JPS6351166B2 - - Google Patents

Info

Publication number
JPS6351166B2
JPS6351166B2 JP6886079A JP6886079A JPS6351166B2 JP S6351166 B2 JPS6351166 B2 JP S6351166B2 JP 6886079 A JP6886079 A JP 6886079A JP 6886079 A JP6886079 A JP 6886079A JP S6351166 B2 JPS6351166 B2 JP S6351166B2
Authority
JP
Japan
Prior art keywords
component
polymerization
compound
organic acid
hydrocarbon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6886079A
Other languages
Japanese (ja)
Other versions
JPS55161807A (en
Inventor
Akira Ito
Heizo Sasaki
Masanori Oosawa
Masahiro Jinno
Kenji Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6886079A priority Critical patent/JPS55161807A/en
Priority to US06/116,206 priority patent/US4282114A/en
Priority to ES488219A priority patent/ES8101627A1/en
Priority to AU55133/80A priority patent/AU526781B2/en
Priority to GB8003878A priority patent/GB2042566B/en
Priority to PT70789A priority patent/PT70789A/en
Priority to DE19803004768 priority patent/DE3004768A1/en
Priority to FR8002764A priority patent/FR2448547A1/en
Publication of JPS55161807A publication Critical patent/JPS55161807A/en
Publication of JPS6351166B2 publication Critical patent/JPS6351166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はいわゆる担体型チタン成分と有機アル
ミニウム化合物より成る触媒を用いて高度に立体
規則性を持つたポリα―オレフインを重合する方
法に関するものである。 近年チーグラー・ナツタ触媒のチタン成分を担
体に担持して触媒の活性を高める方法が開発さ
れ、これに関する先行技術としてハロゲン化マグ
ネシウムにチタン化合物を担持した担体型チタン
成分と有機アルミニウム化合物との組合せに、第
3成分として電子供与性化合物を添加することに
よつて生成ポリマーの立体規則性を向上させる方
法が特開昭47−9342等で提案されている。 しかし、このような従来の担体型チタン成分と
有機アルミニウム化合物の2成分系でプロピレン
を重合すると重合活性は大きいが生成ポリマーの
結晶性が極端に低く、これに電子供与性化合物を
加えると生成ポリマーの結晶性は向上するが活性
の低下がはげしく、しかも結晶性向上効果も充分
ではなくて現在工業的に使用されている三塩化チ
タン/ジエチルアルミニウムモノクロライド触媒
系等で得られている結晶性ポリプロピレンと同等
の品質のものを得るのは困難であつた。 特開昭50−126590の方法ではハロゲン化マグネ
シウムと有機酸エステルを共粉砕して得られた組
成物を四塩化チタンと反応して得られた組成物と
有機アルミニウム化合物、及び有機酸エステルよ
り成る触媒系が提案されているが活性及び生成ポ
リマーの結晶性も不充分である。 本発明はこのような担体型触媒の性能向上を目
的とするものである。まずハロゲン化マグネシウ
ム、有機酸エステル、さらに脂肪族、または脂環
族ハロゲン化炭化水素化合物を共粉砕したのち、
四塩化チタンと熱処理して得られた組成物は特開
昭50−126590の組成物をチタン成分として用いた
のと比べて大巾に活性が向上することを知見とし
て得た。しかしこれだけでは活性が向上しても、
生成ポリマーの結晶性及びかさ比重が低くてα―
オレフイン重合用触媒としては満足すべき性能の
ものではなかつた。そこでこの触媒系について生
成ポリマーの結晶性、及びかさ比重向上について
検討した結果、前述の共粉砕の際に種々の有機化
合物を共存させることにより生成ポリマーの結晶
性、及びかさ比重が大巾に改良されることを解明
しすでに特許出願を行なつた。 我々は上記触媒について種々検討したところ、
粉砕中にチタン成分の固塊が生成し易く、また生
成ポリマーの粒度分布に粗粒が多いという二つの
欠点があ工業的にスケールアツプする際に問題が
生じその解決が必要となつた。 我々は上記欠点を除くことを目的として種々検
討したところハロゲン化マグネシウムに前述の
種々の化合物を共粉砕する際にハロゲン化アルミ
ニウムを共存させることによつて粉砕中の固まり
防止、及び生成ポリマーの粗粒の減少及び活性向
上に役立つことを見出し本発明に到達した。 すなわち本発明は、 (A) (イ) ハロゲン化マグネシウム (ロ) 有機酸エステル、 (ハ) 脂肪族または脂環族ハロゲン化炭化水素化
合物 (ニ) 次に示す(a)〜(c)群 (a) 脂肪族炭化水素化合物、脂環族炭化水素
化合物、芳香族炭化水素化合物、ハロゲン
化芳香族炭化水素化合物 (b) 液状プロピレンオリゴマー、または (c) 芳香族エーテル化合物 より選ばれた少くとも一つの成分、及び (ホ) ハロゲン化アルミニウム の5成分を共粉砕したのち四塩化チタンで熱処
理して得られた組成物、 (B) 有機アルミニウム化合物、及び (C) 有機酸エステルまたは有機酸エステルとハロ
ゲン化アルミニウムとの錯体、 より成る触媒をα―オレフイン重合用に用いると
いうものである。 本発明の方法で(A)成分の調製に用いる(イ)成分で
あるハロゲン化マネシウムは実質的に無水ハロゲ
ン化マグネシウムが用いられ、とくに無水塩化マ
グネシウムが好ましい。(ロ)成分として用いられる
有機酸エステルとしては一般式 R2COOR1 (ただし、R1はC1〜C12の芳香族、脂肪族、脂
環族炭化水素残基を、R2はR1と同じかまたは
The present invention relates to a method for polymerizing highly stereoregular polyα-olefin using a catalyst comprising a so-called carrier-type titanium component and an organoaluminum compound. In recent years, a method has been developed to increase the activity of the catalyst by supporting the titanium component of the Ziegler-Natsuta catalyst on a carrier, and as a prior art related to this, a combination of a carrier-type titanium component in which a titanium compound is supported on magnesium halide and an organoaluminum compound has been developed. A method of improving the stereoregularity of the resulting polymer by adding an electron-donating compound as a third component has been proposed in JP-A-47-9342. However, when propylene is polymerized with such a conventional two-component system of a carrier-type titanium component and an organoaluminum compound, the polymerization activity is high, but the crystallinity of the resulting polymer is extremely low, and when an electron-donating compound is added to this, the resulting polymer Crystalline polypropylene obtained with titanium trichloride/diethylaluminum monochloride catalyst system, which is currently used industrially, has improved crystallinity, but the activity has been drastically reduced, and the effect of improving crystallinity is not sufficient. It was difficult to obtain products of equivalent quality. The method of JP-A-50-126590 consists of a composition obtained by co-pulverizing magnesium halide and an organic acid ester and reacting it with titanium tetrachloride, an organoaluminum compound, and an organic acid ester. Although catalyst systems have been proposed, the activity and crystallinity of the resulting polymers are also insufficient. The present invention aims to improve the performance of such a supported catalyst. First, after co-pulverizing magnesium halide, organic acid ester, and aliphatic or alicyclic halogenated hydrocarbon compound,
It has been found that the activity of the composition obtained by heat treatment with titanium tetrachloride is greatly improved compared to the composition of JP-A-126590-1983, which is used as the titanium component. However, even if this alone improves activity,
The crystallinity and bulk specific gravity of the produced polymer are low and α-
The performance was not satisfactory as a catalyst for olefin polymerization. Therefore, we investigated the improvement of the crystallinity and bulk specific gravity of the produced polymer with this catalyst system, and found that by coexisting various organic compounds during the co-pulverization described above, the crystallinity and bulk specific gravity of the produced polymer were significantly improved. We have already applied for a patent. We conducted various studies on the above catalysts and found that
There are two drawbacks: solid lumps of the titanium component tend to form during pulverization, and there are many coarse particles in the particle size distribution of the produced polymer, which pose problems when industrially scaled up, and it is necessary to solve these problems. We conducted various studies with the aim of eliminating the above drawbacks, and found that by co-pulverizing magnesium halide with the various compounds mentioned above, we could prevent agglomeration during crushing and improve the roughness of the resulting polymer. The present invention was achieved by discovering that this method is useful for reducing grain size and improving activity. That is, the present invention comprises (A) (a) magnesium halide (b) organic acid ester (c) aliphatic or alicyclic halogenated hydrocarbon compound (d) the following groups (a) to (c) ( At least one selected from a) an aliphatic hydrocarbon compound, an alicyclic hydrocarbon compound, an aromatic hydrocarbon compound, a halogenated aromatic hydrocarbon compound, (b) a liquid propylene oligomer, or (c) an aromatic ether compound. (e) a composition obtained by co-pulverizing five components of aluminum halide and then heat-treating with titanium tetrachloride, (B) an organoaluminum compound, and (C) an organic acid ester or an organic acid ester. A catalyst consisting of a complex with aluminum halide is used for α-olefin polymerization. The manesium halide used as component (A) for preparing component (A) in the method of the present invention is essentially anhydrous magnesium halide, with anhydrous magnesium chloride being particularly preferred. The organic acid ester used as the component (b) has the general formula R 2 COOR 1 (where R 1 is a C 1 to C 12 aromatic, aliphatic, or alicyclic hydrocarbon residue, and R 2 is R 1 same as or

