JPS6351166B2 - - Google Patents

Info

Publication number
JPS6351166B2
JPS6351166B2 JP6886079A JP6886079A JPS6351166B2 JP S6351166 B2 JPS6351166 B2 JP S6351166B2 JP 6886079 A JP6886079 A JP 6886079A JP 6886079 A JP6886079 A JP 6886079A JP S6351166 B2 JPS6351166 B2 JP S6351166B2
Authority
JP
Japan
Prior art keywords
component
polymerization
compound
organic acid
hydrocarbon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6886079A
Other languages
Japanese (ja)
Other versions
JPS55161807A (en
Inventor
Akira Ito
Heizo Sasaki
Masanori Oosawa
Masahiro Jinno
Kenji Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6886079A priority Critical patent/JPS55161807A/en
Priority to US06/116,206 priority patent/US4282114A/en
Priority to AU55133/80A priority patent/AU526781B2/en
Priority to ES488219A priority patent/ES488219A0/en
Priority to GB8003878A priority patent/GB2042566B/en
Priority to PT70789A priority patent/PT70789A/en
Priority to FR8002764A priority patent/FR2448547A1/en
Priority to DE19803004768 priority patent/DE3004768A1/en
Publication of JPS55161807A publication Critical patent/JPS55161807A/en
Publication of JPS6351166B2 publication Critical patent/JPS6351166B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はいわゆる担䜓型チタン成分ず有機アル
ミニりム化合物より成る觊媒を甚いお高床に立䜓
芏則性を持぀たポリα―オレフむンを重合する方
法に関するものである。 近幎チヌグラヌ・ナツタ觊媒のチタン成分を担
䜓に担持しお觊媒の掻性を高める方法が開発さ
れ、これに関する先行技術ずしおハロゲン化マグ
ネシりムにチタン化合物を担持した担䜓型チタン
成分ず有機アルミニりム化合物ずの組合せに、第
成分ずしお電子䟛䞎性化合物を添加するこずに
よ぀お生成ポリマヌの立䜓芏則性を向䞊させる方
法が特開昭47−9342等で提案されおいる。 しかし、このような埓来の担䜓型チタン成分ず
有機アルミニりム化合物の成分系でプロピレン
を重合するず重合掻性は倧きいが生成ポリマヌの
結晶性が極端に䜎く、これに電子䟛䞎性化合物を
加えるず生成ポリマヌの結晶性は向䞊するが掻性
の䜎䞋がはげしく、しかも結晶性向䞊効果も充分
ではなくお珟圚工業的に䜿甚されおいる䞉塩化チ
タンゞ゚チルアルミニりムモノクロラむド觊媒
系等で埗られおいる結晶性ポリプロピレンず同等
の品質のものを埗るのは困難であ぀た。 特開昭50−126590の方法ではハロゲン化マグネ
シりムず有機酞゚ステルを共粉砕しお埗られた組
成物を四塩化チタンず反応しお埗られた組成物ず
有機アルミニりム化合物、及び有機酞゚ステルよ
り成る觊媒系が提案されおいるが掻性及び生成ポ
リマヌの結晶性も䞍充分である。 本発明はこのような担䜓型觊媒の性胜向䞊を目
的ずするものである。たずハロゲン化マグネシり
ム、有機酞゚ステル、さらに脂肪族、たたは脂環
族ハロゲン化炭化氎玠化合物を共粉砕したのち、
四塩化チタンず熱凊理しお埗られた組成物は特開
昭50−126590の組成物をチタン成分ずしお甚いた
のず比べお倧巟に掻性が向䞊するこずを知芋ずし
お埗た。しかしこれだけでは掻性が向䞊しおも、
生成ポリマヌの結晶性及びかさ比重が䜎くおα―
オレフむン重合甚觊媒ずしおは満足すべき性胜の
ものではなか぀た。そこでこの觊媒系に぀いお生
成ポリマヌの結晶性、及びかさ比重向䞊に぀いお
怜蚎した結果、前述の共粉砕の際に皮々の有機化
合物を共存させるこずにより生成ポリマヌの結晶
性、及びかさ比重が倧巟に改良されるこずを解明
しすでに特蚱出願を行な぀た。 我々は䞊蚘觊媒に぀いお皮々怜蚎したずころ、
粉砕䞭にチタン成分の固塊が生成し易く、たた生
成ポリマヌの粒床分垃に粗粒が倚いずいう二぀の
欠点があ工業的にスケヌルアツプする際に問題が
生じその解決が必芁ずな぀た。 我々は䞊蚘欠点を陀くこずを目的ずしお皮々怜
蚎したずころハロゲン化マグネシりムに前述の
皮々の化合物を共粉砕する際にハロゲン化アルミ
ニりムを共存させるこずによ぀お粉砕䞭の固たり
防止、及び生成ポリマヌの粗粒の枛少及び掻性向
䞊に圹立぀こずを芋出し本発明に到達した。 すなわち本発明は、 (A) (ã‚€) ハロゲン化マグネシりム (ロ) 有機酞゚ステル、 (ハ) 脂肪族たたは脂環族ハロゲン化炭化氎玠化
合物 (ニ) 次に瀺す(a)〜(c)矀 (a) 脂肪族炭化氎玠化合物、脂環族炭化氎玠
化合物、芳銙族炭化氎玠化合物、ハロゲン
化芳銙族炭化氎玠化合物 (b) 液状プロピレンオリゎマヌ、たたは (c) 芳銙族゚ヌテル化合物 より遞ばれた少くずも䞀぀の成分、及び (ホ) ハロゲン化アルミニりム の成分を共粉砕したのち四塩化チタンで熱凊
理しお埗られた組成物、 (B) 有機アルミニりム化合物、及び (C) 有機酞゚ステルたたは有機酞゚ステルずハロ
ゲン化アルミニりムずの錯䜓、 より成る觊媒をα―オレフむン重合甚に甚いるず
いうものである。 本発明の方法で(A)成分の調補に甚いる(ã‚€)成分で
あるハロゲン化マネシりムは実質的に無氎ハロゲ
ン化マグネシりムが甚いられ、ずくに無氎塩化マ
グネシりムが奜たしい。(ロ)成分ずしお甚いられる
有機酞゚ステルずしおは䞀般匏 R2COOR1 ただし、R1はC1〜C12の芳銙族、脂肪族、脂
環族炭化氎玠残基を、R2はR1ず同じかたたは
The present invention relates to a method for polymerizing highly stereoregular polyα-olefin using a catalyst comprising a so-called carrier-type titanium component and an organoaluminum compound. In recent years, a method has been developed to increase the activity of the catalyst by supporting the titanium component of the Ziegler-Natsuta catalyst on a carrier, and as a prior art related to this, a combination of a carrier-type titanium component in which a titanium compound is supported on magnesium halide and an organoaluminum compound has been developed. A method of improving the stereoregularity of the resulting polymer by adding an electron-donating compound as a third component has been proposed in JP-A-47-9342. However, when propylene is polymerized with such a conventional two-component system of a carrier-type titanium component and an organoaluminum compound, the polymerization activity is high, but the crystallinity of the resulting polymer is extremely low, and when an electron-donating compound is added to this, the resulting polymer Crystalline polypropylene obtained with titanium trichloride/diethylaluminum monochloride catalyst system, which is currently used industrially, has improved crystallinity, but the activity has been drastically reduced, and the effect of improving crystallinity is not sufficient. It was difficult to obtain products of equivalent quality. The method of JP-A-50-126590 consists of a composition obtained by co-pulverizing magnesium halide and an organic acid ester and reacting it with titanium tetrachloride, an organoaluminum compound, and an organic acid ester. Although catalyst systems have been proposed, the activity and crystallinity of the resulting polymers are also insufficient. The present invention aims to improve the performance of such a supported catalyst. First, after co-pulverizing magnesium halide, organic acid ester, and aliphatic or alicyclic halogenated hydrocarbon compound,
It has been found that the activity of the composition obtained by heat treatment with titanium tetrachloride is greatly improved compared to the composition of JP-A-126590-1983, which is used as the titanium component. However, even if this alone improves activity,
The crystallinity and bulk specific gravity of the produced polymer are low and α-
The performance was not satisfactory as a catalyst for olefin polymerization. Therefore, we investigated the improvement of the crystallinity and bulk specific gravity of the produced polymer with this catalyst system, and found that by coexisting various organic compounds during the co-pulverization described above, the crystallinity and bulk specific gravity of the produced polymer were significantly improved. We have already applied for a patent. We conducted various studies on the above catalysts and found that
There are two drawbacks: solid lumps of the titanium component tend to form during pulverization, and there are many coarse particles in the particle size distribution of the produced polymer, which pose problems when industrially scaled up, and it is necessary to solve these problems. We conducted various studies with the aim of eliminating the above drawbacks, and found that by co-pulverizing magnesium halide with the various compounds mentioned above, we could prevent agglomeration during crushing and improve the roughness of the resulting polymer. The present invention was achieved by discovering that this method is useful for reducing grain size and improving activity. That is, the present invention comprises (A) (a) magnesium halide (b) organic acid ester (c) aliphatic or alicyclic halogenated hydrocarbon compound (d) the following groups (a) to (c) ( At least one selected from a) an aliphatic hydrocarbon compound, an alicyclic hydrocarbon compound, an aromatic hydrocarbon compound, a halogenated aromatic hydrocarbon compound, (b) a liquid propylene oligomer, or (c) an aromatic ether compound. (e) a composition obtained by co-pulverizing five components of aluminum halide and then heat-treating with titanium tetrachloride, (B) an organoaluminum compound, and (C) an organic acid ester or an organic acid ester. A catalyst consisting of a complex with aluminum halide is used for α-olefin polymerization. The manesium halide used as component (A) for preparing component (A) in the method of the present invention is essentially anhydrous magnesium halide, with anhydrous magnesium chloride being particularly preferred. The organic acid ester used as the component (b) has the general formula R 2 COOR 1 (where R 1 is a C 1 to C 12 aromatic, aliphatic, or alicyclic hydrocarbon residue, and R 2 is R 1 same as or

