JPS6350877B2 - - Google Patents

Info

Publication number
JPS6350877B2
JPS6350877B2 JP16007283A JP16007283A JPS6350877B2 JP S6350877 B2 JPS6350877 B2 JP S6350877B2 JP 16007283 A JP16007283 A JP 16007283A JP 16007283 A JP16007283 A JP 16007283A JP S6350877 B2 JPS6350877 B2 JP S6350877B2
Authority
JP
Japan
Prior art keywords
layer
cladding layer
stripe pattern
light emitting
referred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16007283A
Other languages
Japanese (ja)
Other versions
JPS6050982A (en
Inventor
Haruo Tanaka
Masahito Mushigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP16007283A priority Critical patent/JPS6050982A/en
Publication of JPS6050982A publication Critical patent/JPS6050982A/en
Publication of JPS6350877B2 publication Critical patent/JPS6350877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は、P(またはn)―AlxGa1-xAs層とn
(またはP)―AlzGa1-zAs層との間にノンドープ
またはP(またはn)―AlyGa1-yAs層(活性層)
をサンドイツチ状に挟み込み、P(またはn)―
AlxGa1-xAs層を、横方向の光閉じ込めのための
ストライプパターン領域を除いて所定の膜厚にエ
ツチングしてなる半導体レーザおよびその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a P (or n)-Al x Ga 1-x As layer and an n
(or P)-Al z Ga 1-z As layer and non-doped or P (or n)-Al y Ga 1-y As layer (active layer)
Sandwich it into a sandwich shape, P (or n) -
The present invention relates to a semiconductor laser in which an Al x Ga 1-x As layer is etched to a predetermined thickness except for a striped pattern area for lateral light confinement, and a method for manufacturing the same.

第1図は従来例の半導体レーザの構造断面図で
ある。第1図において、符号1は、n+―GaAs基
板、2はn―AlxGa1-xAs層(第1クラツド層)、
3はn―AlyGa1-yAs層(活性層、ただし、y<
x、z)、4はP―AlzGa1-zAs層(第2クラツド
層)、5はP+―GaAs層、6はTi層、7はAu層、
8はAuGe層である。このような半導体レーザで
は、活性層3のストライプパターンの領域9に対
応する部分の横方向(紙面左右方向)に光を良好
に閉じ込めるため該領域9を除いて第2クラツド
層4を所定の膜厚にエツチングするようにしてい
る。ところで、この半導体レーザではレーザ発光
面方向(紙面垂直方向)から見たストライプパタ
ーンの構造は、発光点中心を通る中心線10から
みて左右対称になつている。このような左右対称
のストライプパターンの構造では、大電流にて高
出力を得ようとすると横モード発振が不安定にな
り易いという欠点があつた。
FIG. 1 is a structural sectional view of a conventional semiconductor laser. In FIG. 1, numeral 1 is an n + -GaAs substrate, 2 is an n-Al x Ga 1-x As layer (first cladding layer),
3 is n-Al y Ga 1-y As layer (active layer, however, y<
x, z), 4 is a P-Al z Ga 1-z As layer (second cladding layer), 5 is a P + -GaAs layer, 6 is a Ti layer, 7 is an Au layer,
8 is an AuGe layer. In such a semiconductor laser, the second cladding layer 4 is formed with a predetermined film except for the region 9 of the active layer 3 in order to effectively confine the light in the lateral direction (in the left-right direction in the paper) of the portion corresponding to the region 9 of the striped pattern of the active layer 3. I try to etch it thickly. Incidentally, in this semiconductor laser, the structure of the stripe pattern viewed from the direction of the laser emission surface (perpendicular to the plane of the paper) is symmetrical with respect to the center line 10 passing through the center of the emission point. Such a symmetrical stripe pattern structure has the disadvantage that transverse mode oscillation tends to become unstable when attempting to obtain high output with a large current.

