JPS5811915A - Optical transmission device - Google Patents

Optical transmission device

Info

Publication number
JPS5811915A
JPS5811915A JP10928581A JP10928581A JPS5811915A JP S5811915 A JPS5811915 A JP S5811915A JP 10928581 A JP10928581 A JP 10928581A JP 10928581 A JP10928581 A JP 10928581A JP S5811915 A JPS5811915 A JP S5811915A
Authority
JP
Japan
Prior art keywords
light
mirror
fiber
reflected
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10928581A
Other languages
Japanese (ja)
Inventor
Tsutomu Tanaka
勉 田中
Akimoto Serizawa
芹澤 昭元
Satoshi Ishizuka
石塚 訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10928581A priority Critical patent/JPS5811915A/en
Publication of JPS5811915A publication Critical patent/JPS5811915A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals

Abstract

PURPOSE:To improve the using efficiency of light and to expand the transmitting distance between terminals by branching a part of the light transmitting through optical fibers into a terminal changing the branched percentage variously to reduce insersion losses on the way of transmission. CONSTITUTION:Fibers 9-12 are arrayed one-dimensionally with equal intervals and adhered to the end surface of a focusing rod lens 5 having 1/4 period length and the fibers 10 and 12 are symmetrical to a lens axis 6. In the other end of the lens 5, a mirror 7 is adhered to a half surface of the lens 5 and a mirror 8 is movable. When the mirror 8 is parallel with the end surface of the lens 5, a part of the lght projected from the fiber 10 is reflected by the mirror 7, the remaining light is reflected by the mirror 8 and both the reflected light is made incident to the fiber 12. If the mirror 8 is inclined, the light reflected by the mirror 7 is made incident to the fiber 12 and the light reflected by the mirror 8 is reflected by the fiber 12. The light incident from the fiber 9 and reflected by the mirrror 8 is made incident to the fiber 12. By siad configuration, insertion losses are reduced, the using efficiency of light is improved and the transmission distance is expanded.

Description

【発明の詳細な説明】 光ファイバ中を伝搬する光信号を効率よく端末装置に伝
搬させ、端末からの光信号を効率よく光ファイバ内に挿
入させる光伝送装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical transmission device that efficiently propagates an optical signal propagating through an optical fiber to a terminal device and efficiently inserts an optical signal from the terminal into the optical fiber.

多端末を有する光伝送装置で、光フアイバ中の一部の光
を入出力して情報伝達を行なう従来の方法は、例えば第
1図に示した様なものがあった。
In an optical transmission device having multiple terminals, there is a conventional method of transmitting information by inputting and outputting part of the light in an optical fiber, for example, as shown in FIG.

la,lb,lc,ld・・・は端末装置で端末間は幹
線光ファイバ゛4で結合されており、端末内は1cに代
表例が記載しである。2は分岐器で光フアイバ中の光の
一部を端末内に伝送するものであては、幹線光ファイバ
4から端末内に分岐される光の量が一定である為、幹線
光ファイバ4内を伝搬する光が端末を通過する時に減衰
する量は一定である。したがって各端末での発光レベル
が同じとすると、端末1cで受光した光のうち、端末1
aの信号光強度と1bの信号光強度とが異なり、第1図
のような構成では受信する端末のすぐ右側の端末から発
した光の強度が一番弱くなる。この為このデータウェイ
では端末での最低受光レベルが前記の光強度に設定する
必要がある。実際には最低受光レベルは受光素子の種類
・光の変調方式によって決定されており、端末で前記最
低受光レベル以上の光を受光しようとすると、幹線光フ
ァイバ4から受光素子に分岐される量を多くしなくては
ならない。しかし、分岐量を多くすると端末を通過する
光の減衰が大きくなってし捷う。以上の事は相矛盾する
だめに、このデータウェイの方式では光の利用効率が悪
く、端末間の伝送距離が短かくなるという欠点があった
1a, 1b, 1c, 1d, . . . are terminal devices, and the terminals are connected by a trunk optical fiber 4, and a typical example inside the terminal is shown in 1c. 2 is a branching device that transmits a part of the light in the optical fiber to the terminal, and since the amount of light branched from the trunk optical fiber 4 to the terminal is constant, The amount by which propagating light is attenuated when passing through a terminal is constant. Therefore, assuming that the light emission level at each terminal is the same, out of the light received by terminal 1c, terminal 1
The signal light intensity of a and the signal light intensity of 1b are different, and in the configuration shown in FIG. 1, the intensity of the light emitted from the terminal immediately to the right of the receiving terminal is the weakest. Therefore, in this dataway, it is necessary to set the minimum light reception level at the terminal to the above-mentioned light intensity. In reality, the minimum light receiving level is determined by the type of light receiving element and the light modulation method, and when a terminal attempts to receive light exceeding the minimum light receiving level, the amount branched from the main optical fiber 4 to the light receiving element is I have to do a lot. However, if the amount of branching is increased, the attenuation of the light passing through the terminal will increase and the light will be shunted. Not only are the above contradictory, but this dataway system has the drawbacks of poor light usage efficiency and short transmission distances between terminals.