【式】を示す) で示される芳香族、脂肪族、または脂環族カルボ
ン酸エステルで、例えば安息香酸メチル、安息香
酸エチル、安息香酸プロピル、安息香酸フエニ
ル、トルイル酸エチル、アニス酸エチル、ナフト
エ酸エチル、酢酸エチル、酢酸ブチル、エチルメ
タアクリレート、ヘキサヒドロ安息香酸エチルな
どがあげられる。 (ハ)成分として用いられる脂肪族、または脂環族
ハロゲン化炭化水素化合物としては飽和または不
飽和のハロゲン化炭化水素化合物が用いられ、例
えばメチレンクロライド、クロロホルム、四塩化
炭素、エチレンジクロライド、n―ブチルクロラ
イド、プロペニルクロライド、1,2―ジクロル
プロパン、1,2―ジクロルエチレン、ヘキサク
ロロエタン、テトラクロロエチレン、テトラブロ
ムエタン塩素化パラフインなどがあげられる。 (ニ)成分としては以下に示す(a)〜(c)の中から選ば
れた有機化合物が用いられる。 (a) 成分としてはn―ヘキサン、n―ヘプタン、
n―オクタン、iso―オクタンなどの飽和脂肪
族炭化水素化合物、ペンテン―1、ヘキセン―
1、オクテン―1などの不飽和脂肪族炭化水素
化合物、ベンゼン、トルエン、エチルベンゼ
ン、o―キシレン、m―キシレン、p―キシレ
ンなどの芳香族炭化水素化合物、シクロヘキサ
ン、シクロペンタンなどの脂環族炭化水素化合
物、モノクロルベンゼン、o―ジクロルベンゼ
ン、m―ジクロルベンゼン、などのハロゲン化
芳香族炭化水素化合物が使用される。 (b) 成分としては分子量約100〜1500程度、好ま
しくは200〜1000のやや粘ちような液状プロピ
レンオリゴマーが好ましく、これは常法によ
り、例えば塩化アルミニウム等の触媒でプロピ
レンを重合することによつて製造されたものが
使用できる。 (c) 成分としては芳香族エーテル化合物として
は、例えばメチルフエニルエーテル、エチルフ
エニルエーテル、アリルフエニルエーテル、ジ
フエニルエーテル、ジトリルエーテルがあげら
れる。 (ホ)成分としては実質的に無水のハロゲン化アル
ミニウムが用いられ、とくに塩化アルミニウム、
臭化アルミニウムが好ましい。 (A)成分の製造方法について述べると、まず(イ)〜
(ニ)成分の共粉砕を行なう。この粉砕はチーグラ
ー・ナツタ触媒のチタン成分の調製に通常用いら
れている公知の方法、例えば粉砕温度は0〜80
℃、粉砕時間1〜100時間の条件で、真空、また
は不活性ガス雰囲気中で水分、酸素などのほとん
ど完全に除かれた状態で行われる。 粉砕の際の組成は(イ)成分50〜95wt%、好まし
くは55〜90wt%、さらに好ましくは60〜80wt%、
(ロ)成分1〜40wt%好ましくは2〜30wt%、さら
に好ましくは3〜20wt%、(ハ)成分1〜40wt%、
好ましくは2〜30wt%、さらに好ましくは3〜
20wt%、(ニ)成分1〜40wt%、好ましくは2〜
30wt%、さらに好ましくは3〜25wt%、(ホ)成分
0.1〜10wt%、好ましくは0.2〜5wt%、さらに好
ましくは0.3〜3wt%の範囲である。 得られた組成物は次に四塩化チタンで熱処理さ
れる。すなわち、上記共粉砕組成物を四塩化チタ
ン、またはその不活性溶媒溶液中に懸濁し、40〜
135℃の範囲で熱処理したのち、遊離の四塩化チ
タンを不活性溶媒で洗浄するか、乾燥(必要によ
り減圧下で)する方法が好ましい。 この際に使用する不活性溶媒としては脂肪族、
脂環族、及び芳香族の炭化水素、またはそれらの
ハロゲン誘導体が用いられ、例えばヘキサン、ヘ
プタン、ベンゼン、トルエン、クロルベンゼン、
シクロヘキサンなどが好ましい。 この四塩化チタンの熱処理によつて得られる(A)
成分はチタン金属として0.1〜10wt%を含有する
ように調製するのが好ましい。 本発明の(B)成分に使用される有機アルミニウム
化合物は一般式AlR3 3(ただしR3はC1〜C12のアル
キル基を示す)で表わされるトリアルキルアルミ
ニウムが用いられ、例えば、トリメチルアルミニ
ウム、トリエチルアルミニウム、トリ―n―プロ
ピルアルミニウム、トリ―n―ブチルアルミニウ
ム、トリ―iso―ブチルアルミニウム、トリ―n
―ヘキシルアルミニウムなどが用いられる。 本発明の方法ではさらに(B)成分として一般式
AlR4 oX3-o(ただしR4はC1〜C12のアルキル基、X
はハロゲン原子、nは1〜2を示す)で示される
アルキルアルミニウムハライドを加えると活性が
向上して好ましい。このアルキルアルミニウムハ
ライドとしてはジエチルアルミニウムモノクロラ
イド、エチルアルミニウムセスキクロライド、エ
チルアルミニウムジクロライド、ジエチルアルミ
ニウムモノブロマイド、ジエチルアルミニウムモ
ノアイオダイド、ジエチルアルミニウムモノフロ
ライド、ジ―n―プロピルアルミニウムモノクロ
ライド、ジ―iso―ブチルアルミニウムモノクロ
ライド、ジ―n―ヘキシルアルミニウムモノクロ
ライドなどがあげられる。 本発明の方法で(A)成分と(B)成分との使用割合は
広範囲に変えることができるが、一般に(A)成分中
に含まれるチタン金属1mg原子当り、トリアルキ
ルアルミニウム1〜500ミリモル、好ましくは3
〜100ミリモル、さらに好ましくは5〜50ミリモ
ルが用いられ、またアルキルアルミニウムハライ
ドはトリアルキルアルミニウム1モルに対して
0.05〜100モル、好ましくは0.1〜30モル、さらに
好ましくは0.3〜5モルの範囲である。トリアル
キルアルミニウムは重合開始時に全量加えるより
も重合途中で少量づつ加えるほうが活性と生成ポ
リマーの結晶性のバランスが良く、重合速度の経
時変化も少なく好ましい。 本発明の方法で用いられる(C)成分としては有機
酸エステルまたはこれとハロゲン化アルミニウム
との錯体があげられる。有機酸エステルとしては
(A)成分調製の時に述べた化合物が用いられ、有機
酸エステルとハロゲン化アルミニウム錯体は前述
の有機酸エステルとハロゲン化アルミニウム(好
ましくは塩化アルミニウム、または臭化アルミニ
ウム)を例えば混合するか、混合物を加熱するか
して調製できる。この際有機酸エステルとハロゲ
ン化アルミニウムのモル比は1:1が好ましい。 (C)成分の使用量は(B)成分の使用量、(A)成分の使
用量、及びTi含有率、重合温度などの重合条件
によつて異なるが、一般的には(B)成分として用い
られるトリアルキルアルミニウム1モル当り5モ
ル以下、好ましくは0.01〜1.5モル、さらに好ま
しくは0.1〜1モルである。 本発明の方法は一般式R−CH=CH2(ただしR
は炭素数1〜10のアルキル基を示す)で示される
α―オレフインの単独重合、及び上記α―オレフ
イン相互がエチレンとのブロツクまたはランダム
共重合に利用される。 上記α―オレフインとしては、例えばプロピレ
ン、ブテー1、ヘキセン−1、及び4―メチル―
ペンテン―1などがあげられる。 本発明の方法による重合反応は従来の当該技術
に於て通常行なわれている方法、及び条件が採用
できる。その際の重合温度は20〜100℃、好まし
くは40〜90の範囲であり、重合圧力は通常1〜60
Kg/cm2abs、好ましくは1〜50Kg/cm2absの範囲
である。重合反応は一般に脂肪族、脂環族、芳香
族の炭化水素類、またはそれらの混合物を溶媒と
して使用することができ、例えばプロパン、プタ
ン、ペンタン、ヘキサン、ヘプタン、シクロヘキ
サン、ベンゼンなど及びそれらの混合物が用いら
れる。 また、液状モノマー自身を溶媒として用いる塊
状重合法、及び溶媒が実質的に存在しない条件、
すなわち、ガス状モノマーと触媒とを接触するい
わゆる気相重合法で行なうことができる。 本発明の方法に於て生成するポリマーの分子量
は反応様式、触媒系、重合条件によつて変化する
が、必要に応じて、例えば水素、ハロゲン化アル
キル、シアルキル亜鉛などの添加によつて制御す
ることができる。 本願発明では触媒の活性が大きい上に、生成ポ
リマーのn―ヘプタン抽出残ポリマーの割合が95
〜97%にも及ぶので非晶性ポリマーの抽出または
除去を省略しても充分な物性を持つポリマーが得
られるのでプロセスの簡略化が可能になる。 さらに本願発明では(A)成分調製の過程での粉砕
中に固まりが出来にくいので粉砕機への原料の仕
込量を多くすることができ、また生成ポリマーの
粗粒が少ないのでスラリーのハンドリングによる
トラブルを無くすことができ工業的に実用価置が
大きい。 以下本発明の実施例を示す。 実施例 1 (1) 触媒(A)成分の調製 直径12mmの鋼球80個の入つた内容積600mlの粉
砕用ポツトを装備した振動ミルを用意する。 このポツトに、窒素囲気中で無水塩化マグネシ
ウム30g、安息香酸エチル3.15g、クロロホルム
3.45g、ジフエニルエーテル5.1g及び塩化アルミ
ニウム0.38gを装入し、20時間粉砕を行なつた。 粉砕ポツトを開けたところ塊状物はなく、ポツ
ト壁面、及び鋼球への粉砕物の付着を認められな
かつた。 300ml丸底フラスコに窒素雰囲気下で上記粉砕
組成物10g、n―ヘプタン100ml、四塩化チタン
1.5mlをとり、80℃で2時間かくはんし、デカン
テーシヨンにより上澄液を除いた。次にn―ヘプ
タン200mlを加え室温30分間かくはんののち、デ
