JPS6350532B2 - - Google Patents

Info

Publication number
JPS6350532B2
JPS6350532B2 JP57055068A JP5506882A JPS6350532B2 JP S6350532 B2 JPS6350532 B2 JP S6350532B2 JP 57055068 A JP57055068 A JP 57055068A JP 5506882 A JP5506882 A JP 5506882A JP S6350532 B2 JPS6350532 B2 JP S6350532B2
Authority
JP
Japan
Prior art keywords
port
intake port
intake
flow
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57055068A
Other languages
Japanese (ja)
Other versions
JPS58172423A (en
Inventor
Takeshi Okumura
Kyoshi Nakanishi
Tokuta Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57055068A priority Critical patent/JPS58172423A/en
Publication of JPS58172423A publication Critical patent/JPS58172423A/en
Publication of JPS6350532B2 publication Critical patent/JPS6350532B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関の吸気装置の構造に関し、と
くにデユアル吸気ポートでしかも二つのポートの
分岐点がシリンダヘツド内に位置するサイアミー
ズポート型吸気装置の構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the structure of an intake system for an internal combustion engine, and in particular to a Siamese port type intake system that has dual intake ports and the branch point of the two ports is located within the cylinder head. Regarding the structure of

[従来の技術] 自動車用内燃機関において、低燃費化と高出力
性能とを両立させるために、吸気ポートを互いに
独立のデユアルポートとし、一方をヘリカルポー
トにするとともに他方をストレートポートに構成
した内燃機関は既に提案されている。
[Conventional technology] In order to achieve both low fuel consumption and high output performance in internal combustion engines for automobiles, an internal combustion engine has been developed in which the intake ports are independent dual ports, one of which is a helical port and the other is a straight port. The institution has already been proposed.

ところで、デユアル吸気ポート方式を採用する
に際しては、通路壁面積を小にして壁面への燃料
付着量を少なくし未燃炭化水素の放出量の低減お
よび運転性の向上をはかり、またシリンダヘツド
における吸気通路の占める空間を小にして燃焼室
の冷却を容易にする等のために、両ポートを、シ
リンダヘツド内において互に分岐させる双子状ポ
ートいわゆるサイアミーズポートに構成すること
が望まれる(たとえば、特公昭48−40606号公報、
特公昭40−26281号公報、特開昭55−19901号公
報)。
By the way, when adopting the dual intake port system, it is necessary to reduce the area of the passage wall to reduce the amount of fuel adhering to the wall surface, reduce the amount of unburned hydrocarbons released, and improve driveability. In order to reduce the space occupied by the passage and facilitate cooling of the combustion chamber, it is desirable to construct both ports into so-called Siamese ports, which are twin ports that diverge from each other within the cylinder head (for example, Publication No. 48-40606,
(Japanese Patent Publication No. 40-26281, Japanese Patent Publication No. 55-19901).

[発明が解決しようとする課題] デユアルポートは、独立二ポートに比べて、ま
たはポートの少なくとも何れか一方に絞り弁を設
けた場合に比べて、二つのポートの相互に及ぼし
合う影響が非常に強く、二つのポートを互いに如
何に関連させかつ各ポートを如何なる構造のもの
にするかによつて、スワールおよびマイクロター
ビユレンスの生成およびそれに伴なう前記低燃費
化、高出力性能、並びに絞り弁排除の可能性およ
びそれに伴なうシステムの簡素化、等の諸々の作
用効果の達成度合が大きく異なつてくる。
[Problems to be Solved by the Invention] With a dual port, compared to two independent ports, or compared to a case where a throttle valve is provided on at least one of the ports, the mutual influence of the two ports is much greater. Depending on how the two ports are related to each other and the structure of each port, swirl and microturbulence can be generated, and the resulting reduction in fuel consumption, high output performance, and aperture can be achieved. The degree to which various effects, such as the possibility of eliminating valves and the accompanying simplification of the system, are achieved differs greatly.

さらに詳しくは、前記特公昭48−40606号公報、
特公昭40−26281号公報のサイアミーズポートの
ように、主、副の2つのポートを燃焼室に同じ方
向に接線方向に指向させると、両ポートからの流
れ同志の衝突が不十分でかつピストン頂面との衝
突速度も小となつて、マイクロタービユレンスの
生成が不十分となる。また、前記特開昭55−
19901号公報のサイアミーズポートのように、副
ポートを燃焼室に上下方向に斜めに開口させる
と、副ポートの吸気弁と弁座との間から燃焼室に
流入する吸気量は前記斜めの方向が多くなつて、
副ポートから導入される吸気量に、燃焼室周方向
に偏りが出てしまい、燃焼室周方向に均一にマイ
クロタービユレンスを発生させることができない
という問題が生じる。
For more details, see the above-mentioned Japanese Patent Publication No. 48-40606,
If the main and sub ports are oriented tangentially in the same direction to the combustion chamber, as in the Siamese port disclosed in Japanese Patent Publication No. 40-26281, the collision between the flows from both ports will be insufficient and the piston top The collision speed with the surface also becomes small, and the generation of microturbulence becomes insufficient. In addition, the above-mentioned Unexamined Patent Publication No. 55-
When the auxiliary port is opened diagonally in the vertical direction into the combustion chamber, as in the Siamese port of Publication No. 19901, the amount of intake air flowing into the combustion chamber from between the intake valve and the valve seat of the auxiliary port is increased in the diagonal direction. There are more and more
The amount of intake air introduced from the auxiliary port is uneven in the circumferential direction of the combustion chamber, resulting in a problem that microturbulence cannot be uniformly generated in the circumferential direction of the combustion chamber.

