JPS6350897B2 - - Google Patents

Info

Publication number
JPS6350897B2
JPS6350897B2 JP57065378A JP6537882A JPS6350897B2 JP S6350897 B2 JPS6350897 B2 JP S6350897B2 JP 57065378 A JP57065378 A JP 57065378A JP 6537882 A JP6537882 A JP 6537882A JP S6350897 B2 JPS6350897 B2 JP S6350897B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
light emitting
rotating body
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57065378A
Other languages
Japanese (ja)
Other versions
JPS58184101A (en
Inventor
Katsumi Takami
Takeshi Ueda
Kenichi Okajima
Shinichi Inoe
Akira Oogushi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57065378A priority Critical patent/JPS58184101A/en
Publication of JPS58184101A publication Critical patent/JPS58184101A/en
Publication of JPS6350897B2 publication Critical patent/JPS6350897B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3604Rotary joints allowing relative rotational movement between opposing fibre or fibre bundle ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は、回転体側から静止側へ、非接触で信
号を伝達する光学的信号伝達装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical signal transmission device that transmits signals from a rotating body side to a stationary side in a non-contact manner.

従来、回転体側で得られた情報を、静止側へ伝
達する手段として、スリツプリングによる接触方
式、若しくは電波、あるいは音波による非接触方
式などが用いられてきた。前者は寿命、および雑
音発生の点で問題が多く、後者は装置が複雑とな
り、大形化は免れ得ない。
Conventionally, as means for transmitting information obtained on the rotating body side to the stationary side, a contact method using a slip ring, a non-contact method using radio waves, or sound waves have been used. The former has many problems in terms of lifespan and noise generation, while the latter requires a complicated device and inevitably increases in size.

これに対して、回転体側に発光ダイオードを取
り付け、オプチカルガイドを介して静止側の受光
ダイオードへ信号を伝達する装置も既に提案され
ている。
On the other hand, a device has already been proposed in which a light emitting diode is attached to the rotating body and a signal is transmitted to the light receiving diode on the stationary side via an optical guide.

しかるにこの種の装置では、オプチカルガイド
の作成、取付精度などに極めて難しい工作上の問
題があり、真に実用的な装置とはいい難い。
However, with this type of device, there are extremely difficult manufacturing problems such as the creation of the optical guide and the precision of its installation, so it is difficult to say that it is a truly practical device.

本発明は従来装置の上記のような種々の欠点を
除去するために、構成が簡単で高S/N比で信号
を伝達する光学的な信号伝達装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical signal transmission device that has a simple configuration and transmits signals with a high S/N ratio, in order to eliminate the various drawbacks of conventional devices as described above.

まず図面により本発明を説明する。 First, the present invention will be explained with reference to the drawings.

第1図は本発明の原理を説明するための図であ
る。第1図aの1は本発明に係るオプチカルフア
イバである20はこのオプテイカルフアイバのコ
アを示し、2はコアを被覆する低屈折率のクラツ
ドを示す。該フアイバの両端には、開口数で決ま
る立体角内に半導体発光素子(半導体レーザ、あ
るいは発光ダイオード)3、および4が配置され
る。さらに、両発光素子には鏡面、或いは完全散
乱反射をする反射空洞5、および6がそれぞれに
設けられている。したがつて、オプチカルフアイ
バ内に導入された両発光素子の光は、無限反射さ
れ、光学的には一種の積分球的機能を果たす。こ
のようなオプチカルフアイバのクラツドに、図示
のように所定の間隔で微小窓7(形状はスリツ
ト、円、楕円、何れでも目的に合致するものを選
ぶ)を開けると、窓から出射する光強度は、極座
標で表わして実線8、および点線9のようにな
る。前者が素子3からの光であり、後者が素子4
からの光それぞれに対応する。10は集光レン
ズ、例えば魚眼レンズ11を有する半導体受光素
子(例えばピンダイオード)である。したがつて
上記オプチカルフアイバが矢印のように移動した
とすると、発光素子3の発光によつて受光素子1
0が受ける光強度は第1図bの実線の範囲内で変
動し、発光素子4の発行によつて受光素子10が
受ける光強度は点線の範囲内で変動する。したが
つて発光素子3と4の双方の発光によつて受光素
子10が受光する光強度、つまり10の出力電気
信号は、略々一点鎖線のようになり、オプテイカ
ルフアイバの移動にかかわらず比較的均一な値と
なる。またそのように側面微小窓7の大きさと間
隔が選択される。
FIG. 1 is a diagram for explaining the principle of the present invention. In FIG. 1a, 1 is an optical fiber according to the present invention, 20 is the core of this optical fiber, and 2 is a low refractive index cladding covering the core. At both ends of the fiber, semiconductor light emitting elements (semiconductor lasers or light emitting diodes) 3 and 4 are arranged within a solid angle determined by the numerical aperture. Furthermore, both light-emitting elements are provided with reflective cavities 5 and 6, respectively, which provide mirror surfaces or completely scattering reflection. Therefore, the light from both light emitting elements introduced into the optical fiber is reflected infinitely, and optically performs a kind of integrating sphere function. When micro-windows 7 (the shape is a slit, circle, or ellipse, whichever suits the purpose is chosen) are opened at predetermined intervals as shown in the figure in the cladding of such an optical fiber, the intensity of light emitted from the window is , expressed in polar coordinates as shown by a solid line 8 and a dotted line 9. The former is light from element 3, and the latter is light from element 4.
corresponds to each light emitted from the 10 is a semiconductor light-receiving element (for example, a pin diode) having a condensing lens, for example, a fisheye lens 11. Therefore, if the optical fiber moves in the direction of the arrow, light emission from the light emitting element 3 causes the light receiving element 1 to move.
The light intensity received by the light emitting element 4 varies within the range shown by the solid line in FIG. Therefore, the light intensity received by the light receiving element 10 due to the light emission from both the light emitting elements 3 and 4, that is, the output electric signal of 10, is approximately as shown by the dashed line, and the comparison is made regardless of the movement of the optical fiber. It becomes a uniform value. Also, the size and interval of the side micro-windows 7 are selected in this way.