本発明は以上の欠点を解決する為に、幹線光ファイバか
ら端末内に分岐する量を変化させたものである。以下、
本発明の一実施例について図面とともに説明する。第2
図は端末装置内の分岐器と混合器を表わしているが、(
a)の状態はこの端末が使用されていない場合を、(b
)の状態はこの端末が使用されている場合を表わしてい
る。(a)の状態では幹線光ファイバを伝搬する光が端
末を通過するときに減衰な(100%通過する。一方(
b)の状態では幹線光ファイバを伝搬する光の半分が受
光素子側に分岐され、残り半分の光はそのまま幹線光フ
ァイバを伝送され、発光素子から出だ光の半分が幹線光
ファイバ内に伝送される。このように、! 使用しない端末では光減衰されることなく、必要に応じ
て幹線光ファイバ内の光を分岐することにすれば、伝送
途中での余分な損失をなくすることができ、光の利用効
率を向上させることが出来る。
In order to solve the above-mentioned drawbacks, the present invention changes the amount of branching from the trunk optical fiber into the terminal. below,
An embodiment of the present invention will be described with reference to the drawings. Second
The figure shows the branch and mixer in the terminal equipment.
The state of a) is when this terminal is not used, and the state of (b) is when this terminal is not used.
) indicates that this terminal is in use. In state (a), when the light propagating through the trunk optical fiber passes through the terminal, it is attenuated (passes 100%).On the other hand, (
In state b), half of the light propagating through the main optical fiber is branched to the light-receiving element side, the remaining half of the light is transmitted as is through the main optical fiber, and half of the light emitted from the light-emitting element is transmitted into the main optical fiber. be done. in this way,! By branching out the light in the main optical fiber as necessary, without attenuating the light at terminals that are not in use, it is possible to eliminate extra loss during transmission and improve the efficiency of light usage. I can do it.

しかし、第2図で示しだよう々機能を持つ効率の良い光
デバイスがなかったので、前記の光伝送装置を構成でき
なかった。第3図に、このような機能を持つ光デバイス
(以下Tカッグラと呼ぶ)の構成を示す。1/4周期長
の集束性ロッドレンズ5の端面にファイバ9〜12が接
着されている。とのファイバは等間隔で一次元に配列し
ており、ファイバ10と12はレンズ軸6に対して対称
である。レンズの他端にはミラー7がレンズの半面に接
着されており、ミラー8は可動である。まず(a)のよ
うにミラー8がレンズ端面と平行である場合、ファイバ
IOから出た光は一部ミラー7で反射され、残りの光は
ミラー8で反射され、両方の光ともファイバ12に入射
する。次に(b)のようにミラー8が傾斜している場合
、ミラー7で反射された光はファイバ12に入射するが
、ミラー8で反射された光はファイバ11に入射する。
However, since there was no efficient optical device having the functions shown in FIG. 2, it was not possible to construct the above-mentioned optical transmission apparatus. FIG. 3 shows the configuration of an optical device (hereinafter referred to as T-kagura) having such a function. Fibers 9 to 12 are bonded to the end face of a focusing rod lens 5 having a period length of 1/4. The fibers 10 and 12 are arranged in one dimension at equal intervals, and the fibers 10 and 12 are symmetrical about the lens axis 6. At the other end of the lens, a mirror 7 is glued to one half of the lens, and mirror 8 is movable. First, when the mirror 8 is parallel to the lens end face as shown in (a), part of the light emitted from the fiber IO is reflected by the mirror 7, the remaining light is reflected by the mirror 8, and both lights enter the fiber 12. incident. Next, when the mirror 8 is tilted as shown in FIG. 8B, the light reflected by the mirror 7 enters the fiber 12, but the light reflected by the mirror 8 enters the fiber 11.