また、スキツシユによつて種火が吹き消される
ことがないように点火プラグから遠い位置にスキ
ユシユエリアを設けた場合、このスキツシユエリ
アは火炎の伝幡上末端部位にあるから、ノツキン
グの原因となる自己着火を起す部位となりやす
く、スキツシユエリアをうまく冷却できる構造と
することも望まれる。
Additionally, if the squeezing area is located far from the spark plug to prevent the pilot flame from being blown out by the squishing, this squeezing area is at the end of the flame propagation, which can cause knocking. It is also desirable to have a structure that can effectively cool the squish area, which is likely to become a site where self-ignition occurs.

本発明は、一方のポートがヘリカルポート、他
方のポートがストレートポートでしかも二つの吸
気ポートの分岐点がシリンダヘツド内にあるサイ
アミーズポートにおいて、副吸気ポートに設けら
れた吸気弁とその弁座との間から燃焼室に流入す
る吸気の量を前記吸気弁の周方向に均一に近づけ
かつこの吸気を直角に近い角度でピストン頂面に
下死点近傍で衝突させて十分なマイクロタービユ
レンスを発生させ、しかもこの副吸気ポートから
の流れによるマイクロタービユレンスを主吸気ポ
ートからの流れによる旋回流(スワール)生成を
弱めることなく発生させることを第1の目的と
し、この十分なマイクロタービユレンスとスワー
ルの発生によつて、最終的には、低中速域におけ
る低燃費化と高速域における高出力を効果的に達
成し、かつ吸気制御弁を排除してもこれらの効果
を維持し絞り弁の排除によりシステムの簡素化を
はかることができる内燃機関の吸気装置を提供す
ることを目的とする。
The present invention provides an intake valve provided in a sub-intake port and its valve seat in a Siamese port in which one port is a helical port and the other port is a straight port, and the branching point of the two intake ports is inside the cylinder head. The amount of intake air flowing into the combustion chamber through the gap is made uniform in the circumferential direction of the intake valve, and this intake air is caused to collide with the top surface of the piston near the bottom dead center at an angle close to a right angle to generate sufficient microturbulence. The primary objective is to generate microturbulence due to the flow from the sub-intake port without weakening the swirl generated by the flow from the main intake port. By generating lens and swirl, it is possible to effectively achieve low fuel consumption in the low-to-medium speed range and high output in the high-speed range, and maintain these effects even if the intake control valve is eliminated. An object of the present invention is to provide an intake device for an internal combustion engine that can simplify the system by eliminating a throttle valve.

本発明は、副吸気ポートからの吸気によつてス
キツシユエリアを冷却する内燃機関の吸気装置を
提供することを第2の目的とする。
A second object of the present invention is to provide an intake system for an internal combustion engine that cools a squish area by intake air from a sub-intake port.

[課題を解決するための手段] この目的を達成するために、本発明の内燃機関
の吸気装置においては、ほぼ直線状に延びる導入
部と該導入部に接続し渦巻状に延びる渦巻部と該
渦巻部に接続し下方に延びる円筒状部とを有する
ヘリカルポートからなる主吸気ポートと、ほぼ直
線状に延びさらに下方に折れ曲つて直線状に延び
るストレートポートからなる副吸気ポートとが、
両ポートの分岐点がシリンダヘツド内にあるサイ
アミーズポートに構成されている。また、副吸気
ポートの燃焼室への出口部はピストン頂面に平行
な方向にて点火プラグと反対側に位置するスキツ
シユエリアに開口している。さらに、副吸気ポー
トは、燃焼室への出口部(下方に折れ曲つた後下
方に延びる部分)が、ポート中心線と全内周壁面
とが出口部の軸方向に直線状に延びる直線部を有
する円筒形状に形成されている。
[Means for Solving the Problems] In order to achieve this object, the intake system for an internal combustion engine of the present invention includes an introduction section extending substantially linearly, a spiral section connected to the introduction section and extending spirally, and a spiral section connected to the introduction section extending spirally. A main intake port consisting of a helical port having a cylindrical part connected to the spiral part and extending downward, and a sub-intake port consisting of a straight port extending almost linearly and further bent downward and extending linearly,
The branch point of both ports is configured into a Siamese port located within the cylinder head. Further, the outlet portion of the auxiliary intake port to the combustion chamber opens into a squish area located on the opposite side of the spark plug in a direction parallel to the top surface of the piston. Furthermore, the auxiliary intake port has an outlet portion (a portion that bends downward and then extends downward) into the combustion chamber that is a straight portion where the port centerline and the entire inner circumferential wall surface extend linearly in the axial direction of the outlet portion. It is formed into a cylindrical shape.