【匏】を瀺す で瀺される芳銙族、脂肪族、たたは脂環族カルボ
ン酞゚ステルで、䟋えば安息銙酞メチル、安息銙
酞゚チル、安息銙酞プロピル、安息銙酞プニ
ル、トルむル酞゚チル、アニス酞゚チル、ナフト
゚酞゚チル、酢酞゚チル、酢酞ブチル、゚チルメ
タアクリレヌト、ヘキサヒドロ安息銙酞゚チルな
どがあげられる。 (ハ)成分ずしお甚いられる脂肪族、たたは脂環族
ハロゲン化炭化氎玠化合物ずしおは飜和たたは䞍
飜和のハロゲン化炭化氎玠化合物が甚いられ、䟋
えばメチレンクロラむド、クロロホルム、四塩化
炭玠、゚チレンゞクロラむド、―ブチルクロラ
むド、プロペニルクロラむド、―ゞクロル
プロパン、―ゞクロル゚チレン、ヘキサク
ロロ゚タン、テトラクロロ゚チレン、テトラブロ
ム゚タン塩玠化パラフむンなどがあげられる。 (ニ)成分ずしおは以䞋に瀺す(a)〜(c)の䞭から遞ば
れた有機化合物が甚いられる。 (a) 成分ずしおは―ヘキサン、―ヘプタン、
―オクタン、iso―オクタンなどの飜和脂肪
族炭化氎玠化合物、ペンテン―、ヘキセン―
、オクテン―などの䞍飜和脂肪族炭化氎玠
化合物、ベンれン、トル゚ン、゚チルベンれ
ン、―キシレン、―キシレン、―キシレ
ンなどの芳銙族炭化氎玠化合物、シクロヘキサ
ン、シクロペンタンなどの脂環族炭化氎玠化合
物、モノクロルベンれン、―ゞクロルベンれ
ン、―ゞクロルベンれン、などのハロゲン化
芳銙族炭化氎玠化合物が䜿甚される。 (b) 成分ずしおは分子量玄100〜1500皋床、奜た
しくは200〜1000のやや粘ちような液状プロピ
レンオリゎマヌが奜たしく、これは垞法によ
り、䟋えば塩化アルミニりム等の觊媒でプロピ
レンを重合するこずによ぀お補造されたものが
䜿甚できる。 (c) 成分ずしおは芳銙族゚ヌテル化合物ずしお
は、䟋えばメチルプニル゚ヌテル、゚チルフ
゚ニル゚ヌテル、アリルプニル゚ヌテル、ゞ
プニル゚ヌテル、ゞトリル゚ヌテルがあげら
れる。 (ホ)成分ずしおは実質的に無氎のハロゲン化アル
ミニりムが甚いられ、ずくに塩化アルミニりム、
臭化アルミニりムが奜たしい。 (A)成分の補造方法に぀いお述べるず、たず(ã‚€)〜
(ニ)成分の共粉砕を行なう。この粉砕はチヌグラ
ヌ・ナツタ觊媒のチタン成分の調補に通垞甚いら
れおいる公知の方法、䟋えば粉砕枩床は〜80
℃、粉砕時間〜100時間の条件で、真空、たた
は䞍掻性ガス雰囲気䞭で氎分、酞玠などのほずん
ど完党に陀かれた状態で行われる。 粉砕の際の組成は(ã‚€)成分50〜95wt、奜たし
くは55〜90wt、さらに奜たしくは60〜80wt、
(ロ)成分〜40wt奜たしくは〜30wt、さら
に奜たしくは〜20wt、(ハ)成分〜40wt、
奜たしくは〜30wt、さらに奜たしくは〜
20wt、(ニ)成分〜40wt、奜たしくは〜
30wt、さらに奜たしくは〜25wt、(ホ)成分
0.1〜10wt、奜たしくは0.2〜5wt、さらに奜
たしくは0.3〜3wtの範囲である。 埗られた組成物は次に四塩化チタンで熱凊理さ
れる。すなわち、䞊蚘共粉砕組成物を四塩化チタ
ン、たたはその䞍掻性溶媒溶液䞭に懞濁し、40〜
135℃の範囲で熱凊理したのち、遊離の四塩化チ
タンを䞍掻性溶媒で掗浄するか、也燥必芁によ
り枛圧䞋でする方法が奜たしい。 この際に䜿甚する䞍掻性溶媒ずしおは脂肪族、
脂環族、及び芳銙族の炭化氎玠、たたはそれらの
ハロゲン誘導䜓が甚いられ、䟋えばヘキサン、ヘ
プタン、ベンれン、トル゚ン、クロルベンれン、
シクロヘキサンなどが奜たしい。 この四塩化チタンの熱凊理によ぀お埗られる(A)
成分はチタン金属ずしお0.1〜10wtを含有する
ように調補するのが奜たしい。 本発明の(B)成分に䜿甚される有機アルミニりム
化合物は䞀般匏AlR3 3ただしR3はC1〜C12のアル
キル基を瀺すで衚わされるトリアルキルアルミ
ニりムが甚いられ、䟋えば、トリメチルアルミニ
りム、トリ゚チルアルミニりム、トリ――プロ
ピルアルミニりム、トリ――ブチルアルミニり
ム、トリ―iso―ブチルアルミニりム、トリ―
―ヘキシルアルミニりムなどが甚いられる。 本発明の方法ではさらに(B)成分ずしお䞀般匏
AlR4 oX3-oただしR4はC1〜C12のアルキル基、
はハロゲン原子、は〜を瀺すで瀺される
アルキルアルミニりムハラむドを加えるず掻性が
向䞊しお奜たしい。このアルキルアルミニりムハ
ラむドずしおはゞ゚チルアルミニりムモノクロラ
むド、゚チルアルミニりムセスキクロラむド、゚
チルアルミニりムゞクロラむド、ゞ゚チルアルミ
ニりムモノブロマむド、ゞ゚チルアルミニりムモ
ノアむオダむド、ゞ゚チルアルミニりムモノフロ
ラむド、ゞ――プロピルアルミニりムモノクロ
ラむド、ゞ―iso―ブチルアルミニりムモノクロ
ラむド、ゞ――ヘキシルアルミニりムモノクロ
ラむドなどがあげられる。 本発明の方法で(A)成分ず(B)成分ずの䜿甚割合は
広範囲に倉えるこずができるが、䞀般に(A)成分䞭
に含たれるチタン金属mg原子圓り、トリアルキ
ルアルミニりム〜500ミリモル、奜たしくは
〜100ミリモル、さらに奜たしくは〜50ミリモ
ルが甚いられ、たたアルキルアルミニりムハラむ
ドはトリアルキルアルミニりムモルに察しお
0.05〜100モル、奜たしくは0.1〜30モル、さらに
奜たしくは0.3〜モルの範囲である。トリアル
キルアルミニりムは重合開始時に党量加えるより
も重合途䞭で少量づ぀加えるほうが掻性ず生成ポ
リマヌの結晶性のバランスが良く、重合速床の経
時倉化も少なく奜たしい。 本発明の方法で甚いられる(C)成分ずしおは有機
酞゚ステルたたはこれずハロゲン化アルミニりム
ずの錯䜓があげられる。有機酞゚ステルずしおは
(A)成分調補の時に述べた化合物が甚いられ、有機
酞゚ステルずハロゲン化アルミニりム錯䜓は前述
の有機酞゚ステルずハロゲン化アルミニりム奜
たしくは塩化アルミニりム、たたは臭化アルミニ
りムを䟋えば混合するか、混合物を加熱するか
しお調補できる。この際有機酞゚ステルずハロゲ
ン化アルミニりムのモル比はが奜たしい。 (C)成分の䜿甚量は(B)成分の䜿甚量、(A)成分の䜿
甚量、及びTi含有率、重合枩床などの重合条件
によ぀お異なるが、䞀般的には(B)成分ずしお甚い
られるトリアルキルアルミニりムモル圓りモ
ル以䞋、奜たしくは0.01〜1.5モル、さらに奜た
しくは0.1〜モルである。 本発明の方法は䞀般匏−CHCH2ただし
は炭玠数〜10のアルキル基を瀺すで瀺される
α―オレフむンの単独重合、及び䞊蚘α―オレフ
むン盞互が゚チレンずのブロツクたたはランダム
共重合に利甚される。 䞊蚘α―オレフむンずしおは、䟋えばプロピレ
ン、ブテヌ、ヘキセン−、及び―メチル―
ペンテン―などがあげられる。 本発明の方法による重合反応は埓来の圓該技術
に斌お通垞行なわれおいる方法、及び条件が採甚
できる。その際の重合枩床は20〜100℃、奜たし
くは40〜90の範囲であり、重合圧力は通垞〜60
Kgcm2abs、奜たしくは〜50Kgcm2absの範囲
である。重合反応は䞀般に脂肪族、脂環族、芳銙
族の炭化氎玠類、たたはそれらの混合物を溶媒ず
しお䜿甚するこずができ、䟋えばプロパン、プタ
ン、ペンタン、ヘキサン、ヘプタン、シクロヘキ
サン、ベンれンなど及びそれらの混合物が甚いら
れる。 たた、液状モノマヌ自身を溶媒ずしお甚いる塊
状重合法、及び溶媒が実質的に存圚しない条件、
すなわち、ガス状モノマヌず觊媒ずを接觊するい
わゆる気盞重合法で行なうこずができる。 本発明の方法に斌お生成するポリマヌの分子量
は反応様匏、觊媒系、重合条件によ぀お倉化する
が、必芁に応じお、䟋えば氎玠、ハロゲン化アル
キル、シアルキル亜鉛などの添加によ぀お制埡す
るこずができる。 本願発明では觊媒の掻性が倧きい䞊に、生成ポ
リマヌの―ヘプタン抜出残ポリマヌの割合が95
〜97にも及ぶので非晶性ポリマヌの抜出たたは
陀去を省略しおも充分な物性を持぀ポリマヌが埗
られるのでプロセスの簡略化が可胜になる。 さらに本願発明では(A)成分調補の過皋での粉砕
䞭に固たりが出来にくいので粉砕機ぞの原料の仕
蟌量を倚くするこずができ、たた生成ポリマヌの
粗粒が少ないのでスラリヌのハンドリングによる
トラブルを無くすこずができ工業的に実甚䟡眮が
倧きい。 以䞋本発明の実斜䟋を瀺す。 実斜䟋  (1) 觊媒(A)成分の調補 盎埄12mmの鋌球80個の入぀た内容積600mlの粉
砕甚ポツトを装備した振動ミルを甚意する。 このポツトに、窒玠囲気䞭で無氎塩化マグネシ
りム30g、安息銙酞゚チル3.15g、クロロホルム
3.45g、ゞプニル゚ヌテル5.1g及び塩化アルミ
ニりム0.38gを装入し、20時間粉砕を行な぀た。 粉砕ポツトを開けたずころ塊状物はなく、ポツ
ト壁面、及び鋌球ぞの粉砕物の付着を認められな
か぀た。 300ml䞞底フラスコに窒玠雰囲気䞋で䞊蚘粉砕
組成物10g、―ヘプタン100ml、四塩化チタン
1.5mlをずり、80℃で時間かくはんし、デカン
テヌシペンにより䞊柄液を陀いた。次に―ヘプ
タン200mlを加え宀枩30分間かくはんののち、デ
カンテヌシペンで䞊柄液を陀く操䜜を回くり返
した。 さらに―ヘプタン200mlを远加しおチタン化
化合物を担持させた組成物本発明の成分(A)の