カンテーシヨンで上澄液を除く操作を5回くり返
した。 さらにn―ヘプタン200mlを追加してチタン化
化合物を担持させた組成物(本発明の成分(A))の
スラリーを得た。この一部をサンプリングし、n
―ヘプタンを蒸発させ分析したところ該組成物は
1.12wt%のTiを含有していた。 (2) 重合 SUS−32製2lオートクレープにn―ヘプタン
1l、(1)で調製した(A)成分0.15g(チタン原子として
0.035mgatom)、トリーiso―ブチルアルミニウム
0.4ml(1.59mM)、安息香酸エチル0.10ml
(0.7mM)を窒素雰囲気中で装入して本発明の触
媒を調製した。オートクレーブ中の窒素を真空ポ
ンプで排気したのち、水素を気相分圧で0.3Kg/
cm2装入し、次にプロピレンを装入して気相部の圧
力を2Kg/cm2ゲージとした。オートクレープの内
容物を加熱し、5分後に内部温度を70℃まで昇温
し、70℃で重合圧力を5Kg/cm2ゲージに保つよう
にプロピレンを装入しながら重合を2時間続け
た。オートクレーブを冷却したのち、未反応プロ
ピレンをパージして内容物を取出し、過して白
色粉末状ポリプロピレン238gを得た。 この粉末状ポリプロピレンの沸とうn―ヘプタ
ン抽出残ポリマー(結晶性ポリプロピレン)の割
合(以下パウダーI.I.と略記する)は96.4wt%、
かさ比重は0.48g/ml、極限粘度数1.64dl/g
(135℃、テトラリン溶液にて測定、以下同様)で
あつた。 一方液の濃縮によりn―ヘプタン可溶性重合
体(非晶性ポリプロピレン)3gが得られた。 全生成ポリマーに対する沸とうn―ヘプタン抽
出残ポリマーの割合、すなわち全I.Iは95.2wt%で
あつた。 この重合での触媒の重合活性は803g/g−(A).
hr、72Kg/g−Ti.hrポリプロピレンの取得量は
1606g/g−(A)、143Kg/g−Tiであつた。 得られたポリプロピレンパウダーをふるい分け
して粒度分布を測定したところ10meshふるい上
の粗粒(以下単に粗粒と略記する。)は1.0wt%、
200meshふるい下の微粒(以下単に微粒と略記す
る。)8.3wt%であつた。 比較例 1 (1) 触媒(A)成分の調製 実施例1の粉砕に於て塩化アルミニウムの添加
を省略した以外は実施例1の方法で粉砕を行なつ
た。粉砕ポツトを開けたところポツト壁面及び球
に約5gの粉砕物が付着していた。 得られた粉砕物を実施例1と同様に四塩化チタ
ンで熱処理、及びn―ヘプタンによる洗剰を行な
い、チタン含有率1.32wt%のチタン化合物を担持
させた組成物のスラリーを得た。 (2) 重合 (1)で調製した組成物0.20g(チタン原子として
0.055mg/atom)を(A)成分として用いた以外は実
施例1と全く同じ方法及び条件で重合を行なつた
ところ粉末状ポリプロピレン232gを得た。 この粉末状ポリプロピレンのパウダーI.Iは
96.1wt%、かさ比重0.48g/ml、極限粘度数1.63
dl/gであつた。 一方液の濃縮により非晶性ポリプロピレン
3gが得られた。得られたポリマーの全I.Iは
94.9wt%であつた。 この重合での触媒の重合活性は588g/g―
(A)・hr、45Kg/g―Ti・hr、ポリプロピレンの
取得量は1175g/g―(A)、89Kg/g―Tiであつ
た。 得られたポリプロピレンパウダーをふるい分け
して粒度分布を測定したところ粗粒は7.0wt%、
微粒は10.8wt%であつた。 この結果を本願発明の実施例1と比べると実施
例のほうが活性が約40%大きく、粗粒、微粒が少
なくて粒度分布が狭く揃つていることがわかる。 実施例 2 実施例1(1)で調製した(A)成分0.15g(チタン金属
原子換算0.035mgatom)、ジエチルアルミニウム
モノクロライド0.12ml(0.97mM)、安息香酸エチ
ル0.10ml(0.07mM)、トリーiso―ブチルアルミ
ニウム0.4ml(1.59mM)を触媒成分とし、このう
ちトリ―iso―ブチルアルミニウムは20分間隔で
6分割でオートクレーブに圧入し、重合時間を
2.5時間にした以外は実施例1と同様に重合した
結果を表1に示す。 実施例 3〜4 実施例2の方法に於て、ジエチルアルミニウム
モノクロライドに代えて等モルのエチルアルミニ
ウムセスキクロライド、またはエチルアルミニウ
ムジクロライドを用いた以外は実施例2と全く同
じ条件で重合を行なつた結果を表1に示す。
Aromatic, aliphatic, or alicyclic carboxylic acid esters represented by [formula], such as methyl benzoate, ethyl benzoate, propyl benzoate, phenyl benzoate, ethyl toluate, ethyl anisate, and naphthoate. Examples include ethyl acid, ethyl acetate, butyl acetate, ethyl methacrylate, and ethyl hexahydrobenzoate. As the aliphatic or alicyclic halogenated hydrocarbon compound used as component (iii), saturated or unsaturated halogenated hydrocarbon compounds are used, such as methylene chloride, chloroform, carbon tetrachloride, ethylene dichloride, n- Examples include butyl chloride, propenyl chloride, 1,2-dichloropropane, 1,2-dichloroethylene, hexachloroethane, tetrachloroethylene, tetrabromoethane chlorinated paraffin, and the like. As the component (d), an organic compound selected from the following (a) to (c) is used. (a) Ingredients include n-hexane, n-heptane,
Saturated aliphatic hydrocarbon compounds such as n-octane and iso-octane, pentene-1, hexene-
1. Unsaturated aliphatic hydrocarbon compounds such as octene-1, aromatic hydrocarbon compounds such as benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, alicyclic carbonization such as cyclohexane and cyclopentane Hydrogen compounds, halogenated aromatic hydrocarbon compounds such as monochlorobenzene, o-dichlorobenzene, m-dichlorobenzene, etc. are used. Component (b) is preferably a slightly viscous liquid propylene oligomer with a molecular weight of about 100 to 1,500, preferably 200 to 1,000. You can use those manufactured by As the component (c), aromatic ether compounds include, for example, methyl phenyl ether, ethyl phenyl ether, allyl phenyl ether, diphenyl ether, and ditolyl ether. As the component (e), substantially anhydrous aluminum halide is used, especially aluminum chloride,
Aluminum bromide is preferred. When describing the method for producing component (A), first of all, (A) ~
(d) Co-pulverizing the components. This pulverization is carried out using a known method commonly used to prepare the titanium component of the Ziegler-Natsuta catalyst.