[作用] この構造をとることにより、主吸気ポートを通
つて流入する吸気は主吸気ポートを通る間に旋回
流となつて燃焼室に入つて燃焼室内に旋回流を生
成し、副吸気ポートを通つて流入する吸気は直線
部をもつ円筒形状の出口部を通ることにより吸気
流れ方向を本質的に下方に向けられ、バルブとシ
ートの環状隙間から、バルブ回りに偏らずに、す
なわち均一に燃焼室にバルブ軸心とほぼ45゜(バル
ブ傘部背面の角度がほぼ45゜に吸気を流出させる
角度となつているため)の角度で傘状に流出し、
降下中のピストンの動きに引張られて前記傘状の
流れがほぼボア軸方向に下方に向かう(ピストン
頂面に直交方向の)流れに変えられつつ始めの傘
状の流れの中心をボア中心に寄せられ、ピストン
下死点近傍においてピストン頂面と衝突させるこ
とにより多量の微小乱れ(マイクロタービユレン
ス)を周方向にほぼ均一に生成し、ピストン上昇
動でこの十分な量の微小乱れを上方に押し上げ、
この旋回流と微小乱れにより燃焼改善、燃費の改
善がはかられるとともに、絞り弁を排除してスワ
ールの生成を弱めても、微小乱れがあるので良好
な性能が得られ吸気制御弁の排除も可能となる。
[Function] With this structure, the intake air that flows through the main intake port becomes a swirling flow while passing through the main intake port, enters the combustion chamber, generates a swirling flow in the combustion chamber, and then flows through the auxiliary intake port. By passing through the cylindrical outlet section with a straight section, the intake air flow direction is essentially directed downward, and the annular gap between the valve and the seat allows for uniform combustion without being biased around the valve. Air flows out into the chamber in an umbrella shape at an angle of approximately 45 degrees with the valve axis (because the angle of the back of the valve umbrella is approximately 45 degrees to allow intake air to flow out).
Pulled by the movement of the descending piston, the umbrella-shaped flow is changed into a flow that goes downward in the direction of the bore axis (in a direction perpendicular to the top surface of the piston), and the center of the initial umbrella-shaped flow is centered around the bore. By colliding with the top surface of the piston near the bottom dead center of the piston, a large amount of microturbulence is generated almost uniformly in the circumferential direction, and the upward movement of the piston moves this sufficient amount of microturbulence upward. push up to
This swirling flow and minute turbulence improves combustion and fuel efficiency, and even if the throttle valve is eliminated and swirl generation is weakened, the presence of minute turbulence still provides good performance, making it possible to eliminate the intake control valve. It becomes possible.

また、副吸気ポートをスキツシユエリアに開口
させているので、副吸気ポートからの吸気(吸気
は低温)でスキツシユエリアを直接冷却し、ノツ
キングの発生を抑える。
In addition, since the sub-intake port opens into the squish area, the intake air from the sub-intake port (the intake air is at a low temperature) directly cools the squish area, thereby suppressing the occurrence of knocking.

[実施例] 以下に、本発明の内燃機関の吸気装置の望まし
い実施例を、図面を参照して説明する。
[Embodiments] Hereinafter, preferred embodiments of the intake system for an internal combustion engine of the present invention will be described with reference to the drawings.

第1図および第2図は、本発明の実施例に係る
吸気装置を備えたシリンダヘツド近傍構造を示し
ている。図中、1はシリンダヘツド、2はシリン
ダボアで、シリンダボア2の領域内には、二つの
吸気ポート3,4(主吸気ポート3と副吸気ポー
ト4)と一つの排気ポート5(排気ポートは二つ
あつてもよい)とが設けられており、各ポート
3,4,5はそれぞれ吸気弁6,7および排気弁
によつて開閉されるようになつている。副吸気ポ
ート4のスロート面積は、主吸気ポート3および
排気ポート5のスロート面積より小である。
1 and 2 show a structure near a cylinder head equipped with an intake device according to an embodiment of the present invention. In the figure, 1 is the cylinder head, 2 is the cylinder bore, and within the area of the cylinder bore 2, there are two intake ports 3 and 4 (main intake port 3 and auxiliary intake port 4) and one exhaust port 5 (the exhaust port is two Each port 3, 4, 5 is opened and closed by an intake valve 6, 7 and an exhaust valve, respectively. The throat area of the auxiliary intake port 4 is smaller than the throat areas of the main intake port 3 and the exhaust port 5.

二つの吸気ポートのうち一方の吸気ポートすな
わち主吸気ポート3は、他方の吸気ポートすなわ
ち副吸気ポート4より長く、通路断面積が大で、
かつヘリカル形状(後述の形状)に形成されてい
る。副吸気ポート4はほぼ真直(後述のようにほ
ぼ水平に真直に延びる部分とほぼ下方に真直に延
びる部分とを有するが渦巻部をもたないという意
味で真直)に延びている。副吸気ポート4は主吸
気ポート3のヘリカル形状の内周側から分岐して
いるが、その分岐点8はシリンダヘツド1内に位
置している。分岐点8と吸気弁6,7との間に
は、両ポート3,4は特別の絞り弁すなわち吸気
制御弁を有していない。
One of the two intake ports, that is, the main intake port 3, is longer than the other intake port, that is, the auxiliary intake port 4, and has a larger passage cross-sectional area.
Moreover, it is formed in a helical shape (shape to be described later). The auxiliary intake port 4 extends substantially straight (straight in the sense that it has a portion that extends substantially horizontally and a portion that extends substantially straight downward, as will be described later, but does not have a spiral portion). The auxiliary intake port 4 branches from the helical inner peripheral side of the main intake port 3, and its branching point 8 is located within the cylinder head 1. Between the branch point 8 and the intake valves 6, 7, the two ports 3, 4 have no special throttle valve or intake control valve.