スラリヌを埗た。この䞀郚をサンプリングし、
―ヘプタンを蒞発させ分析したずころ該組成物は
1.12wtのTiを含有しおいた。 (2) 重合 SUS−32補2lオヌトクレヌプに―ヘプタン
1l、(1)で調補した(A)成分0.15gチタン原子ずしお
0.035mgatom、トリヌiso―ブチルアルミニりム
0.4ml1.59mM、安息銙酞゚チル0.10ml
0.7mMを窒玠雰囲気䞭で装入しお本発明の觊
媒を調補した。オヌトクレヌブ䞭の窒玠を真空ポ
ンプで排気したのち、氎玠を気盞分圧で0.3Kg
cm2装入し、次にプロピレンを装入しお気盞郚の圧
力をKgcm2ゲヌゞずした。オヌトクレヌプの内
容物を加熱し、分埌に内郚枩床を70℃たで昇枩
し、70℃で重合圧力をKgcm2ゲヌゞに保぀よう
にプロピレンを装入しながら重合を時間続け
た。オヌトクレヌブを冷华したのち、未反応プロ
ピレンをパヌゞしお内容物を取出し、過しお癜
色粉末状ポリプロピレン238gを埗た。 この粉末状ポリプロピレンの沞ずう―ヘプタ
ン抜出残ポリマヌ結晶性ポリプロピレンの割
合以䞋パりダヌI.I.ず略蚘するは96.4wt、
かさ比重は0.48gml、極限粘床数1.64dl
135℃、テトラリン溶液にお枬定、以䞋同様で
あ぀た。 䞀方液の濃瞮により―ヘプタン可溶性重合
䜓非晶性ポリプロピレン3gが埗られた。 党生成ポリマヌに察する沞ずう―ヘプタン抜
出残ポリマヌの割合、すなわち党I.Iは95.2wtで
あ぀た。 この重合での觊媒の重合掻性は803g−(A)
hr、72Kg−Ti.hrポリプロピレンの取埗量は
1606g−(A)、143Kg−Tiであ぀た。 埗られたポリプロピレンパりダヌをふるい分け
しお粒床分垃を枬定したずころ10meshふるい䞊
の粗粒以䞋単に粗粒ず略蚘する。は1.0wt、
200meshふるい䞋の埮粒以䞋単に埮粒ず略蚘す
る。8.3wtであ぀た。 比范䟋  (1) 觊媒(A)成分の調補 実斜䟋の粉砕に斌お塩化アルミニりムの添加
を省略した以倖は実斜䟋の方法で粉砕を行な぀
た。粉砕ポツトを開けたずころポツト壁面及び球
に玄5gの粉砕物が付着しおいた。 埗られた粉砕物を実斜䟋ず同様に四塩化チタ
ンで熱凊理、及び―ヘプタンによる掗剰を行な
い、チタン含有率1.32wtのチタン化合物を担持
させた組成物のスラリヌを埗た。 (2) 重合 (1)で調補した組成物0.20gチタン原子ずしお
0.055mgatomを(A)成分ずしお甚いた以倖は実
斜䟋ず党く同じ方法及び条件で重合を行な぀た
ずころ粉末状ポリプロピレン232gを埗た。 この粉末状ポリプロピレンのパりダヌI.Iは
96.1wt、かさ比重0.48gml、極限粘床数1.63
dlであ぀た。 䞀方液の濃瞮により非晶性ポリプロピレン
3gが埗られた。埗られたポリマヌの党I.Iは
94.9wtであ぀た。 この重合での觊媒の重合掻性は588g―
(A)・hr、45Kg―Ti・hr、ポリプロピレンの
取埗量は1175g―(A)、89Kg―Tiであ぀
た。 埗られたポリプロピレンパりダヌをふるい分け
しお粒床分垃を枬定したずころ粗粒は7.0wt、
埮粒は10.8wtであ぀た。 この結果を本願発明の実斜䟋ず比べるず実斜
䟋のほうが掻性が玄40倧きく、粗粒、埮粒が少
なくお粒床分垃が狭く揃぀おいるこずがわかる。 実斜䟋  実斜䟋(1)で調補した(A)成分0.15gチタン金属
原子換算0.035mgatom、ゞ゚チルアルミニりム
モノクロラむド0.12ml0.97mM、安息銙酞゚チ
ル0.10ml0.07mM、トリヌiso―ブチルアルミ
ニりム0.4ml1.59mMを觊媒成分ずし、このう
ちトリ―iso―ブチルアルミニりムは20分間隔で
分割でオヌトクレヌブに圧入し、重合時間を
2.5時間にした以倖は実斜䟋ず同様に重合した
結果を衚に瀺す。 実斜䟋 〜 実斜䟋の方法に斌お、ゞ゚チルアルミニりム
モノクロラむドに代えお等モルの゚チルアルミニ
りムセスキクロラむド、たたぱチルアルミニり
ムゞクロラむドを甚いた以倖は実斜䟋ず党く同
じ条件で重合を行な぀た結果を衚に瀺す。
Aromatic, aliphatic, or alicyclic carboxylic acid esters represented by [formula], such as methyl benzoate, ethyl benzoate, propyl benzoate, phenyl benzoate, ethyl toluate, ethyl anisate, and naphthoate. Examples include ethyl acid, ethyl acetate, butyl acetate, ethyl methacrylate, and ethyl hexahydrobenzoate. As the aliphatic or alicyclic halogenated hydrocarbon compound used as component (iii), saturated or unsaturated halogenated hydrocarbon compounds are used, such as methylene chloride, chloroform, carbon tetrachloride, ethylene dichloride, n- Examples include butyl chloride, propenyl chloride, 1,2-dichloropropane, 1,2-dichloroethylene, hexachloroethane, tetrachloroethylene, tetrabromoethane chlorinated paraffin, and the like. As the component (d), an organic compound selected from the following (a) to (c) is used. (a) Ingredients include n-hexane, n-heptane,
Saturated aliphatic hydrocarbon compounds such as n-octane and iso-octane, pentene-1, hexene-
1. Unsaturated aliphatic hydrocarbon compounds such as octene-1, aromatic hydrocarbon compounds such as benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, alicyclic carbonization such as cyclohexane and cyclopentane Hydrogen compounds, halogenated aromatic hydrocarbon compounds such as monochlorobenzene, o-dichlorobenzene, m-dichlorobenzene, etc. are used. Component (b) is preferably a slightly viscous liquid propylene oligomer with a molecular weight of about 100 to 1,500, preferably 200 to 1,000. You can use those manufactured by As the component (c), aromatic ether compounds include, for example, methyl phenyl ether, ethyl phenyl ether, allyl phenyl ether, diphenyl ether, and ditolyl ether. As the component (e), substantially anhydrous aluminum halide is used, especially aluminum chloride,
Aluminum bromide is preferred. When describing the method for producing component (A), first of all, (A) ~
(d) Co-pulverizing the components. This pulverization is carried out using a known method commonly used to prepare the titanium component of the Ziegler-Natsuta catalyst.
C. and a pulverization time of 1 to 100 hours under vacuum or an inert gas atmosphere in which moisture, oxygen, etc. are almost completely removed. The composition during pulverization is (a) component 50 to 95 wt%, preferably 55 to 90 wt%, more preferably 60 to 80 wt%,