C. and a pulverization time of 1 to 100 hours under vacuum or an inert gas atmosphere in which moisture, oxygen, etc. are almost completely removed. The composition during pulverization is (a) component 50 to 95 wt%, preferably 55 to 90 wt%, more preferably 60 to 80 wt%,
(b) component 1 to 40 wt%, preferably 2 to 30 wt%, more preferably 3 to 20 wt%, (c) component 1 to 40 wt%,
Preferably 2 to 30 wt%, more preferably 3 to 30 wt%
20wt%, component (d) 1-40wt%, preferably 2-40wt%
30wt%, more preferably 3 to 25wt%, component (e)
It ranges from 0.1 to 10 wt%, preferably from 0.2 to 5 wt%, and more preferably from 0.3 to 3 wt%. The resulting composition is then heat treated with titanium tetrachloride. That is, the above co-pulverized composition is suspended in titanium tetrachloride or its inert solvent solution, and
A method in which free titanium tetrachloride is washed with an inert solvent or dried (if necessary under reduced pressure) after heat treatment in the range of 135°C is preferred. The inert solvent used at this time is aliphatic,
Alicyclic and aromatic hydrocarbons or their halogen derivatives are used, such as hexane, heptane, benzene, toluene, chlorobenzene,
Cyclohexane and the like are preferred. (A) obtained by heat treatment of this titanium tetrachloride
The components are preferably prepared to contain 0.1 to 10 wt% of titanium metal. The organoaluminum compound used in component (B) of the present invention is a trialkylaluminum represented by the general formula AlR 3 3 (wherein R 3 represents a C 1 to C 12 alkyl group), such as trimethylaluminum. , triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, tri-iso-butylaluminum, tri-n
-Hexylaluminum etc. are used. In the method of the present invention, as component (B), the general formula
AlR 4 o X 3-o (where R 4 is a C 1 to C 12 alkyl group,
is a halogen atom, and n is 1 to 2) It is preferable to add an alkyl aluminum halide, since the activity is improved. Examples of the alkyl aluminum halide include diethylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride, diethylaluminium monobromide, diethylaluminum monoiodide, diethylaluminium monofluoride, di-n-propylaluminum monochloride, di-iso- Examples include butylaluminum monochloride and di-n-hexylaluminum monochloride. Although the proportions of component (A) and component (B) used in the method of the present invention can be varied over a wide range, generally 1 to 500 mmol of trialkylaluminium, per 1 mg atom of titanium metal contained in component (A), Preferably 3
~100 mmol, more preferably 5 to 50 mmol, and the alkyl aluminum halide is used per mole of trialkylaluminium.
The amount ranges from 0.05 to 100 mol, preferably from 0.1 to 30 mol, and more preferably from 0.3 to 5 mol. It is preferable to add the trialkylaluminum in small amounts during the polymerization, rather than adding the entire amount at the start of the polymerization, as this provides a better balance between the activity and the crystallinity of the resulting polymer, and there is less change over time in the polymerization rate. Component (C) used in the method of the present invention includes an organic acid ester or a complex of this with aluminum halide. As an organic acid ester
The compound mentioned at the time of component (A) preparation is used, and the organic acid ester and aluminum halide complex is prepared by mixing the above-mentioned organic acid ester and aluminum halide (preferably aluminum chloride or aluminum bromide), or a mixture thereof. It can be prepared by heating. In this case, the molar ratio of organic acid ester and aluminum halide is preferably 1:1. The amount of component (C) used varies depending on the amount of component (B) used, the amount of component (A) used, and polymerization conditions such as Ti content and polymerization temperature, but in general, as component (B) The amount is 5 mol or less, preferably 0.01 to 1.5 mol, more preferably 0.1 to 1 mol, per mol of trialkylaluminum used. The method of the present invention uses the general formula R-CH=CH 2 (where R