主吸気ポート3は、第3図および第4図に示す
ように、ほぼ真直に延びる導入部3aと、それに
連なつて渦巻の軸心がほぼ下方に延び通路が渦巻
状となつている渦巻部3bと、渦巻部3bの終端
部からボア軸心に対してさらにほぼ下方に延びる
比較的短い円筒状部3cとを有しており、円筒状
部3cの下端で燃焼室リセス9に開口している。
主吸気ポート3のヘリカル形状の内周側壁面10
は、主吸気ポート3の通路断面の上壁面11に近
づく程、また下流にいく程、ヘリカル形状の外周
側壁面12に向つて膨出しており、このためヘリ
カル形状の主吸気ポート3は、上壁面11に近い
程、また下流側程その流路が狭まつている。ま
た、主吸気ポート3の上壁面11は、下流にいく
程、徐々に下降している。
As shown in FIGS. 3 and 4, the main intake port 3 includes an introduction section 3a extending almost straight, and a spiral section connected to the introduction section 3a in which the axis of the spiral extends substantially downward and the passage is spiral. 3b, and a relatively short cylindrical portion 3c extending substantially downward from the terminal end of the spiral portion 3b with respect to the bore axis, and opens into the combustion chamber recess 9 at the lower end of the cylindrical portion 3c. There is.
Helical inner wall surface 10 of main intake port 3
bulges out toward the helical-shaped outer peripheral side wall surface 12 as it approaches the upper wall surface 11 of the passage cross section of the main intake port 3 and as it goes downstream. The closer to the wall surface 11 or downstream, the narrower the flow path becomes. Further, the upper wall surface 11 of the main intake port 3 gradually descends as it goes downstream.

一方、ストレートポートである副吸気ポート4
は、第3図および第4図に示すように、主吸気ポ
ート3の導入部3aから分岐し、真直部4aでほ
ぼ水平にかつほぼ真直に延びており、その終端で
下方に折れ曲り、比較的長い、かつ主吸気ポート
3の円筒部3cより小径の断面円形で、かつ中心
軸線と全内周壁面が軸方向(出口部軸方向)に直
線軸に延びる直線部をもつ、中空円筒形状の出口
部4bを形成してシリンダボア2の中心軸と平行
かほぼ平行に下方に向つて延び、ピストン頂面に
平行方向にみて点火プラグ13と反対側に位置す
る大きなスキツシユエリアの上面を郭定するシリ
ンダヘツド下端平担面14に開口している。この
円筒形状の比較的長い出口部4bは、途中で若干
小径に絞られており、若干速度を速めるようにな
つている。そして開口部には前記吸気弁7が設け
られ、吸気弁7と弁座との間の間隙から吸気へ燃
焼室に流入される。吸気弁7の傘部7aの形状
は、吸気を約45度の角度で燃焼室内に流入させる
形状になつている。なお副吸気ポート4の水平方
向に延びる真直部4aの上壁面15は、下流にい
く程徐々に下降している。
On the other hand, auxiliary intake port 4, which is a straight port,
As shown in FIGS. 3 and 4, it branches from the introduction part 3a of the main intake port 3, extends almost horizontally and almost straight at the straight part 4a, and bends downward at the end. A hollow cylindrical shape having a circular cross section with a diameter longer than that of the cylindrical part 3c of the main intake port 3, and a straight part whose central axis and the entire inner peripheral wall surface extend along a straight axis in the axial direction (the axial direction of the outlet part). The outlet part 4b is formed and extends downward parallel or almost parallel to the central axis of the cylinder bore 2, defining the upper surface of a large squish area located on the opposite side of the spark plug 13 when viewed in a direction parallel to the top surface of the piston. The lower end of the cylinder head is open to a flat surface 14. This relatively long cylindrical outlet section 4b is narrowed down to a slightly smaller diameter in the middle, so that the speed can be increased slightly. The intake valve 7 is provided in the opening, and intake air flows into the combustion chamber through a gap between the intake valve 7 and the valve seat. The shape of the umbrella portion 7a of the intake valve 7 is such that intake air flows into the combustion chamber at an angle of about 45 degrees. Note that the upper wall surface 15 of the horizontally extending straight portion 4a of the sub-intake port 4 gradually descends as it goes downstream.