(b) component 1 to 40 wt%, preferably 2 to 30 wt%, more preferably 3 to 20 wt%, (c) component 1 to 40 wt%,
Preferably 2 to 30 wt%, more preferably 3 to 30 wt%
20wt%, component (d) 1-40wt%, preferably 2-40wt%
30wt%, more preferably 3 to 25wt%, component (e)
It ranges from 0.1 to 10 wt%, preferably from 0.2 to 5 wt%, and more preferably from 0.3 to 3 wt%. The resulting composition is then heat treated with titanium tetrachloride. That is, the above co-pulverized composition is suspended in titanium tetrachloride or its inert solvent solution, and
A method in which free titanium tetrachloride is washed with an inert solvent or dried (if necessary under reduced pressure) after heat treatment in the range of 135°C is preferred. The inert solvent used at this time is aliphatic,
Alicyclic and aromatic hydrocarbons or their halogen derivatives are used, such as hexane, heptane, benzene, toluene, chlorobenzene,
Cyclohexane and the like are preferred. (A) obtained by heat treatment of this titanium tetrachloride
The components are preferably prepared to contain 0.1 to 10 wt% of titanium metal. The organoaluminum compound used in component (B) of the present invention is a trialkylaluminum represented by the general formula AlR 3 3 (wherein R 3 represents a C 1 to C 12 alkyl group), such as trimethylaluminum. , triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, tri-iso-butylaluminum, tri-n
-Hexylaluminum etc. are used. In the method of the present invention, as component (B), the general formula
AlR 4 o X 3-o (where R 4 is a C 1 to C 12 alkyl group,
is a halogen atom, and n is 1 to 2) It is preferable to add an alkyl aluminum halide, since the activity is improved. Examples of the alkyl aluminum halide include diethylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminium monobromide, diethylaluminum monoiodide, diethylaluminium monofluoride, di-n-propylaluminum monochloride, di-iso- Examples include butylaluminum monochloride and di-n-hexylaluminum monochloride. Although the proportions of component (A) and component (B) used in the method of the present invention can be varied over a wide range, generally 1 to 500 mmol of trialkylaluminium, per 1 mg atom of titanium metal contained in component (A), Preferably 3
~100 mmol, more preferably 5 to 50 mmol, and the alkyl aluminum halide is used per mole of trialkylaluminium.
The amount ranges from 0.05 to 100 mol, preferably from 0.1 to 30 mol, and more preferably from 0.3 to 5 mol. It is preferable to add the trialkylaluminum in small amounts during the polymerization, rather than adding the entire amount at the start of the polymerization, as this provides a better balance between the activity and the crystallinity of the resulting polymer, and there is less change over time in the polymerization rate. Component (C) used in the method of the present invention includes an organic acid ester or a complex of this with aluminum halide. As an organic acid ester
The compound mentioned at the time of component (A) preparation is used, and the organic acid ester and aluminum halide complex is prepared by mixing the above-mentioned organic acid ester and aluminum halide (preferably aluminum chloride or aluminum bromide), or a mixture thereof. It can be prepared by heating. In this case, the molar ratio of organic acid ester and aluminum halide is preferably 1:1. The amount of component (C) used varies depending on the amount of component (B) used, the amount of component (A) used, and polymerization conditions such as Ti content and polymerization temperature, but in general, as component (B) The amount is 5 mol or less, preferably 0.01 to 1.5 mol, more preferably 0.1 to 1 mol, per mol of trialkylaluminum used. The method of the present invention uses the general formula R-CH=CH 2 (where R