本発明は、大電流にて高出力を得る場合に安定
した横モード発振が得られるようにすることを目
的とする。
An object of the present invention is to obtain stable transverse mode oscillation when obtaining high output with large current.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第2図は本発明の実施例の構造断面図である。
この実施例の半導体レーザは、分子線エピタキシ
ヤル成長法等によりGaAs基板上に各層が形成さ
れてなる。第2図において、11は、n(または
P)―GaAs基板、12は第1クラツド層として
のn(またはP)―AlxGa1-xAs層、13は活性層
としてのノンドープまたはP(またはn)―Aly
Ga1-yAs層(ただし、y<x、z)、14は第2
クラツド層としてのP(またはn)―AlzGa1-zAs
層、15はP+(またはn+)―GaAs層、16はTi
層、17はAu層、18はAuGe層である。
FIG. 2 is a structural sectional view of an embodiment of the present invention.
In the semiconductor laser of this embodiment, each layer is formed on a GaAs substrate by a molecular beam epitaxial growth method or the like. In FIG. 2, 11 is an n (or P)-GaAs substrate, 12 is an n (or P)-Al x Ga 1-x As layer as the first clad layer, and 13 is a non-doped or P ( or n) -Al y
Ga 1-y As layer (y<x, z), 14 is the second
P (or n)-Al z Ga 1-z As as cladding layer
layer, 15 is P + (or n + )-GaAs layer, 16 is Ti
17 is an Au layer, and 18 is an AuGe layer.