副吸気ポート4は隔壁16によつて主吸気ポー
ト3と隔てられるが、この場合副吸気ポート4の
上壁面15が主吸気ポート3の上壁面11より低
い位置にあるようなポート配置にして隔壁16に
よつて隔てられている。隔壁16は、サイアミー
ズポートの通路断面の上部側程サイアミーズポー
ト入口部17に近い位置まですなわち上流側に延
びており、通路断面の下部側程下流側に後退して
いる。したがつて、主吸気ポート3と副吸気ポー
ト4とは上流側程通路断面の上部の位置で互いに
隔てられ、下流側程通路断面の下部の位置で互い
に隔てられていることになる。そして、両ポート
3,4の上壁面11,15の高さの相違と隔壁1
6の構造とによつて、副吸気ポート4は主吸気ポ
ート3の通路断面の低い部分、すなわち主吸気ポ
ート3の下壁面に沿う部分において主吸気ポート
3から分岐しかつ隔壁16の存在する部分でその
下方で連通していることとなる。なお19は燃料
噴射弁である。
The auxiliary intake port 4 is separated from the main intake port 3 by a partition 16, but in this case, the port is arranged so that the upper wall surface 15 of the auxiliary intake port 4 is at a lower position than the upper wall surface 11 of the main intake port 3. separated by 16. The partition wall 16 extends toward a position closer to the Siamese port inlet 17 toward the upper side of the passage cross section of the Siamese port, that is, toward the upstream side, and recedes toward the downstream side toward the lower side of the passage cross section. Therefore, the main intake port 3 and the sub-intake port 4 are separated from each other at the upper part of the cross-section of the passage on the upstream side, and are separated from each other at the lower position of the cross-section of the passage on the downstream side. The difference in height between the upper wall surfaces 11 and 15 of both ports 3 and 4 and the partition wall 1
6, the auxiliary intake port 4 branches from the main intake port 3 at a low portion of the passage cross section of the main intake port 3, that is, at a portion along the lower wall surface of the main intake port 3 and where the partition wall 16 is present. Therefore, there is communication below that point. Note that 19 is a fuel injection valve.

つぎに、上記の構成を有する内燃機関の吸気装
置の作用について説明する。
Next, the operation of the intake system for an internal combustion engine having the above configuration will be explained.

まずサイアミーズポートに流入した吸気は、隔
壁16によつて主吸気ポート3と副吸気ポート4
とに分離されて燃焼室内に流入される。
First, the intake air flowing into the Siamese port is separated from the main intake port 3 and the sub-intake port 4 by the partition wall 16.
It is separated into two parts and flows into the combustion chamber.

主吸気ポート3内では、上壁面11に沿う流れ
はヘリカル形状の内周側壁面10を構成する隔壁
16の側壁面がヘリカル形状の外周側壁面12に
向つて膨出しているので、流れは外周側に偏流
し、流れの絞りと上壁面11の下降によつて、増
速されつつ旋回および下降の力を与えられ、渦巻
部3bに入つてそこで強力な旋回流を生じた後、
吸気弁6とその弁座間の間隙を通つて燃焼室に入
り、強力な旋回流、いわゆるスワールを発生させ
る。低中速域では旋回流による抵抗の増大は余り
大きくないので、多くの量の吸気が主吸気ポート
3を流れ、このため、低中速域において燃焼は安
定し、リーンリミツトを向上でき、低燃費化が促
進される。主吸気ポート3の下壁面18に沿う流
れは、流れが絞られる割合は上壁面11に沿う流
れに比べて少なく、かつ副吸気ポート4に隔壁1
6下方である距離にわたつて連通しているので、
スワール生成上は上壁面11に沿う流れ程には寄
与しないが、高速域になつて通路断面上部の流れ
の抵抗が増加してきたときに、一部副吸気ポート
4側に流れて副吸気ポート4を通つて燃焼室に流
れるので、流入空気量の維持という観点からは上
壁面11に沿う流れに比べて寄与し、とくに高速
域において、流入量を確保し高充填効率を可能に
するように、効果的に働く。
In the main intake port 3, the flow along the upper wall surface 11 is directed toward the outer circumference because the side wall surface of the partition wall 16 that constitutes the helical inner circumference side wall surface 10 bulges toward the helical-shaped outer circumference side wall surface 12. It drifts to the side, is given a swirling and descending force while being accelerated by the flow restriction and the lowering of the upper wall surface 11, and after entering the spiral portion 3b and generating a strong swirling flow there,
The air enters the combustion chamber through the gap between the intake valve 6 and its valve seat, generating a powerful swirling flow, so-called swirl. In the low and medium speed range, the increase in resistance due to the swirling flow is not so large, so a large amount of intake air flows through the main intake port 3, and therefore combustion is stable in the low and medium speed range, improving the lean limit and achieving low fuel consumption. development is promoted. The flow along the lower wall surface 18 of the main intake port 3 is throttled less than the flow along the upper wall surface 11, and the sub-intake port 4 has a partition wall 18.
6 Since it communicates over a certain distance below,
Swirl generation does not contribute to the flow along the upper wall surface 11, but when the flow becomes high speed and the flow resistance at the upper part of the passage cross section increases, a portion of the flow flows toward the sub-intake port 4 side. Since it flows into the combustion chamber through the air flow, it contributes more to maintaining the amount of inflow air than the flow along the upper wall surface 11, and in order to ensure the amount of inflow and enable high charging efficiency, especially in the high speed range, Work effectively.