represents an alkyl group having 1 to 10 carbon atoms), and the above α-olefins are used for block or random copolymerization with ethylene. Examples of the α-olefin include propylene, buty-1, hexene-1, and 4-methyl-
Examples include Penten-1. For the polymerization reaction according to the method of the present invention, conventional methods and conditions commonly used in the art can be employed. The polymerization temperature at that time is 20 to 100℃, preferably 40 to 90℃, and the polymerization pressure is usually 1 to 60℃.
Kg/cm 2 abs, preferably in the range of 1 to 50 kg/cm 2 abs. Polymerization reactions can generally use aliphatic, alicyclic, aromatic hydrocarbons, or mixtures thereof, as solvents, such as propane, butane, pentane, hexane, heptane, cyclohexane, benzene, etc., and mixtures thereof. is used. In addition, a bulk polymerization method using the liquid monomer itself as a solvent, and conditions where the solvent is substantially absent,
That is, it can be carried out by a so-called gas phase polymerization method in which a gaseous monomer and a catalyst are brought into contact. The molecular weight of the polymer produced in the method of the present invention varies depending on the reaction mode, catalyst system, and polymerization conditions, but can be controlled by adding hydrogen, alkyl halides, zinc sialkyl, etc., as necessary. be able to. In the present invention, the activity of the catalyst is high, and the ratio of the n-heptane extraction residue polymer in the produced polymer is 95%.
Since it reaches ~97%, a polymer with sufficient physical properties can be obtained even if extraction or removal of the amorphous polymer is omitted, making it possible to simplify the process. Furthermore, in the present invention, since lumps are less likely to form during the grinding in the process of preparing component (A), it is possible to increase the amount of raw material charged to the grinder, and since there are fewer coarse particles of the produced polymer, there are no problems with handling the slurry. It is of great practical value industrially. Examples of the present invention will be shown below. Example 1 (1) Preparation of catalyst (A) component A vibratory mill equipped with a grinding pot having an internal volume of 600 ml and containing 80 steel balls with a diameter of 12 mm is prepared. In this pot, in a nitrogen atmosphere, add 30 g of anhydrous magnesium chloride, 3.15 g of ethyl benzoate, and chloroform.
3.45 g, diphenyl ether 5.1 g, and aluminum chloride 0.38 g were charged, and pulverization was carried out for 20 hours. When the pulverizing pot was opened, there were no lumps, and no pulverized material was observed adhering to the pot wall or steel balls. In a 300 ml round bottom flask under nitrogen atmosphere, add 10 g of the above pulverized composition, 100 ml of n-heptane, and titanium tetrachloride.
1.5 ml was taken, stirred at 80°C for 2 hours, and the supernatant liquid was removed by decantation. Next, 200 ml of n-heptane was added, the mixture was stirred at room temperature for 30 minutes, and the supernatant liquid was removed by decantation, which was repeated 5 times. Furthermore, 200 ml of n-heptane was added to obtain a slurry of a composition (component (A) of the present invention) in which a titanated compound was supported. Sample this part and n
- When heptane was evaporated and analyzed, the composition was found to be
It contained 1.12wt% Ti. (2) Polymerization n-heptane in a 2L autoclave made of SUS-32
1l, 0.15g of component (A) prepared in (1) (as titanium atoms)
0.035mgatom), tri-iso-butyl aluminum
0.4ml (1.59mM), ethyl benzoate 0.10ml
(0.7mM) in a nitrogen atmosphere to prepare the catalyst of the present invention. After evacuating the nitrogen in the autoclave with a vacuum pump, hydrogen was added at a gas phase partial pressure of 0.3 kg/