第2クラツド層14は更に該第1クラツド層1
4と同伝導型のAlz′Ga1-z′As層(ただし、z′<
0.45)14aと、Alz″Ga1-z″As層(ただし、z″>
0.45)14bとにより構成される。ここで、P―
AlzGa1-zAsのエツチング速度特性を第3図に示
す。第3図は、熱塩酸によりAlzGa1-zAsをエツ
チングする場合のzの値を横軸に、またエツチン
グ速度を縦軸にそれぞれ示す線図である。第3図
より明らかなように、z<0.45においてはAlz
Ga1-zAsはエツチングされず、z>0.45において
は、zの値に比例するエツチング速度でAlzGa1-z
Asはエツチングされることになる。したがつて、
ストライプパターンの領域19にSi3N4等のマス
クをかぶせて、先ずP+−GaAs層15を選択的に
除去するか、または第2クラツド層14のAlz
Ga1-z″As層14bの一部までを除去した後、熱
塩酸により更にエツチングすると、Alz″Ga1-z
As層14bとAlz′Ga1-z′As層14aとの内、
Alz″Ga1-z″As層14bのみが、z″>0.45であるた
めに除去される。このため、第2クラツド層14
の膜厚は、ストライプ領域を除いてAlz′Ga1-z
As層14aの膜厚に正確に制御される。この実
施例での発光面方向に形成されるストライプパタ
ーン19はレーザ発光面方向(紙面垂直方向)か
ら見た場合に、左右非対称になつている。このよ
うなパターン19の構造は、次のようにして作ら
れる。先ず、ミラー指数(l、m、n)における
各ミラー指数を第4図に示す。ここで(100)、
(101)…は面群をあらわしている。第5図は各ミ
ラー指数によりあらわされる面群を斜め方向から
見た図である。このような面群において、先ず、
GaAs基板11の(100)面を第6図で説明する。
第6図は、第5図の面群を矢符A方向から見た図
である。即ち、GaAs基板11の(100)面は、
第6図の(100)面に平行な線Bに沿つて切断し
てなる面である。この実施例のGaAs基板11
は、この(100)面から第7図に示すよう<011>
または<011>方向へ、これを傾むけるととも
に線Cに沿つて切断してなる基板面上に前記各層
が形成されるようになつている。また、前記スト
ライプパターンは<011>方向に一致させられ
る。なお、<l、m、n>方向は(l、m、n)
面に垂直な方向であることを示す。更に、活性層
13には、(011)面を(011)面に沿つてへ
き開されてなるフエプリペロー反射面が形成され
る。
The second cladding layer 14 further includes the first cladding layer 1
Al z ′Ga 1-z ′As layer of the same conductivity type as 4 (however, z′<
0.45) 14a and Al z ″Ga 1-z ″As layer (where z″>
0.45) 14b. Here, P-
Figure 3 shows the etching rate characteristics of Al z Ga 1-z As. FIG. 3 is a diagram showing the value of z on the abscissa and the etching rate on the ordinate when etching Al z Ga 1-z As with hot hydrochloric acid. As is clear from Figure 3, when z<0.45, Al z
Ga 1-z As is not etched, and for z > 0.45 Al z Ga 1-z is etched with an etching rate proportional to the value of z.
As will be etched. Therefore,
First, the P + -GaAs layer 15 is selectively removed by covering the region 19 of the stripe pattern with a mask made of Si 3 N 4 or the like, or the Al z ″ of the second cladding layer 14 is removed.
After removing up to a part of the Ga 1-z ``As layer 14b, etching is further performed with hot hydrochloric acid to form Al z ``Ga 1-z ''
Of the As layer 14b and the Al z ′Ga 1-z ′As layer 14a,
Only the Al z ″Ga 1-z ″As layer 14b is removed because z″>0.45. Therefore, the second cladding layer 14b
The film thickness is Al z ′Ga 1-z ′ except for the stripe region.
The thickness of the As layer 14a is accurately controlled. In this embodiment, the stripe pattern 19 formed in the direction of the light emitting surface is asymmetrical when viewed from the direction of the laser light emitting surface (direction perpendicular to the paper). The structure of such a pattern 19 is created as follows. First, each Miller index (l, m, n) is shown in FIG. where (100),
(101)...represents a surface group. FIG. 5 is a diagram of the plane group represented by each Miller index viewed from an oblique direction. In such a group of surfaces, first,
The (100) plane of the GaAs substrate 11 will be explained with reference to FIG.
FIG. 6 is a view of the plane group in FIG. 5 viewed from the direction of arrow A. That is, the (100) plane of the GaAs substrate 11 is
This is a plane cut along line B parallel to the (100) plane in FIG. GaAs substrate 11 of this example
From this (100) plane, as shown in Figure 7, <011>
Alternatively, each layer is formed on the surface of the substrate which is tilted in the <011> direction and cut along line C. Furthermore, the stripe patterns are aligned in the <011> direction. Note that the <l, m, n> direction is (l, m, n)
Indicates that the direction is perpendicular to the surface. Further, in the active layer 13, a Feppre-Perot reflective surface is formed by cleaving the (011) plane along the (011) plane.

一般に、結晶(100)面上に<011>方向に
細長い帯状のマスク30を置き結晶をエツチング
した場合、(011)面に平行な面で(100)面を
切断した断面をみると第9図に示すように台形状
にエツチングされることが知られている。
Generally, when etching a crystal by placing an elongated band-shaped mask 30 in the <011> direction on the crystal (100) plane, a cross section taken along the (100) plane parallel to the (011) plane is shown in Figure 9. It is known that it is etched into a trapezoidal shape as shown in the figure.

本発明においては、結晶切断面を(100)面か
ら<011>または、<011>方向へθだけ傾けて
切出す構成をとつている。
In the present invention, a structure is adopted in which the crystal cutting plane is cut from the (100) plane with an angle of θ in the <011> or <011> direction.

このようにして構成されることにより、前述の
ように熱塩酸により第1クラツド層14のAlz
Ga1-z″As層がエツチングされると、エツチング
速度が、ストライプパターンを発光面方向から見
て左右両側では相異なり、第2図のように左側で
は傾斜角度が緩やかにまた右側ではそれが急とな
るストライプパターン19が形成される。
With this structure, Al z ″ of the first cladding layer 14 is removed by hot hydrochloric acid as described above.
When the Ga 1-z ″As layer is etched, the etching rate is different on the left and right sides when looking at the stripe pattern from the direction of the light emitting surface, and as shown in Figure 2, the etching rate is gentler on the left side and less steep on the right side. A steep stripe pattern 19 is formed.