次に第2図に本発明の他の構成例を示す。これ
は、オプチカルフアイバ1の一端にのみ半導体発
光素子3が配置された例を示し、この場合には、
他端は、鏡面もしくは完全拡散反射体5がそのま
ま直接配置される。そして側面微小窓7は、左端
から右端まで、所定間隔で並び、しかもその開口
部(微小窓直径、或いはスリツト幅)を逐次大き
くして行けば、受光素子10の出力電気信号は、
フアイバの位置に対して、略均等な値を取る。ま
たそのように、窓形状と寸法、及び窓間隔が選択
される。
Next, FIG. 2 shows another configuration example of the present invention. This shows an example in which the semiconductor light emitting device 3 is arranged only at one end of the optical fiber 1, and in this case,
At the other end, a mirror surface or a perfect diffuse reflector 5 is directly placed. If the side micro-windows 7 are arranged at predetermined intervals from the left end to the right end, and the openings (micro-window diameters or slit widths) are gradually enlarged, the output electrical signal of the light-receiving element 10 will be
The value is approximately equal to the position of the fiber. Also, the window shape and dimensions and window spacing are selected accordingly.

第3図は、本発明に係わる光学装置の一実施例
の構成を示す図である。図において、12は回転
体であり、図の矢印の方向に回転する。回転体に
はオプチカルフアイバ1が図示のように設置され
る。側面微小窓7に対応して、静止側12′に置
かれた受光素子10は、微小窓7からの光散乱の
略全量を受光するように近接して配置されてい
る。13は、発光素子3,4を共通に駆動するた
めの電気信号源であり、この信号は、測定しよう
とする物理量に応じてパルスコードモジユレーシ
ヨンされている。なお、16は増幅器である。
FIG. 3 is a diagram showing the configuration of an embodiment of the optical device according to the present invention. In the figure, 12 is a rotating body, which rotates in the direction of the arrow in the figure. An optical fiber 1 is installed on the rotating body as shown in the figure. The light receiving element 10 placed on the stationary side 12' corresponds to the side micro-window 7 and is placed close to it so as to receive substantially the entire amount of light scattered from the micro-window 7. Reference numeral 13 denotes an electric signal source for commonly driving the light emitting elements 3 and 4, and this signal is subjected to pulse code modulation according to the physical quantity to be measured. Note that 16 is an amplifier.

さらにフアイバ1の配置は、第4図のように1
点を接して図の矢印の如く環状に配置し、端部は
ドラム状の回転体12の底面に垂直方向に引き出
されて発光素子3,4と結合される。かくして側
面微小窓は、近似的に同一円周上に配列されるこ
とになる。
Furthermore, the fiber 1 is arranged as shown in FIG.
They are arranged in a ring shape as shown by the arrows in the figure, with the points in contact with each other, and the ends are pulled out in a vertical direction to the bottom surface of the drum-shaped rotating body 12 and connected to the light emitting elements 3 and 4. In this way, the side micro-windows are arranged approximately on the same circumference.