represents an alkyl group having 1 to 10 carbon atoms), and the above α-olefins are used for block or random copolymerization with ethylene. Examples of the α-olefin include propylene, buty-1, hexene-1, and 4-methyl-
Examples include Penten-1. For the polymerization reaction according to the method of the present invention, conventional methods and conditions commonly used in the art can be employed. The polymerization temperature at that time is 20 to 100℃, preferably 40 to 90℃, and the polymerization pressure is usually 1 to 60℃.
Kg/cm 2 abs, preferably in the range of 1 to 50 kg/cm 2 abs. Polymerization reactions can generally use aliphatic, alicyclic, aromatic hydrocarbons, or mixtures thereof, as solvents, such as propane, butane, pentane, hexane, heptane, cyclohexane, benzene, etc., and mixtures thereof. is used. In addition, a bulk polymerization method using the liquid monomer itself as a solvent, and conditions where the solvent is substantially absent,
That is, it can be carried out by a so-called gas phase polymerization method in which a gaseous monomer and a catalyst are brought into contact. The molecular weight of the polymer produced in the method of the present invention varies depending on the reaction mode, catalyst system, and polymerization conditions, but can be controlled by adding hydrogen, alkyl halides, zinc sialkyl, etc., as necessary. be able to. In the present invention, the activity of the catalyst is high, and the ratio of the n-heptane extraction residue polymer in the produced polymer is 95%.
Since it reaches ~97%, a polymer with sufficient physical properties can be obtained even if extraction or removal of the amorphous polymer is omitted, making it possible to simplify the process. Furthermore, in the present invention, since lumps are less likely to form during the grinding in the process of preparing component (A), it is possible to increase the amount of raw material charged to the grinder, and since there are fewer coarse particles of the produced polymer, there are no problems with handling the slurry. It is of great practical value industrially. Examples of the present invention will be shown below. Example 1 (1) Preparation of catalyst (A) component A vibratory mill equipped with a grinding pot having an internal volume of 600 ml and containing 80 steel balls with a diameter of 12 mm is prepared. In this pot, in a nitrogen atmosphere, add 30 g of anhydrous magnesium chloride, 3.15 g of ethyl benzoate, and chloroform.
3.45 g, diphenyl ether 5.1 g, and aluminum chloride 0.38 g were charged, and pulverization was carried out for 20 hours. When the pulverizing pot was opened, there were no lumps, and no pulverized material was observed adhering to the pot wall or steel balls. In a 300 ml round bottom flask under nitrogen atmosphere, add 10 g of the above pulverized composition, 100 ml of n-heptane, and titanium tetrachloride.
1.5 ml was taken, stirred at 80°C for 2 hours, and the supernatant liquid was removed by decantation. Next, 200 ml of n-heptane was added, the mixture was stirred at room temperature for 30 minutes, and the supernatant liquid was removed by decantation, which was repeated 5 times. Furthermore, 200 ml of n-heptane was added to obtain a slurry of a composition (component (A) of the present invention) in which a titanated compound was supported. Sample this part and n
- When heptane was evaporated and analyzed, the composition was found to be
It contained 1.12wt% Ti. (2) Polymerization n-heptane in a 2L autoclave made of SUS-32
1l, 0.15g of component (A) prepared in (1) (as titanium atoms)
0.035mgatom), tri-iso-butyl aluminum
0.4ml (1.59mM), ethyl benzoate 0.10ml
(0.7mM) in a nitrogen atmosphere to prepare the catalyst of the present invention. After evacuating the nitrogen in the autoclave with a vacuum pump, hydrogen was added at a gas phase partial pressure of 0.3 kg/