第8図は他の実施例の構造断面図である。第8
図に示す半導体レーザも分子線エピタキシヤル成
長法等によりGaAs基板上に各層が形成される。
第8図において、21はn(またはP)−GaAs基
板、22は第1クラツド層としてのn(またはP)
―AlxGa1-xAs層、23は活性層としてのノンド
ープまたはP(またはn)―AlyGa1-yAs層(ただ
し、y<x、z)、24は第2クラツド層として
のP(またはn)−AlzGa1-zAs層、25はP+(また
はn+)−GaAs層、26はTi層、27はAu層、2
8はAuGe層である。
FIG. 8 is a structural sectional view of another embodiment. 8th
In the semiconductor laser shown in the figure, each layer is formed on a GaAs substrate by a molecular beam epitaxial growth method or the like.
In FIG. 8, 21 is an n (or P)-GaAs substrate, 22 is an n (or P) substrate as the first cladding layer.
-Al x Ga 1-x As layer, 23 is a non-doped or P (or n)-Al y Ga 1-y As layer as an active layer (y<x, z), 24 is a second clad layer P (or n)-Al z Ga 1-z As layer, 25 is P + (or n + )-GaAs layer, 26 is Ti layer, 27 is Au layer, 2
8 is an AuGe layer.

第2クラツド層24は更にAlz′Ga1-z′As層2
4aと、膜厚が薄いAlz″Ga1-z″As層24bと、
AlzGa1-zAs層24cとの少なくとも第2ク
ラツド層と同伝導型の3層の構造を有する。ここ
で、z>0.45、y<z<0.45、z′≧0.45であ
る。また、Alz″Ga1-z″As層24bの膜厚は、活
性層23のそれよりも薄くして光がこの層24b
で閉じ込められないようにする一方で、熱塩酸に
よるエツチング阻止層としての機能を有するよう
にしている。なお、第2クラツド層24のAlz
Ga1-zAs層24cが熱塩酸によりエツチングさ
れるが、Alz″Ga1-z″As層はエツチングされない
ことは、第3図より明らかである。第8図の実施
例におけるストライプパターン29の発光面方向
から見た構造が、第2図のそれと同様に左右非対
称となつているが、第8図の実施例も第2図のそ
れと同様にして作られるのでその説明は省略す
る。
The second cladding layer 24 further includes an Al z ′Ga 1-z ′As layer 2
4a, and a thin Al z ″Ga 1-z ″As layer 24b,
It has a three-layer structure of at least the same conductivity type as the second cladding layer including the Al z Ga 1-z As layer 24c. Here, z>0.45, y<z<0.45, and z′≧0.45. Furthermore, the thickness of the Al z ″Ga 1-z ″As layer 24b is made thinner than that of the active layer 23, so that light can pass through this layer 24b.
While preventing the film from being trapped by hot hydrochloric acid, it also functions as a layer to prevent etching by hot hydrochloric acid. Note that Al z of the second cladding layer 24
It is clear from FIG. 3 that the Ga 1-z As layer 24c is etched by hot hydrochloric acid, but the Al z "Ga 1-z "As layer is not etched. The structure of the stripe pattern 29 in the embodiment shown in FIG. 8 when viewed from the direction of the light emitting surface is asymmetrical in the same way as that in FIG. 2; Since it is already created, its explanation will be omitted.