cm 2 was charged, and then propylene was charged to adjust the pressure in the gas phase to 2 Kg/cm 2 gauge. The contents of the autoclave were heated, and after 5 minutes, the internal temperature was raised to 70°C, and the polymerization was continued for 2 hours while charging propylene to maintain the polymerization pressure at 5 kg/cm 2 gauge at 70°C. After the autoclave was cooled, unreacted propylene was purged and the contents were taken out and filtered to obtain 238 g of white powdery polypropylene. The proportion of the boiling n-heptane extraction residual polymer (crystalline polypropylene) in this powdered polypropylene (hereinafter abbreviated as Powder II) is 96.4wt%.
Bulk specific gravity is 0.48g/ml, intrinsic viscosity 1.64dl/g
(Measured in a tetralin solution at 135°C, the same applies hereinafter). On the other hand, 3 g of n-heptane soluble polymer (amorphous polypropylene) was obtained by concentrating the liquid. The ratio of the boiling n-heptane extraction residual polymer to the total polymer produced, ie, the total II, was 95.2 wt%. The polymerization activity of the catalyst in this polymerization was 803g/g-(A).
hr, 72Kg/g-Ti.hr The amount of polypropylene obtained is
They were 1606g/g-(A) and 143Kg/g-Ti. The obtained polypropylene powder was sieved and the particle size distribution was measured, and the coarse particles (hereinafter simply referred to as coarse particles) on the 10 mesh sieve were 1.0 wt%.
The fine particles under the 200 mesh sieve (hereinafter simply referred to as fine particles) were 8.3 wt%. Comparative Example 1 (1) Preparation of catalyst (A) component Grinding was carried out in the same manner as in Example 1 except that the addition of aluminum chloride was omitted. When the crushing pot was opened, approximately 5 g of crushed material was found adhering to the pot wall and sphere. The obtained pulverized product was heat treated with titanium tetrachloride and washed with n-heptane in the same manner as in Example 1, to obtain a slurry of a composition supporting a titanium compound with a titanium content of 1.32 wt%. (2) Polymerization 0.20g of the composition prepared in (1) (as titanium atoms)
Polymerization was carried out in exactly the same manner and under the same conditions as in Example 1, except that 0.055 mg/atom) was used as component (A), and 232 g of powdered polypropylene was obtained. This powdered polypropylene powder II is
96.1wt%, bulk specific gravity 0.48g/ml, limiting viscosity number 1.63
It was dl/g. On the other hand, by concentrating the liquid, amorphous polypropylene is produced.
3g was obtained. The total II of the obtained polymer is
It was 94.9wt%. The polymerization activity of the catalyst in this polymerization was 588g/g-
(A)・hr, 45Kg/g-Ti・hr, and the amount of polypropylene obtained was 1175g/g-(A), 89Kg/g-Ti. The obtained polypropylene powder was sieved and the particle size distribution was measured, and the coarse particles were 7.0wt%.
The fine particles were 10.8wt%. Comparing these results with Example 1 of the present invention, it can be seen that the activity in Example is about 40% greater, the number of coarse particles and fine particles is small, and the particle size distribution is narrow and uniform. Example 2 0.15 g of component (A) prepared in Example 1 (1) (0.035 mgatom in terms of titanium metal atoms), 0.12 ml (0.97 mM) of diethylaluminum monochloride, 0.10 ml (0.07 mM) of ethyl benzoate, triiso -Butylaluminum 0.4ml (1.59mM) was used as a catalyst component, of which tri-iso-butylaluminum was injected into the autoclave in 6 parts at 20 minute intervals, and the polymerization time was controlled.
Table 1 shows the results of polymerization carried out in the same manner as in Example 1 except that the time was changed to 2.5 hours. Examples 3 to 4 Polymerization was carried out under exactly the same conditions as in Example 2, except that equimolar amounts of ethylaluminum sesquichloride or ethylaluminum dichloride were used in place of diethylaluminum monochloride in the method of Example 2. The results are shown in Table 1.