又ファイバ9から入射した光のうちミラー8で反射され
た光はファイバ12に入射する。以」二説明したように
、ファイバ10.12を幹線光ファイバとし、ファイバ
11を受光素子側、ファイバ9を発光素子側として用い
れば、第2図で説明したTカップラが実現できる。即ち
端末が使用されない時には(a)の状態端末が使用され
る時には(b)の状態とすれば、伝送途中での挿入損失
を小さくすることができる。
Further, among the light incident from the fiber 9, the light reflected by the mirror 8 enters the fiber 12. As explained above, by using the fibers 10 and 12 as trunk optical fibers, using the fiber 11 as the light receiving element side and the fiber 9 as the light emitting element side, the T-coupler described in FIG. 2 can be realized. That is, by setting the terminal to the state (a) when it is not used and the state (b) when the terminal is used, insertion loss during transmission can be reduced.

以上説明したTカッグラは、光の分岐量が(a)。The T Kagura explained above has the amount of light splitting (a).

(b)の二つの状態しかなかったが、分岐量を連続的に
変化できるTカッシラの例を第4図に示す。第3図と同
じ部品には同一番号を付した。反射ミラー8はレンズ軸
に対し傾斜しており、ファイバ10から出だ光が反射ミ
ラー8で反射されるとファイバ11に入射するように固
定する。ミラー7はレンズ軸に垂直で、上下に移動でき
るようになっている。このように構成するとファイバ1
0から入射した光はミラー7を上に移動させる程ファイ
バ11への分岐量が減少し、反対にミラー7を下に移動
させると分岐量が増加する。したがってこのTカッグラ
を用いると、幹線光ファイバを伝(5) 搬する光で端末に伝送させる量を任意に変化させること
が出来る。
Although there are only two states (b), an example of a T-cassilla in which the amount of branching can be changed continuously is shown in FIG. The same parts as in Figure 3 are given the same numbers. The reflecting mirror 8 is inclined with respect to the lens axis, and is fixed so that the light emitted from the fiber 10 enters the fiber 11 when reflected by the reflecting mirror 8. The mirror 7 is perpendicular to the lens axis and can be moved up and down. With this configuration, fiber 1
The amount of light incident from 0 to the fiber 11 decreases as the mirror 7 is moved upward, and on the contrary, the amount of light that enters the fiber 11 increases as the mirror 7 is moved downward. Therefore, by using this T-kagura, it is possible to arbitrarily change the amount of light transmitted through the trunk optical fiber (5) to the terminal.

以上説明したように、光フアイバ中を伝搬する光の一部
を端末内に分岐する構成の光伝送装置で、前記端末への
分岐量を可変にすることにより、伝送路途中での挿入損
失を著しく減少できるため、光の利用効率を高め、端末
間の伝送距離を長くとることができる。
As explained above, in an optical transmission device configured to branch part of the light propagating through an optical fiber into a terminal, insertion loss in the middle of the transmission path can be reduced by making the amount of branching to the terminal variable. Since it can be significantly reduced, it is possible to increase the efficiency of optical use and increase the transmission distance between terminals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来例による伝送装置、第2図は、光機能デ
バイスの構成図である。 1a〜1d・・・端末装置、2・・・分岐器、3・・・
混合器、4・・・幹線光ファイバ、5・・・ロッドレン
ズ、7.8・・・ミラー、9〜12・・・ファイバ。 特許出願人  松下電器産業株式会社 代理人 星 野 恒 司 (6) 第1図 (al               (bl第3図 (G) (bl 第4図 発1+ 87−
FIG. 1 is a configuration diagram of a conventional transmission device, and FIG. 2 is a configuration diagram of an optical functional device. 1a to 1d... terminal device, 2... turnout, 3...
Mixer, 4... Trunk optical fiber, 5... Rod lens, 7.8... Mirror, 9-12... Fiber. Patent Applicant Matsushita Electric Industrial Co., Ltd. Agent Hisashi Hoshino (6) Figure 1 (al (bl Figure 3 (G) (bl Figure 4) 1+ 87-

Claims (1)