以上のように、本発明によれば、ストライプパ
ターンが発光面方向から見て左右非対称に構成さ
れているので、大電流にて高出力を、横モード発
振を安定させた状態で得ることができる。また、
本発明によれば、GaAs基板の基板面を、ミラー
指数で(100)面から<011>または<011>方
向へ傾斜角θで切り出して形成し、またストライ
プパターンを<011>方向へ一致させるとともに
活性層に(011)面と(011)面に沿つてへき
開してなる反射面を形成するようにしたので、ス
トライプパターンが発光面方向から見て左右非対
称となる半導体レーザを製造することができる。
As described above, according to the present invention, since the stripe pattern is configured asymmetrically when viewed from the direction of the light emitting surface, it is possible to obtain high output with a large current while keeping transverse mode oscillation stable. . Also,
According to the present invention, the substrate surface of a GaAs substrate is formed by cutting out the (100) plane in the <011> or <011> direction at an inclination angle θ using Miller index, and the stripe pattern is aligned in the <011> direction. At the same time, since the active layer is formed with reflective surfaces that are cleaved along the (011) plane and (011) plane, it is possible to manufacture a semiconductor laser in which the stripe pattern is asymmetrical when viewed from the direction of the light emitting surface. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の構造断面図、第2図〜第8図
は本発明の実施例に係り、第2図はこの実施例の
構造断面図、第3図はAlzGa1-zAsのzの値に対
するAlzGa1-zAsのエツチング速度特性を示す線
図、第4図はミラー指数によりあらわされる面群
の模式図、第5図は第4図の面群を斜め方向から
見た図、第6図、第7図は第5図を矢符P方向か
ら見たものでGaAs基板の基板面の切り出しの説
明に供する図、第8図は他の実施例の構造断面
図、第9図は結晶(100)面に<011>方向に
マスクをおいてエツチングしたときのエツチング
状態を示す図である。 11,21…GaAs基板、12,22…第1ク
ラツド層、13,23…活性層、14,24…第
2クラツド層、19,29…ストライプパター
ン。
FIG. 1 is a structural cross-sectional view of a conventional example, FIGS. 2 to 8 are related to an embodiment of the present invention, FIG. 2 is a structural cross-sectional view of this embodiment, and FIG. 3 is a structural cross-sectional view of an Al z Ga 1-z As A diagram showing the etching rate characteristics of Al z Ga 1-z As with respect to the z value of 6 and 7 are views of FIG. 5 viewed from the direction of arrow P, and are used to explain the cutting out of the substrate surface of the GaAs substrate. FIG. 8 is a structural cross-sectional view of another embodiment. , and FIG. 9 are diagrams showing the etching state when etching is performed with a mask placed in the <011> direction on the crystal (100) plane. 11,21...GaAs substrate, 12,22...first cladding layer, 13,23...active layer, 14,24...second cladding layer, 19,29...stripe pattern.

Claims (1)