【表】【table】

【表】 実施例 5〜12 実施例1(1)の(A)成分製造に於て、(ハ)成分として
用いたクロロホルムに代えて種々のハロゲン化炭
化水素化合物を用いて(A)成分を製造した。 これを(A)成分として用いた以外はすべて実施例
2と同じ条件で重合を行なつた結果を表2に示
す。 実施例 13〜23 実施例1(1)の(A)成分の製造に於て、(ニ)成分とし
て用いたジフエニルエーテルに代えて種々の(ニ)成
分を用いて(A)成分を製造した。 これを(A)成分として用いた以外はすべて実施例
2と同じ条件で重合を行なつた結果を表3に示
す。
[Table] Examples 5 to 12 In the production of component (A) in Example 1 (1), component (A) was produced using various halogenated hydrocarbon compounds in place of chloroform used as component (c). Manufactured. Table 2 shows the results of polymerization carried out under the same conditions as in Example 2 except that this was used as component (A). Examples 13-23 In the production of component (A) in Example 1 (1), component (A) was produced by using various component (2) instead of diphenyl ether used as component (2). did. Table 3 shows the results of polymerization conducted under the same conditions as in Example 2 except that this was used as component (A).

【表】【table】

【表】 実施例 24〜31 実施例1(1)の(A)成分調製法のうち、粉砕時の塩
化マグネシウム、安息香酸エチル、クロロホル
ム、及びジフエニルエーテル塩化アルミニウムの
組成を表4のように変え、その他は実施例1(1)と
同様に(A)成分の調製を行なつた。 これを(A)成分とし、その他の条件は実施例1と
全く同じにして重合を行なつた結果を表4に示
す。
[Table] Examples 24 to 31 Among the methods for preparing component (A) in Example 1 (1), the compositions of magnesium chloride, ethyl benzoate, chloroform, and diphenyl ether aluminum chloride during grinding were as shown in Table 4. Component (A) was prepared in the same manner as in Example 1 (1) except for the following changes. This was used as component (A) and polymerization was carried out under the same conditions as in Example 1, and the results are shown in Table 4.

【表】【table】

【表】 実施例 32 実施例2の方法に於て重合時に用いる安息香酸
エチルに代えて安息香酸エチル、塩化アルミニウ
ムの1:1錯体0.198gを用い、重合時間を2時間
にした以外は全く同じ条件で重合を行なつた結果
を表5に示す。
[Table] Example 32 The same procedure as in Example 2 except that 0.198 g of a 1:1 complex of ethyl benzoate and aluminum chloride was used instead of ethyl benzoate used during polymerization, and the polymerization time was changed to 2 hours. Table 5 shows the results of polymerization under these conditions.

【表】【table】

【表】 実施例 33 実施例2の方法に於てモノマーとしてプロピレ
ンに代えてエチレン1.0wt%を含むプロピレンと
エチレンの混合ガスを用いた以外は全く同じ条件
で重合を行なつた。 重合時間2.15時間でポリプロピレンパウダー
503g及び非晶性ポリプロピレン7gが得られた。
得られたポリプロピレンパウダーのパウダーI.I
は96.0wt%、極限粘度数1.70dl/g、かさ比重
0.47g/ml、エチレン含有率0.6wt%であつた。 本重合反応での全I.I.94.7%、重合活性は
1581g/g―(A).hr、 41Kg/g―Ti.hr、取得量
は3400g/g―(A)、304Kg/g―Tiであつた。 実施例 34 実施例2の方法に於て1.7時間重合を続け約
400gのプロピレンを重合したのち冷却してオー
トクレーブ内をエチレンに置換し、トリーiso―
ブチルアルミニウム0.1mlを加え、水素分圧1.5
Kg/cm2abs、重合圧力5Kg/cm2G、重合温度70℃
で0.6時間重合を続け、パウダー518g、非晶性ポ
リマー7gを得た。 得られたパウダーのパウダーI.Iは97.0wt%、極
限粘度数1.83dl/g、かさ比重0.48g/ml、エチ
レン含有率1.83wt%であつた。 本重合反応での全I.I95.7wt%、重合活性は
1527g/g―(A).hr、136Kg/g―Ti・hr、取得
量は3500g/g―(A)、312Kg/g―Tiであつた。
[Table] Example 33 Polymerization was carried out under exactly the same conditions as in Example 2 except that a mixed gas of propylene and ethylene containing 1.0 wt% ethylene was used instead of propylene as the monomer. Polypropylene powder with polymerization time of 2.15 hours
503 g and 7 g of amorphous polypropylene were obtained.
Powder II of the obtained polypropylene powder
is 96.0wt%, intrinsic viscosity 1.70dl/g, bulk specific gravity
The ethylene content was 0.47 g/ml and 0.6 wt%. The total II in this polymerization reaction was 94.7%, and the polymerization activity was
1581g/g-(A). hr, 41Kg/g-Ti.hr, the amount obtained was 3400g/g-(A), 304Kg/g-Ti. Example 34 Polymerization was continued for 1.7 hours according to the method of Example 2.
After polymerizing 400g of propylene, it is cooled and the inside of the autoclave is replaced with ethylene.
Add 0.1ml of butyl aluminum and hydrogen partial pressure 1.5
Kg/cm 2 abs, polymerization pressure 5Kg/cm 2 G, polymerization temperature 70℃
Polymerization was continued for 0.6 hours to obtain 518 g of powder and 7 g of amorphous polymer. The obtained powder, Powder II, had an intrinsic viscosity of 97.0 wt%, an intrinsic viscosity of 1.83 dl/g, a bulk specific gravity of 0.48 g/ml, and an ethylene content of 1.83 wt%. The total I.I in this polymerization reaction was 95.7wt%, and the polymerization activity was
1527g/g-(A). hr, 136Kg/g-Ti・hr, and the amount obtained was 3500g/g-(A), 312Kg/g-Ti.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるチーグラー触媒のフロー
チヤート図である。
FIG. 1 is a flowchart of the Ziegler catalyst according to the present invention.

