs Gmbh Detection system and inspection method for bottle seam and embossing alignment
JP2015081838A (en) * 2013-10-23 2015-04-27 東洋製罐株式会社 Inspection apparatus for can with dent or buckling
CN105115988A (en) * 2015-07-02 2015-12-02 上海齐宏检测技术有限公司 Torus detection apparatus and torus detection method
JP2016090328A (en) * 2014-10-31 2016-05-23 株式会社 日立産業制御ソリューションズ Imaging device and buckling inspection device
CN107340299A (en) * 2016-12-24 2017-11-10 重庆都英科技有限公司 A kind of image capture instrument of engine commutator vision-based detection
RU2662765C2 (en) * 2015-07-03 2018-07-30 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Device and method of energy collection for cage with guide ropes
WO2018141337A1 (en) 2017-02-02 2018-08-09 Reverse Logistics GmbH Product detection device
JP2019196915A (en) * 2018-05-07 2019-11-14 株式会社リブドゥコーポレーション Package inspection method and package inspection apparatus
JP2020003420A (en) * 2018-06-29 2020-01-09 住重アテックス株式会社 Measurement method and measurement system
JP2022138508A (en) * 2021-03-10 2022-09-26 株式会社豊田中央研究所 Measurement device, measurement method and program therefor
EP3208782B1 (en) 2016-02-22 2022-10-19 Wincor Nixdorf International GmbH Empties returning device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003307A (en) * 2005-06-22 2007-01-11 Mitsutech Kk Inspection device of glossy cylindrical surface
JP2008292430A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Appearance inspecting method and appearance inspecting device
US8767201B2 (en) 2008-10-30 2014-07-01 Khs Gmbh Bottle seam and embossing alignment
DE102008053876A1 (en) * 2008-10-30 2010-05-06 Khs Ag Bottle seam and embossing alignment
EP2251268A3 (en) * 2009-05-12 2011-01-05 Krones AG Device for recognising ridges and/or grooves on bottles, in particular in a labelling machine
US9057707B2 (en) 2010-07-23 2015-06-16 Khs Gmbh Detection system and inspection method for bottle seam and embossing alignment
DE102010032166A1 (en) 2010-07-23 2012-01-26 Khs Gmbh Detection system and inspection method for bottle seam and embossing alignment
DE102010032166B4 (en) * 2010-07-23 2016-03-10 Khs Gmbh Detection system and inspection method for bottle seam and embossing alignment
WO2012010231A1 (en) 2010-07-23 2012-01-26 Khs Gmbh Detection device and inspection method for bottle seam and embossing alignment
JP2015081838A (en) * 2013-10-23 2015-04-27 東洋製罐株式会社 Inspection apparatus for can with dent or buckling
JP2016090328A (en) * 2014-10-31 2016-05-23 株式会社 日立産業制御ソリューションズ Imaging device and buckling inspection device
CN105115988A (en) * 2015-07-02 2015-12-02 上海齐宏检测技术有限公司 Torus detection apparatus and torus detection method
RU2662765C2 (en) * 2015-07-03 2018-07-30 Чайна Юниверсити Оф Майнинг Энд Текнолоджи Device and method of energy collection for cage with guide ropes
EP3208782B1 (en) 2016-02-22 2022-10-19 Wincor Nixdorf International GmbH Empties returning device
CN107340299A (en) * 2016-12-24 2017-11-10 重庆都英科技有限公司 A kind of image capture instrument of engine commutator vision-based detection
WO2018141337A1 (en) 2017-02-02 2018-08-09 Reverse Logistics GmbH Product detection device
JP2019196915A (en) * 2018-05-07 2019-11-14 株式会社リブドゥコーポレーション Package inspection method and package inspection apparatus
JP2020003420A (en) * 2018-06-29 2020-01-09 住重アテックス株式会社 Measurement method and measurement system
JP2022138508A (en) * 2021-03-10 2022-09-26 株式会社豊田中央研究所 Measurement device, measurement method and program therefor

Similar Documents

Publication Publication Date Title
JPH0815163A (en) Visual inspecting apparatus for cylindrical object
US9329135B2 (en) Means for inspecting glass containers for defects
AU2005208342B2 (en) Optical inspection for container lean
CN1059271C (en) Optical inspection of container dimensional parameters
US6256095B1 (en) Container sealing surface area inspection
US8058607B2 (en) Machine for inspecting glass containers at an inspection station using an addition of a plurality of illuminations of reflected light
JPH03502138A (en) Article inspection system for analyzing edges and adjacent sides
US20100118136A1 (en) Surface inspection device and an arrangement for inspecting a surface
JPWO2018061196A1 (en) Glass container burn inspection device
US20200408698A1 (en) Apparatus and method for inspecting a glass sheet
AU2006318748B2 (en) Apparatus and method for ensuring rotation of a container during inspection
JP2017146302A (en) Surface defect inspection device and surface defect inspection method
JPH1048150A (en) Seal-inspection apparatus
JP2006505787A (en) Device for inspecting filled containers with X-rays and devices using the same
US5717486A (en) Process for removing returnable containers from circulation utilizing image processing of brightness values for inspection windows
JP2000180382A (en) Visual examination apparatus
US7230229B2 (en) Method and device for the detection of surface defects on the outer wall of a transparent or translucent object
JPH05164706A (en) Inspecting method for mixing-in of vessel of different kind
JPH04231854A (en) Inspection for crack in container
CN103703356A (en) Optical inspection of containers
JP6360424B2 (en) Imaging device and buckling inspection device
JP3155106B2 (en) Bottle seal appearance inspection method and apparatus
JPH06118026A (en) Method for inspecting vessel inner surface
JP3986534B2 (en) Empty bottle inspection system
JPH0581697U (en) Appearance inspection device