【特許請求の範囲】 1 GaAs基板上にP(またはn)―AlxGa1-xAs
層(第1クラツド層という)と、ノンドープまた
はP(またはn)―AlyGa1-yAs層(活性層とい
う、ただし、y<x、z)と、n(またはP)―
AlzGa1-zAs層(第2クラツド層という)とが形
成され、第2クラツド層が発光面方向に形成され
るストライプパターンの領域を除いて所定の膜厚
にエツチングされてなるリツジウエブガイド形の
半導体レーザにおいて、前記ストライプパターン
の発光面方向の断面が左右非対称に形成されてな
る半導体レーザ。 2 GaAs基板上にP(またはn)―AlxGa1-xAs
層(第1クラツド層という)と、ノンドープまた
はP(またはn)―AlyGa1-yAs層(活性層とい
う、ただし、y<x、z)と、n(またはP)―
AlzGa1-zAs層とを形成し、第2クラツド層を発
光面方向に形成されるストライプパターンの領域
を除いて所定の膜厚にエツチングすることにより
半導体レーザを製造する方法において、GaAs基
板の基板面を、ミラー指数で(100)面から<011
>または<011>方向へ傾斜角θで切り出して
形成し、前記ストライプパターンを<011>方向
に一致させて形成するとともに第2クラツド層を
エツチングすることによりストライプパターンの
発光面方向断面を左右非対称にする半導体レーザ
の製造方法。
[Claims] 1 P (or n)-Al x Ga 1-x As on a GaAs substrate
(referred to as the first cladding layer), a non-doped or P (or n)-Al y Ga 1-y As layer (referred to as the active layer, where y<x, z), and an n (or P)-
An Al z Ga 1-z As layer (referred to as a second cladding layer) is formed, and the second cladding layer is etched to a predetermined thickness except for the striped pattern area formed in the direction of the light emitting surface. A web-guide type semiconductor laser, in which the cross section of the stripe pattern in the direction of the light emitting surface is formed asymmetrically. 2 P (or n)-Al x Ga 1-x As on GaAs substrate
(referred to as the first cladding layer), a non-doped or P (or n)-Al y Ga 1-y As layer (referred to as the active layer, where y<x, z), and an n (or P)-
In the method of manufacturing a semiconductor laser by forming an Al z Ga 1-z As layer and etching the second cladding layer to a predetermined thickness except for a stripe pattern region formed in the direction of the light emitting surface, The board surface of the board is <011 from the (100) plane using Miller index.
> or <011> direction at an inclination angle θ, and the stripe pattern is formed to match the <011> direction, and the second cladding layer is etched to make the cross section of the stripe pattern in the direction of the light emitting surface bilaterally asymmetrical. A method for manufacturing semiconductor lasers.
JP16007283A 1983-08-30 1983-08-30 Semiconductor laser and manufacture thereof Granted JPS6050982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16007283A JPS6050982A (en) 1983-08-30 1983-08-30 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16007283A JPS6050982A (en) 1983-08-30 1983-08-30 Semiconductor laser and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6050982A JPS6050982A (en) 1985-03-22
JPS6350877B2 true JPS6350877B2 (en) 1988-10-12

Family

ID=15707275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16007283A Granted JPS6050982A (en) 1983-08-30 1983-08-30 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6050982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262472A (en) * 1987-04-20 1988-10-28 Sanyo Electric Co Ltd Formation of film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512034B (en) * 2017-02-28 2020-04-03 山东华光光电子股份有限公司 Transverse asymmetric optical waveguide semiconductor laser chip and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262472A (en) * 1987-04-20 1988-10-28 Sanyo Electric Co Ltd Formation of film

Also Published As

Publication number Publication date
JPS6050982A (en) 1985-03-22

Similar Documents

Publication Publication Date Title
JPH08181383A (en) Integrated semiconductor laser device
JPS6350877B2 (en)
JP2002076510A (en) Semiconductor laser and production method therefor
JP3326283B2 (en) Semiconductor laser device
JP2001127378A (en) Semiconductor integrated element and manufacturing method thereof
JP2531719B2 (en) Semiconductor laser
JP2516953B2 (en) Method for manufacturing semiconductor laser device
JPS61272987A (en) Semiconductor laser element
JP2613975B2 (en) Periodic gain type semiconductor laser device
EP1284529A2 (en) Method of manufacturing semiconductor element, and semiconductor element manufactured with this method
JP3327179B2 (en) Method for manufacturing nitride semiconductor laser device
JPH0951146A (en) Ridge-type semiconductor optical element and manufacture thereof
JPH06140718A (en) Manufacture of edge emitting type semiconductor laser element
JPH0927656A (en) Manufacture of ridge waveguide semiconductor laser
JP2822195B2 (en) Semiconductor laser manufacturing method
JPH10341061A (en) Semiconductor optical amplification element
JP3049916B2 (en) Semiconductor laser
JPS63302587A (en) Semiconductor laser
JP4024319B2 (en) Semiconductor light emitting device
JP2966504B2 (en) Manufacturing method of semiconductor laser
JP2003152279A (en) Semiconductor laser device
JPS6254987A (en) Semiconductor laser
JP2687449B2 (en) Semiconductor laser and manufacturing method thereof
JPS63305582A (en) Semiconductor laser
JPH08264884A (en) Gained guided semiconductor laser