以上の説明では、発光素子、受光素子がそれぞ
れ1チヤンネルの場合について述べたが、多チヤ
ンネルを必要とする場合では、例えば連続回転型
ポジトロンCTがある。(N.Nohara、IEEE、NS
−27 p1128/1136、1980)。
In the above description, the case where the light emitting element and the light receiving element each have one channel has been described, but in the case where multiple channels are required, for example, there is a continuously rotating positron CT. (N. Nohara, IEEE, NS
−27 p1128/1136, 1980).

第5図は、多チヤンネルの発光素子を用いる場
合の実施例を示し、第6図は多チヤンネルの場合
の発光素子及び受光素子群の配置関係を示してい
る。各オプチカルフアイバ1は必要個数だけ第5
図のように回転体側に環状に配置され、それぞれ
に信号源13,13′……が独立的に結合される
(図では2個のみ示してある)。他方、静止側受光
素子10,10′も第6図のように多チヤンネル
として、上記オプチカルフアイバ群に光学的に結
合するよう配置されている。
FIG. 5 shows an embodiment in which a multi-channel light emitting element is used, and FIG. 6 shows the arrangement relationship between the light emitting element and the light receiving element group in the case of multi-channel. Each optical fiber 1 has the required number of 5th fibers.
As shown in the figure, the signal sources 13, 13', . . . are arranged in a ring shape on the rotating body side, and signal sources 13, 13', . . . are independently coupled to each one (only two are shown in the figure). On the other hand, the stationary side light receiving elements 10, 10' are also arranged as multi-channels as shown in FIG. 6 so as to be optically coupled to the optical fiber group.

ここで受光素子10,10′は、スイツチ手段
(半導体回路)14に接続され、かつこのスイツ
チ手段14は回転体12に結合されたアングルエ
ンコーダ15の出力信号パルスによつて、回転角
に対応して切換えられる。即ち、オプチカルフア
イバ1が素子10と光学的に結合している間は、
スイツチ14は、素子10側に接続され、フアイ
バ1が素子10′と光学的に結合し始めた時点で
10′側に接続される。16は増巾器であり、1
7はマルチプレクサであり、これもまたアングル
エンコーダ15によつて、回転に同期して各チヤ
ンネルが逐次切換えられる。
Here, the light receiving elements 10, 10' are connected to a switch means (semiconductor circuit) 14, and this switch means 14 corresponds to the rotation angle by output signal pulses from an angle encoder 15 coupled to the rotating body 12. can be switched. That is, while the optical fiber 1 is optically coupled to the element 10,
The switch 14 is connected to the element 10 side, and is connected to the 10' side when the fiber 1 begins to optically couple with the element 10'. 16 is an amplifier; 1
7 is a multiplexer, and each channel is sequentially switched in synchronization with rotation by the angle encoder 15 as well.

したがつて、フアイバ1がどの位置にあつても
マルチプレクサ17の出力チヤンネル18,1
8′,……は、常に信号源13,13′,……に対
応した端子で出力信号が得られる。
Therefore, no matter what position the fiber 1 is in, the output channels 18,1 of the multiplexer 17
8', . . . always provide output signals at terminals corresponding to the signal sources 13, 13', .

次に第7図、第8図は本発明の他の実施例を示
す。オプチカルフアイバの微小窓からの光量が足
りない場合は、第7図のように2個のフアイバ
1,1′を結合し、かつ第7図のように側面微小
窓を互いに隣接し合う方向へ偏倚させれば、極座
標で表わした光強度分布8は、第8図のようにな
り、十分の強度と、受光素子10の集光立体角に
適合した分布を得るようになる。かくして、S/
N比のよい光を授受が行なわれる。
Next, FIGS. 7 and 8 show other embodiments of the present invention. If the amount of light from the small windows of the optical fiber is insufficient, connect the two fibers 1 and 1' as shown in Fig. 7, and shift the side small windows in the direction that they are adjacent to each other as shown in Fig. 7. If this is done, the light intensity distribution 8 expressed in polar coordinates will become as shown in FIG. 8, and a distribution suitable for the solid angle of convergence of the light receiving element 10 and sufficient intensity will be obtained. Thus, S/
Light with a good N ratio is exchanged.