副吸気ポート4は、また高速域における高出力
の確保にも寄与する。すなわち、高速域になつて
主吸気ポート3側の流れ抵抗がヘリカル形状のた
めに増大しても、ストレートポートの副吸気ポー
ト4は主吸気ポート3程には流れ抵抗が増大しな
いので、高速域では主吸気ポート3の断面下部か
ら隔壁16の下方を通つて副吸気ポート4に流入
する二次流が増え、副吸気ポート4を流れる吸気
量が増大して高体積効率が得られ、高出力が確保
される。
The auxiliary intake port 4 also contributes to ensuring high output in the high speed range. In other words, even if the flow resistance on the main intake port 3 side increases due to the helical shape in the high speed range, the flow resistance of the straight port auxiliary intake port 4 does not increase as much as the main intake port 3. In this case, the secondary flow flowing from the lower cross section of the main intake port 3 to the sub-intake port 4 through the lower part of the partition wall 16 increases, and the amount of intake air flowing through the sub-intake port 4 increases, resulting in high volumetric efficiency and high output. is ensured.

副吸気ポート4に流入してきた吸気は、直線部
4aを通つてその終端で下方に曲げられ、円筒形
状の出口4bに流入してそこでほぼ垂直下方に向
かう流れとなり、吸気弁7とその弁座間の隙間を
通つて燃焼室に流入する。この円筒形状出口部4
bは比較的長いので、そこを通ることにより流れ
は出口部4b下端で片寄つた方向の流れとはなら
ず、出口部4bの下端部全断面でほぼ均一な流れ
となり、吸気弁7の回りから吸気弁軸心まわりに
ほぼ均一に、バルブフエース面に沿つて約45度の
円錐形状の流れとなつて流出する。この流れはヘ
リカルポートである主吸気ポート3を通つて燃焼
室内に入つた旋回流およびこの旋回流で誘発され
た旋回流に上方から直角方向にあたるので、スワ
ールを弱めない。また、副吸気ポート4から流入
した流れは、燃焼室内でピストンの下降に合せて
下方に引張られて下方に向かいかつピストン頂面
にほぼ直交する流れに変わり、ピストンが上昇動
に変わる際に、下向きの慣性を有する流れがピス
トンの頂面とほぼ直角に、したがつて最大速度で
衝突して、ピストン下死点近傍でマイクロタービ
ユレンスと呼ばれる微小乱れを多量発生する。ス
ワールと微小乱れはピストン上昇動に合せてスワ
ール、マイクロタービユレンスの強さをほとんど
弱めることなく持上げられ、点火プラグ13の点
火で着火され、燃焼される。そして、この微小乱
れの存在により、十分な燃焼の安定化がはから
れ、燃焼性、燃費が向上され、独立二ポートにし
なくても、またデユアルポートの少なくとも一方
に絞り弁等の制御弁を設けなくても、十分な燃焼
の安定性が得られ、シリンダヘツド内サイアミー
ズポート構成における絞り弁の排除が可能にな
る。
Intake air flowing into the auxiliary intake port 4 passes through the straight part 4a, is bent downward at its terminal end, flows into the cylindrical outlet 4b, where it becomes a nearly vertical downward flow, and flows between the intake valve 7 and its valve seat. It flows into the combustion chamber through the gap. This cylindrical outlet section 4
b is relatively long, so by passing through it, the flow does not flow in a biased direction at the lower end of the outlet section 4b, but becomes an almost uniform flow over the entire cross section of the lower end of the outlet section 4b, and from around the intake valve 7. The flow flows almost uniformly around the intake valve axis, forming a conical flow of approximately 45 degrees along the valve face. Since this flow hits the swirling flow that entered the combustion chamber through the main intake port 3, which is a helical port, and the swirling flow induced by this swirling flow from above, it does not weaken the swirl. In addition, the flow flowing in from the auxiliary intake port 4 is pulled downward in the combustion chamber as the piston moves downward, and turns into a downward flow that is almost perpendicular to the top surface of the piston, and when the piston moves upward, A flow with downward inertia collides with the top surface of the piston at a nearly right angle and therefore at maximum velocity, generating a large amount of minute turbulence called microturbulence near the bottom dead center of the piston. The swirl and micro-turbulence are lifted in accordance with the upward movement of the piston without substantially reducing the strength of the swirl and micro-turbulence, and are ignited by the ignition of the spark plug 13 and burned. Due to the presence of this minute turbulence, combustion is sufficiently stabilized, combustibility and fuel efficiency are improved, and there is no need to use two independent ports or a control valve such as a throttle valve on at least one of the dual ports. Even without it, sufficient combustion stability is obtained and the throttle valve can be eliminated in the Siamese port configuration in the cylinder head.

また、副吸気ポート4はスキツシユエリアに開
口しているので、通常ノツキングの原因となる自
己着火を起こしやすいスキツシユエリアを、低温
の吸気で直接冷却し、スキツシユエリアを郭定し
てている壁面を冷却して、ノツキングの発生を効
果的に防止している。
In addition, since the auxiliary intake port 4 opens into the squish area, the squish area that is prone to self-ignition, which normally causes knocking, is directly cooled with low-temperature intake air, and the squish area is defined. This effectively prevents the occurrence of knotting by cooling the wall surface where it is located.