【特許請求の範囲】[Claims] 複数の端末間が光ファイバで結合され、光ファイバを伝
搬する光の一部を前記端末内に分岐し、又端末から出た
光の一部を前記光ファイバに挿入できる光分岐・挿入器
を有する光フアイバ伝送装置において、前記光ファイバ
を伝搬する光と端末内に分岐する光の分岐比を可変とし
だととを特徴とする光伝送装置。
A plurality of terminals are coupled by optical fibers, and an optical branch/adder is capable of branching a part of the light propagating through the optical fiber into the terminal and inserting a part of the light emitted from the terminal into the optical fiber. What is claimed is: 1. An optical fiber transmission device having a variable branching ratio between light propagating through the optical fiber and light branching into a terminal.
JP10928581A 1981-07-15 1981-07-15 Optical transmission device Pending JPS5811915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10928581A JPS5811915A (en) 1981-07-15 1981-07-15 Optical transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10928581A JPS5811915A (en) 1981-07-15 1981-07-15 Optical transmission device

Publications (1)

Publication Number Publication Date
JPS5811915A true JPS5811915A (en) 1983-01-22

Family

ID=14506290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10928581A Pending JPS5811915A (en) 1981-07-15 1981-07-15 Optical transmission device

Country Status (1)

Country Link
JP (1) JPS5811915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100892A (en) * 1980-01-17 1981-08-13 Nippon Oil & Fats Co Ltd Bulk density enhancing agent of stock coal for preparing coke
JPS59195217A (en) * 1983-04-19 1984-11-06 Matsushita Electric Ind Co Ltd Optical branching device
JPH02169693A (en) * 1988-12-22 1990-06-29 Taiho Ind Co Ltd Material for treatment of coking coal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156239A (en) * 1974-09-13 1976-05-17 Thomson Csf
JPS5535346A (en) * 1978-09-01 1980-03-12 Matsushita Electric Ind Co Ltd Optical transmission device
JPS5617305A (en) * 1979-07-20 1981-02-19 Matsushita Electric Ind Co Ltd Light branching coupler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156239A (en) * 1974-09-13 1976-05-17 Thomson Csf
JPS5535346A (en) * 1978-09-01 1980-03-12 Matsushita Electric Ind Co Ltd Optical transmission device
JPS5617305A (en) * 1979-07-20 1981-02-19 Matsushita Electric Ind Co Ltd Light branching coupler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56100892A (en) * 1980-01-17 1981-08-13 Nippon Oil & Fats Co Ltd Bulk density enhancing agent of stock coal for preparing coke
JPS59195217A (en) * 1983-04-19 1984-11-06 Matsushita Electric Ind Co Ltd Optical branching device
JPS6229765B2 (en) * 1983-04-19 1987-06-29 Matsushita Electric Ind Co Ltd
JPH02169693A (en) * 1988-12-22 1990-06-29 Taiho Ind Co Ltd Material for treatment of coking coal

Similar Documents

Publication Publication Date Title
US4516828A (en) Duplex communication on a single optical fiber
US4173390A (en) Fiber optic T-coupler
US4456329A (en) Optical device having multiple wavelength dependent optical paths
US4662715A (en) Fiber optic network with reduced coupling losses
US5892868A (en) Fiber optic coupler combiner and process using same
CN1201153A (en) Optical depolarizing device and method of depolarizing light-beam
US6157757A (en) Polymer fiber optical transmission system
CA2217688A1 (en) Coupling of light into a monolithic waveguide device
EP1202480A2 (en) Bidirectional optical fiber communication system, communications apparatus and optical transceiver
US20070036498A1 (en) Systems and methods for distributing signals communicated on fiber optic transmission lines
JP2005070189A (en) Optical link for luminous flux multiplex communication, and optical link for two-way optical communication
JPS5811915A (en) Optical transmission device
US6172802B1 (en) Bidirectional optical amplification system
KR920005215B1 (en) Transceiver-based single fiber lan
US4747651A (en) Three-way start splitter for optical wave guides
GB2144557A (en) Optical coupler
JPS56167106A (en) Optical switch
KR0170329B1 (en) Optical wavelength division multiplexer for optical communication
JPH05203829A (en) Loop-back optical connector device
EP0305534A4 (en) Optical space transmission apparatus
JPS5811916A (en) Light branching and dividing circuit
US5568580A (en) Optical star-coupler
JPS57129037A (en) Optical transmission device
JP2003029096A (en) Bidirectional communication system
JPS5740205A (en) Optical star coupler