Claims (1)

【特許請求の範囲】 1 (A) (イ) 塩化マグネシウム (ロ) 有機酸エステル (ハ) 脂肪族または脂環族ハロゲン化炭化水素化
合物、 (ニ) 次に示す(a)−(c)群、すなわち (a) 脂肪族炭化水素化合物、脂環族炭化水素
化合物、芳香族炭化水素化合物、ハロゲン
化芳香族炭化水素化合物、 (b) 液状プロピレンオリゴマー、または (c) 芳香族エーテル化合物、 より選ばれた少なくとも一つの成分、及び (ホ) トリハロゲン化アルミニウム を共粉砕したのち四塩化チタンで熱処理して
得られた組成物、 (B) 有機アルミニウム化合物、及び (C) 有機酸エステルまたは有機酸エステルとハロ
ゲン化アルミニウムとの錯体、 より成る触媒を用いてα―オレフインを重合する
ことを特徴とするα―オレフインの重合方法。
[Claims] 1 (A) (a) Magnesium chloride (b) Organic acid ester (c) Aliphatic or alicyclic halogenated hydrocarbon compound, (d) The following groups (a) to (c) , that is, selected from (a) an aliphatic hydrocarbon compound, an alicyclic hydrocarbon compound, an aromatic hydrocarbon compound, a halogenated aromatic hydrocarbon compound, (b) a liquid propylene oligomer, or (c) an aromatic ether compound. (e) a composition obtained by co-pulverizing aluminum trihalide and then heat-treating it with titanium tetrachloride; (B) an organoaluminum compound; and (C) an organic acid ester or an organic acid. A method for polymerizing α-olefin, which comprises polymerizing α-olefin using a catalyst consisting of a complex of an ester and an aluminum halide.
JP6886079A 1979-02-08 1979-06-04 Polymerization of alpha-olefin Granted JPS55161807A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6886079A JPS55161807A (en) 1979-06-04 1979-06-04 Polymerization of alpha-olefin
US06/116,206 US4282114A (en) 1979-02-08 1980-01-28 Catalyst for polymerizing α-olefins
ES488219A ES8101627A1 (en) 1979-02-08 1980-02-01 Catalyst for polymerizing alpha -olefins
AU55133/80A AU526781B2 (en) 1979-02-08 1980-02-01 Catalyst for polymerizing alpha-olefins
GB8003878A GB2042566B (en) 1979-02-08 1980-02-05 Catalyst for polymerizing -olefins
PT70789A PT70789A (en) 1979-02-08 1980-02-06 A catalyst for polymerizing alpha-olefins
DE19803004768 DE3004768A1 (en) 1979-02-08 1980-02-08 CATALYST FOR THE POLYMERIZATION OF ALPHA -OLEFINES
FR8002764A FR2448547A1 (en) 1979-02-08 1980-02-08 STEREOREGULAR CATALYST FOR A-OLEFIN POLYMERIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6886079A JPS55161807A (en) 1979-06-04 1979-06-04 Polymerization of alpha-olefin

Publications (2)

Publication Number Publication Date
JPS55161807A JPS55161807A (en) 1980-12-16
JPS6351166B2 true JPS6351166B2 (en) 1988-10-13

Family

ID=13385838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6886079A Granted JPS55161807A (en) 1979-02-08 1979-06-04 Polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPS55161807A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE181931T1 (en) 1994-01-31 1999-07-15 Toho Titanium Co Ltd CATALYST FOR OLEFIN POLYMERIZATION AND METHOD FOR OLEFIN POLYMERIZATION USING THE SAME

Also Published As

Publication number Publication date
JPS55161807A (en) 1980-12-16

Similar Documents

Publication Publication Date Title
JP2774896B2 (en) Olefin polymerization catalyst
JPS6338363B2 (en)
US4282114A (en) Catalyst for polymerizing α-olefins
US4220745A (en) Process for polymerization of α-olefins
JPS6351166B2 (en)
JPS6351165B2 (en)
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPS591405B2 (en) α-olefin polymerization method
JPS6351164B2 (en)
JPS5821921B2 (en) Polymerization method of α↓-olefins
JPS6351162B2 (en)
JPS6351163B2 (en)
JPS6042243B2 (en) Polymerization method of α-olefins
JPS5835521B2 (en) Olefin polymerization catalyst
KR830001349B1 (en) α-olefin polymerization catalyst
JPS6339603B2 (en)
JPS5853906A (en) Preparation of ethylenic polymer
JPS6338365B2 (en)
JPH0548241B2 (en)
KR810001467B1 (en) Process for polymerization of -oleffins
JPS5840964B2 (en) Stereoregular polymerization method of α↓-olefins
JPS6215562B2 (en)
JPS62295903A (en) Polymerization of alpha-olefin
JPS6338364B2 (en)
JPS5817521B2 (en) Olefin polymerization method