以上述べて来たように、本発明にあつては、オ
プチカルフアイバに必要個数だけ所定間隔に応じ
た位置に側面微小窓を開けるので、1個、乃至2
個の端面光源だけで、簡単に線状光源を得ること
ができる。したがつて発光・受光素子は微細な単
体素子を用いることができるので、高速応答(M
Hz)の信号伝達が可能となる。しかも光の結合が
位置的に連続して行なえるので、S/N比のよう
非接触信号伝達を実現し得る。
As described above, in the present invention, the necessary number of side micro-windows are formed in the optical fiber at positions corresponding to predetermined intervals, so one or two micro-windows are formed.
A linear light source can be easily obtained using just one edge light source. Therefore, since the light emitting/light receiving elements can use minute single elements, high-speed response (M
Hz) signal transmission becomes possible. Moreover, since optical coupling can be performed positionally continuously, non-contact signal transmission such as S/N ratio can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の原理を説明するた
めの図、第3図及び第4図は、本発明の一実施例
の構成を示す図、第5図及び第6図は本発明の他
の実施例の構成を示す図、第7図及び第8図は本
発明のさらに他の実施例を示す図である。
FIGS. 1 and 2 are diagrams for explaining the principle of the present invention, FIGS. 3 and 4 are diagrams showing the configuration of an embodiment of the present invention, and FIGS. 5 and 6 are diagrams for explaining the principle of the present invention. FIG. 7 and FIG. 8 are diagrams showing still other embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 回転体上に環状に設置され、かつ外被部であ
るクラツドには微小窓が列をなして形成されたオ
プテイカルフアイバと、該オプテイカルフアイバ
の両端もしくは一端に取り付けられた半導体発光
素子と、該発光素子を駆動する電気信号源とが上
記回転体側に設けられ、上記オプテイカルフアイ
バの微小窓の列に近接して配置され、上記回転体
側の変調光を受光する1乃至複数個の半導体受光
素子が静止側に設けられて成ることを特徴とする
光学的信号伝達装置。
1. An optical fiber installed in an annular shape on a rotating body and having a row of micro-windows formed in a cladding that is an outer covering part, and a semiconductor light emitting element attached to both ends or one end of the optical fiber. , an electric signal source for driving the light emitting element is provided on the rotating body side, and one or more semiconductors are arranged close to the row of micro-windows of the optical fiber and receive the modulated light from the rotating body side. An optical signal transmission device characterized in that a light receiving element is provided on a stationary side.
JP57065378A 1982-04-21 1982-04-21 Optical signal transmitter Granted JPS58184101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065378A JPS58184101A (en) 1982-04-21 1982-04-21 Optical signal transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065378A JPS58184101A (en) 1982-04-21 1982-04-21 Optical signal transmitter

Publications (2)

Publication Number Publication Date
JPS58184101A JPS58184101A (en) 1983-10-27
JPS6350897B2 true JPS6350897B2 (en) 1988-10-12

Family

ID=13285246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065378A Granted JPS58184101A (en) 1982-04-21 1982-04-21 Optical signal transmitter

Country Status (1)

Country Link
JP (1) JPS58184101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096561A1 (en) * 2007-02-08 2008-08-14 Fujikura Ltd. Optical fiber, optical fiber device, and bundle fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6246810B1 (en) 1998-06-16 2001-06-12 Electro-Tec Corp. Method and apparatus for controlling time delay in optical slip rings
EP2073406B1 (en) * 2007-12-17 2014-02-12 Siemens Aktiengesellschaft Machine with optical communication from one machine component to another machine component which is pivotable in relation to the first machine component
EP2109235B1 (en) * 2008-04-09 2013-05-29 Siemens Aktiengesellschaft Rotary joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096561A1 (en) * 2007-02-08 2008-08-14 Fujikura Ltd. Optical fiber, optical fiber device, and bundle fiber

Also Published As

Publication number Publication date
JPS58184101A (en) 1983-10-27

Similar Documents

Publication Publication Date Title
US4291976A (en) Digital fiber optic position sensor
US4447118A (en) Optical information transfer system
US4279465A (en) Device for transmitting and receiving optical data on the same optical transmission line
US4525025A (en) Fiber optic rotary joint using a reflective surface and tangentially mounted rotor and stator optical fibers
US3859536A (en) Optical communication system source-detector pair
US5297225A (en) Off-axis optical rotary joint
JP4750983B2 (en) Bi-directional optical transmission device
GB2049219A (en) Optical fibre coupling device
US4900117A (en) Rotary optical coupler utilizing cylindrical ringshaped mirrors and method of making same
US4444459A (en) Fiber optic slip ring
JPS6350897B2 (en)
JPS6315846Y2 (en)
JPS6142462B2 (en)
JPS6111015B2 (en)
JPS6335029A (en) Optical signal transmitter
JPS6226079B2 (en)
JPS60206334A (en) Signal transmitting device between rotating body and stationary body
JPS6054649B2 (en) Optical path switching device
CN111913163A (en) Optical signal transmitter and laser radar
US6603584B1 (en) System and method for bi-directional optical communication
JPS5922209B2 (en) optical signal transmission device
SU1688428A1 (en) Transmitting device
JP2003029096A (en) Bidirectional communication system
RU2029385C1 (en) Photoelectric pulsed rotation sensor for magnetic tape recorders
JPS5811915A (en) Optical transmission device