[発明の効果] 以上の通りであるから、本発明の内燃機関の吸
気装置によるときは、副吸気ポートの出口部を、
中心線および全内周壁面(直線部の全内周壁面)
が出口部軸方向に直線状に延びる直線部を有する
円筒状に形成したので、副吸気ポートからの流れ
が副吸気ポートに設けた吸気弁の軸心まわりにほ
ぼ均一になつて燃焼室内に流入し、かつこの流れ
は下降するピストンに引張られてボア軸方向の流
れとなるとともに中心をボア中心に寄せられ、主
吸気ポートを流れてきた旋回流によつて生成され
た燃焼室内スワールに上方から直角に衝突するの
でスワールを弱めず、ピストン下死点近傍におい
てピストン頂面にほぼ直角に、したがつて斜め成
分をもたないため最大速度で衝突してマイクロタ
ービユレンスを効果的に多量発生させ、この弱め
られないスワールと多量のマイクロタービユレン
スをピストンで押し上げて点火栓で着火、燃焼さ
せることができ、かくしてリーンリミツトの向
上、燃焼の安定化と向上、燃費の改善をはかるこ
とができる。また、副吸気ポートをストレートポ
ートとしていることにより、高速域においても高
出力が得られる。さらに、前記の弱められないス
ワールと多量のマイクロタービユレンスによつて
吸気制御弁を排除しても燃焼の安定化をはかるこ
とができる。このため、シリンダヘツド内で分岐
するサイアミーズポート方式を採用しても吸気制
御弁を排除でき、システムの簡素化、流量低抗の
減少をはかることができる。
[Effects of the Invention] As described above, when using the intake system for an internal combustion engine of the present invention, the outlet portion of the sub-intake port is
Center line and all inner circumferential walls (all inner circumferential walls of straight sections)
is formed into a cylindrical shape with a straight part extending linearly in the axial direction of the outlet, so the flow from the sub-intake port becomes almost uniform around the axis of the intake valve provided at the sub-intake port and flows into the combustion chamber. This flow is pulled by the descending piston and becomes a flow in the axial direction of the bore, and its center is brought to the center of the bore, and the swirl from above is generated in the combustion chamber by the swirling flow that has flowed through the main intake port. Since it collides at a right angle, it does not weaken the swirl, and it collides at maximum speed because it is almost perpendicular to the piston top surface near the bottom dead center of the piston, and therefore does not have an oblique component, effectively generating a large amount of microturbulence. This undiminished swirl and a large amount of microturbulence can be pushed up by a piston, ignited by a spark plug, and combusted, thus improving the lean limit, stabilizing and improving combustion, and improving fuel efficiency. . Furthermore, by using a straight port as the auxiliary intake port, high output can be obtained even at high speeds. Furthermore, due to the unweakened swirl and a large amount of microturbulence, combustion can be stabilized even if the intake control valve is eliminated. Therefore, even if a Siamese port system is adopted that branches within the cylinder head, the intake control valve can be eliminated, simplifying the system and reducing flow resistance.

また、副吸気ポートをスキツシユエリアに開口
させたので、スキツシユエリアを直接、効果的に
冷却でき、ノツキングの発生を防止できる。
Furthermore, since the auxiliary intake port is opened to the squish area, the squish area can be directly and effectively cooled, and knocking can be prevented from occurring.

また、シリンダヘツド内で分岐するサイアミー
ズポート構成としたことにより他の効果も得られ
る。たとえば、独立二ポートに比べて仕切壁が減
少し、壁面への燃料付着量を少なくし未燃炭化水
素の放出の低減、運転性の向上をはかることがで
きる。また、独立二ポートに比べて燃焼室上壁面
部位でのウオータジヤケツトの占める空間を大に
でき、冷却効果の向上とそれに伴なうノツク限界
の向上を通して低燃費化をはかることができる。
さらにサイアミーズポート化によつて製作時に一
体中子を使用でき、量産エンジンの性能のばらつ
きを抑えることもできる。
In addition, other effects can be obtained by adopting a Siamese port configuration that branches within the cylinder head. For example, the number of partition walls is reduced compared to the two independent ports, which reduces the amount of fuel adhering to the wall surface, reduces the release of unburned hydrocarbons, and improves drivability. Furthermore, compared to the two independent ports, the space occupied by the water jacket on the upper wall of the combustion chamber can be increased, and fuel efficiency can be achieved by improving the cooling effect and thereby improving the knock limit.
Furthermore, Siamese porting allows the use of an integral core during manufacturing, which also reduces variations in performance in mass-produced engines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る内燃機関の吸
気装置を備えたシリンダヘツド部近傍の縦断面
図、第2図は第1図のシリンダヘツド部の横断面
図、第3図は第1図および第2図からサイアミー
ズポートのみを取出した平面図、第4図は第3図
のサイアミーズポートの斜視図、である。 1……シリンダヘツド、3……主吸気ポート
(ヘリカルポート)、3a……導入部、3b……渦
巻部、4……副吸気ポート(ストレートポート)、
4a……直線部、4b……円筒状の出口部、7…
…吸気弁、10……主吸気ポートの内周側壁面、
11……主吸気ポートの上壁面、12……主吸気
ポートの外周側壁面、16……隔壁、17……サ
イアミーズポート入口部。
FIG. 1 is a longitudinal cross-sectional view of the vicinity of a cylinder head equipped with an intake system of an internal combustion engine according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the cylinder head of FIG. 1, and FIG. 1 and 2, and FIG. 4 is a perspective view of the Siamese port shown in FIG. 3. 1... Cylinder head, 3... Main intake port (helical port), 3a... Introduction part, 3b... Spiral part, 4... Sub-intake port (straight port),
4a... straight part, 4b... cylindrical outlet part, 7...
...Intake valve, 10...Inner peripheral side wall surface of main intake port,
DESCRIPTION OF SYMBOLS 11... Upper wall surface of the main intake port, 12... Outer peripheral side wall surface of the main intake port, 16... Partition wall, 17... Siamese port inlet.