cm 2 was charged, and then propylene was charged to adjust the pressure in the gas phase to 2 Kg/cm 2 gauge. The contents of the autoclave were heated, and after 5 minutes, the internal temperature was raised to 70°C, and the polymerization was continued for 2 hours while charging propylene to maintain the polymerization pressure at 5 kg/cm 2 gauge at 70°C. After the autoclave was cooled, unreacted propylene was purged and the contents were taken out and filtered to obtain 238 g of white powdery polypropylene. The proportion of the boiling n-heptane extraction residual polymer (crystalline polypropylene) in this powdered polypropylene (hereinafter abbreviated as Powder II) is 96.4wt%.
Bulk specific gravity is 0.48g/ml, intrinsic viscosity 1.64dl/g
(Measured in a tetralin solution at 135°C, the same applies hereinafter). On the other hand, 3 g of n-heptane soluble polymer (amorphous polypropylene) was obtained by concentrating the liquid. The ratio of the boiling n-heptane extraction residual polymer to the total polymer produced, ie, the total II, was 95.2 wt%. The polymerization activity of the catalyst in this polymerization was 803g/g-(A).
hr, 72Kg/g-Ti.hr The amount of polypropylene obtained is
They were 1606g/g-(A) and 143Kg/g-Ti. The obtained polypropylene powder was sieved and the particle size distribution was measured, and the coarse particles (hereinafter simply referred to as coarse particles) on the 10 mesh sieve were 1.0 wt%.
The fine particles under the 200 mesh sieve (hereinafter simply referred to as fine particles) were 8.3 wt%. Comparative Example 1 (1) Preparation of catalyst (A) component Grinding was carried out in the same manner as in Example 1 except that the addition of aluminum chloride was omitted. When the crushing pot was opened, approximately 5 g of crushed material was found adhering to the pot wall and sphere. The obtained pulverized product was heat treated with titanium tetrachloride and washed with n-heptane in the same manner as in Example 1, to obtain a slurry of a composition supporting a titanium compound with a titanium content of 1.32 wt%. (2) Polymerization 0.20g of the composition prepared in (1) (as titanium atoms)
Polymerization was carried out in exactly the same manner and under the same conditions as in Example 1, except that 0.055 mg/atom) was used as component (A), and 232 g of powdered polypropylene was obtained. This powdered polypropylene powder II is
96.1wt%, bulk specific gravity 0.48g/ml, limiting viscosity number 1.63
It was dl/g. On the other hand, by concentrating the liquid, amorphous polypropylene is produced.
3g was obtained. The total II of the obtained polymer is
It was 94.9wt%. The polymerization activity of the catalyst in this polymerization was 588g/g-
(A)・hr, 45Kg/g-Ti・hr, and the amount of polypropylene obtained was 1175g/g-(A), 89Kg/g-Ti. The obtained polypropylene powder was sieved and the particle size distribution was measured, and the coarse particles were 7.0wt%.
The fine particles were 10.8wt%. Comparing these results with Example 1 of the present invention, it can be seen that the activity in Example is about 40% greater, the number of coarse particles and fine particles is small, and the particle size distribution is narrow and uniform. Example 2 0.15 g of component (A) prepared in Example 1 (1) (0.035 mgatom in terms of titanium metal atoms), 0.12 ml (0.97 mM) of diethylaluminum monochloride, 0.10 ml (0.07 mM) of ethyl benzoate, triiso -Butylaluminum 0.4ml (1.59mM) was used as a catalyst component, of which tri-iso-butylaluminum was injected into the autoclave in 6 parts at 20 minute intervals, and the polymerization time was controlled.
Table 1 shows the results of polymerization carried out in the same manner as in Example 1 except that the time was changed to 2.5 hours. Examples 3 to 4 Polymerization was carried out under exactly the same conditions as in Example 2, except that equimolar amounts of ethylaluminum sesquichloride or ethylaluminum dichloride were used in place of diethylaluminum monochloride in the method of Example 2. The results are shown in Table 1.