Claims (1)

【特許請求の範囲】[Claims] 1 ほぼ直線状に延びる導入部と該導入部に接続
し渦巻状に延びる渦巻部と該渦巻部に接続し下方
に延びる円筒状部とを有するヘリカルポートから
なる主吸気ポートと、ほぼ直線状に延びさらに下
方に折れ曲つて直線状に延びるストレートポート
からなる副吸気ポートとを、両ポートの分岐点が
シリンダヘツド内にあるサイアミーズポートに構
成し、前記副吸気ポートの燃焼室への出口部をピ
ストン頂面に平行な方向にて点火プラグと反対側
に位置するスキツシユエリアに開口させ、さらに
前記副吸気ポートの燃焼室への出口部を、中心線
と全内周壁面とが出口部軸方向に直線状に延びる
直線部をもつ円筒形状に形成したことを特徴とす
る内燃機関の吸気装置。
1. A main intake port consisting of a helical port having an introduction part extending in a substantially straight line, a spiral part connected to the introduction part and extending in a spiral shape, and a cylindrical part connected to the spiral part and extending downward; A auxiliary intake port consisting of a straight port that extends and further bends downward to extend in a straight line is configured as a Siamese port with a branching point of both ports in the cylinder head, and an outlet portion of the auxiliary intake port to the combustion chamber is configured. An opening is made in the squeezing area located on the opposite side of the spark plug in a direction parallel to the top surface of the piston, and the outlet part of the sub-intake port to the combustion chamber is arranged so that the center line and the entire inner circumferential wall surface are aligned with the outlet part axis. An intake device for an internal combustion engine, characterized in that it is formed into a cylindrical shape with a straight portion extending linearly in a direction.
JP57055068A 1982-04-02 1982-04-02 Intake system in internal combustion engine Granted JPS58172423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57055068A JPS58172423A (en) 1982-04-02 1982-04-02 Intake system in internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055068A JPS58172423A (en) 1982-04-02 1982-04-02 Intake system in internal combustion engine

Publications (2)

Publication Number Publication Date
JPS58172423A JPS58172423A (en) 1983-10-11
JPS6350532B2 true JPS6350532B2 (en) 1988-10-11

Family

ID=12988373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055068A Granted JPS58172423A (en) 1982-04-02 1982-04-02 Intake system in internal combustion engine

Country Status (1)

Country Link
JP (1) JPS58172423A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447585U (en) * 1987-09-16 1989-03-23

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840606A (en) * 1971-09-30 1973-06-14
JPS5519901A (en) * 1978-07-26 1980-02-13 Hino Motors Ltd Suction method and equipment of direct injection type diesel engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840606A (en) * 1971-09-30 1973-06-14
JPS5519901A (en) * 1978-07-26 1980-02-13 Hino Motors Ltd Suction method and equipment of direct injection type diesel engine

Also Published As

Publication number Publication date
JPS58172423A (en) 1983-10-11

Similar Documents

Publication Publication Date Title
US5394845A (en) Intake system for engine
JPH0238768B2 (en)
US4995359A (en) Combustion chamber for internal combustion engine
CN111486019A (en) Combustion chamber and gas engine
JPS6248927A (en) Suction port device for internal combustion engine
JP6747573B2 (en) Intake port structure of internal combustion engine
JPS6232328B2 (en)
JPS6350532B2 (en)
JP6750724B2 (en) Intake port structure of internal combustion engine
JPS6350531B2 (en)
JPS5922251Y2 (en) internal combustion engine
JPH0555691B2 (en)
JPS6335167Y2 (en)
JPS6127568B2 (en)
JPS58172424A (en) Intake system in internal-combustion engine
JPS6329176Y2 (en)
JP2713448B2 (en) Engine combustion chamber
JP7196405B2 (en) direct injection engine
JP2003003854A (en) In-cylinder direct injection jump-spark-ignition internal combustion engine and mixture forming method in in- cylinder direct injection jump-spark-ignition internal combustion engine
JP2713447B2 (en) Engine combustion chamber
JP2563943B2 (en) Engine combustion chamber structure
JPH02301618A (en) Combustion chamber structure of internal combustion engine
JP2815592B2 (en) Engine combustion chamber
JPS62258116A (en) Combustion chamber structure for engine
JP2566257B2 (en) Engine combustion chamber structure