【衚】【table】

【衚】 実斜䟋 〜12 実斜䟋(1)の(A)成分補造に斌お、(ハ)成分ずしお
甚いたクロロホルムに代えお皮々のハロゲン化炭
化氎玠化合物を甚いお(A)成分を補造した。 これを(A)成分ずしお甚いた以倖はすべお実斜䟋
ず同じ条件で重合を行な぀た結果を衚に瀺
す。 実斜䟋 13〜23 実斜䟋(1)の(A)成分の補造に斌お、(ニ)成分ずし
お甚いたゞプニル゚ヌテルに代えお皮々の(ニ)成
分を甚いお(A)成分を補造した。 これを(A)成分ずしお甚いた以倖はすべお実斜䟋
ず同じ条件で重合を行な぀た結果を衚に瀺
す。
[Table] Examples 5 to 12 In the production of component (A) in Example 1 (1), component (A) was produced using various halogenated hydrocarbon compounds in place of chloroform used as component (c). Manufactured. Table 2 shows the results of polymerization carried out under the same conditions as in Example 2 except that this was used as component (A). Examples 13-23 In the production of component (A) in Example 1 (1), component (A) was produced by using various component (2) instead of diphenyl ether used as component (2). did. Table 3 shows the results of polymerization conducted under the same conditions as in Example 2 except that this was used as component (A).

【衚】【table】

【衚】 実斜䟋 24〜31 実斜䟋(1)の(A)成分調補法のうち、粉砕時の塩
化マグネシりム、安息銙酞゚チル、クロロホル
ム、及びゞプニル゚ヌテル塩化アルミニりムの
組成を衚のように倉え、その他は実斜䟋(1)ず
同様に(A)成分の調補を行な぀た。 これを(A)成分ずし、その他の条件は実斜䟋ず
党く同じにしお重合を行な぀た結果を衚に瀺
す。
[Table] Examples 24 to 31 Among the methods for preparing component (A) in Example 1 (1), the compositions of magnesium chloride, ethyl benzoate, chloroform, and diphenyl ether aluminum chloride during grinding were as shown in Table 4. Component (A) was prepared in the same manner as in Example 1 (1) except for the following changes. This was used as component (A) and polymerization was carried out under the same conditions as in Example 1, and the results are shown in Table 4.

【衚】【table】

【衚】 実斜䟋 32 実斜䟋の方法に斌お重合時に甚いる安息銙酞
゚チルに代えお安息銙酞゚チル、塩化アルミニり
ムの錯䜓0.198gを甚い、重合時間を時間
にした以倖は党く同じ条件で重合を行な぀た結果
を衚に瀺す。
[Table] Example 32 The same procedure as in Example 2 except that 0.198 g of a 1:1 complex of ethyl benzoate and aluminum chloride was used instead of ethyl benzoate used during polymerization, and the polymerization time was changed to 2 hours. Table 5 shows the results of polymerization under these conditions.

【衚】【table】

【衚】 実斜䟋 33 実斜䟋の方法に斌おモノマヌずしおプロピレ
ンに代えお゚チレン1.0wtを含むプロピレンず
゚チレンの混合ガスを甚いた以倖は党く同じ条件
で重合を行な぀た。 重合時間2.15時間でポリプロピレンパりダヌ
503g及び非晶性ポリプロピレン7gが埗られた。
埗られたポリプロピレンパりダヌのパりダヌI.I
は96.0wt、極限粘床数1.70dl、かさ比重
0.47gml、゚チレン含有率0.6wtであ぀た。 本重合反応での党I.I.94.7、重合掻性は
1581g―(A)hr、 41Kg―Ti.hr、取埗量
は3400g―(A)、304Kg―Tiであ぀た。 実斜䟋 34 実斜䟋の方法に斌お1.7時間重合を続け玄
400gのプロピレンを重合したのち冷华しおオヌ
トクレヌブ内を゚チレンに眮換し、トリヌiso―
ブチルアルミニりム0.1mlを加え、氎玠分圧1.5
Kgcm2abs、重合圧力Kgcm2、重合枩床70℃
で0.6時間重合を続け、パりダヌ518g、非晶性ポ
リマヌ7gを埗た。 埗られたパりダヌのパりダヌI.Iは97.0wt、極
限粘床数1.83dl、かさ比重0.48gml、゚チ
レン含有率1.83wtであ぀た。 本重合反応での党I.I95.7wt、重合掻性は
1527g―(A)hr、136Kg―Ti・hr、取埗
量は3500g―(A)、312Kg―Tiであ぀た。
[Table] Example 33 Polymerization was carried out under exactly the same conditions as in Example 2 except that a mixed gas of propylene and ethylene containing 1.0 wt% ethylene was used instead of propylene as the monomer. Polypropylene powder with polymerization time of 2.15 hours
503 g and 7 g of amorphous polypropylene were obtained.
Powder II of the obtained polypropylene powder
is 96.0wt%, intrinsic viscosity 1.70dl/g, bulk specific gravity
The ethylene content was 0.47 g/ml and 0.6 wt%. The total II in this polymerization reaction was 94.7%, and the polymerization activity was
1581g/g-(A). hr, 41Kg/g-Ti.hr, the amount obtained was 3400g/g-(A), 304Kg/g-Ti. Example 34 Polymerization was continued for 1.7 hours according to the method of Example 2.
After polymerizing 400g of propylene, it is cooled and the inside of the autoclave is replaced with ethylene.
Add 0.1ml of butyl aluminum and hydrogen partial pressure 1.5
Kg/cm 2 abs, polymerization pressure 5Kg/cm 2 G, polymerization temperature 70℃
Polymerization was continued for 0.6 hours to obtain 518 g of powder and 7 g of amorphous polymer. The obtained powder, Powder II, had an intrinsic viscosity of 97.0 wt%, an intrinsic viscosity of 1.83 dl/g, a bulk specific gravity of 0.48 g/ml, and an ethylene content of 1.83 wt%. The total I.I in this polymerization reaction was 95.7wt%, and the polymerization activity was
1527g/g-(A). hr, 136Kg/g-Ti・hr, and the amount obtained was 3500g/g-(A), 312Kg/g-Ti.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は本発明によるチヌグラヌ觊媒のフロヌ
チダヌト図である。
FIG. 1 is a flowchart of the Ziegler catalyst according to the present invention.

Claims (1)

【特蚱請求の範囲】  (A) (ã‚€) 塩化マグネシりム (ロ) 有機酞゚ステル (ハ) 脂肪族たたは脂環族ハロゲン化炭化氎玠化
合物、 (ニ) 次に瀺す(a)−(c)矀、すなわち (a) 脂肪族炭化氎玠化合物、脂環族炭化氎玠
化合物、芳銙族炭化氎玠化合物、ハロゲン
化芳銙族炭化氎玠化合物、 (b) 液状プロピレンオリゎマヌ、たたは (c) 芳銙族゚ヌテル化合物、 より遞ばれた少なくずも䞀぀の成分、及び (ホ) トリハロゲン化アルミニりム を共粉砕したのち四塩化チタンで熱凊理しお
埗られた組成物、 (B) 有機アルミニりム化合物、及び (C) 有機酞゚ステルたたは有機酞゚ステルずハロ
ゲン化アルミニりムずの錯䜓、 より成る觊媒を甚いおα―オレフむンを重合する
こずを特城ずするα―オレフむンの重合方法。
[Claims] 1 (A) (a) Magnesium chloride (b) Organic acid ester (c) Aliphatic or alicyclic halogenated hydrocarbon compound, (d) The following groups (a) to (c) , that is, selected from (a) an aliphatic hydrocarbon compound, an alicyclic hydrocarbon compound, an aromatic hydrocarbon compound, a halogenated aromatic hydrocarbon compound, (b) a liquid propylene oligomer, or (c) an aromatic ether compound. (e) a composition obtained by co-pulverizing aluminum trihalide and then heat-treating it with titanium tetrachloride; (B) an organoaluminum compound; and (C) an organic acid ester or an organic acid. A method for polymerizing α-olefin, which comprises polymerizing α-olefin using a catalyst consisting of a complex of an ester and an aluminum halide.
JP6886079A 1979-02-08 1979-06-04 Polymerization of alpha-olefin Granted JPS55161807A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6886079A JPS55161807A (en) 1979-06-04 1979-06-04 Polymerization of alpha-olefin
US06/116,206 US4282114A (en) 1979-02-08 1980-01-28 Catalyst for polymerizing α-olefins
AU55133/80A AU526781B2 (en) 1979-02-08 1980-02-01 Catalyst for polymerizing alpha-olefins
ES488219A ES488219A0 (en) 1979-02-08 1980-02-01 PROCEDURE FOR THE POLYMERIZATION OF ALPHA-OLEPHINS
GB8003878A GB2042566B (en) 1979-02-08 1980-02-05 Catalyst for polymerizing -olefins
PT70789A PT70789A (en) 1979-02-08 1980-02-06 A catalyst for polymerizing alpha-olefins
FR8002764A FR2448547A1 (en) 1979-02-08 1980-02-08 STEREOREGULAR CATALYST FOR A-OLEFIN POLYMERIZATION
DE19803004768 DE3004768A1 (en) 1979-02-08 1980-02-08 CATALYST FOR THE POLYMERIZATION OF ALPHA -OLEFINES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6886079A JPS55161807A (en) 1979-06-04 1979-06-04 Polymerization of alpha-olefin

Publications (2)

Publication Number Publication Date
JPS55161807A JPS55161807A (en) 1980-12-16
JPS6351166B2 true JPS6351166B2 (en) 1988-10-13

Family

ID=13385838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6886079A Granted JPS55161807A (en) 1979-02-08 1979-06-04 Polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPS55161807A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69522329T2 (en) 1994-01-31 2002-01-03 Toho Titanium Co Ltd Solid catalyst component for olefin polymerization and olefin polymerization catalyst

Also Published As

Publication number Publication date
JPS55161807A (en) 1980-12-16

Similar Documents

Publication Publication Date Title
JP2774896B2 (en) Olefin polymerization catalyst
JPS6338363B2 (en)
US4282114A (en) Catalyst for polymerizing α-olefins
US4220745A (en) Process for polymerization of α-olefins
CA1169842A (en) Polymerization of olefins
JPS6351166B2 (en)
JPS6351165B2 (en)
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPS591405B2 (en) α-olefin polymerization method
JPS6351164B2 (en)
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPS6363561B2 (en)
JPS6351162B2 (en)
JPS6351163B2 (en)
JPS6042243B2 (en) Polymerization method of α-olefins
JPH0128049B2 (en)
JPS5835521B2 (en) Olefin polymerization catalyst
KR830001349B1 (en) α-olefin polymerization catalyst
JPS6339603B2 (en)
JPS5853906A (en) Preparation of ethylenic polymer
JPS6338365B2 (en)
JPH0548241B2 (en)
KR810001467B1 (en) Process for polymerization of -oleffins
JPS5840964B2 (en) Stereoregular polymerization method of α↓-olefins
JPS6215562B2 (en)