JPS6350427A - Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability - Google Patents

Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability

Info

Publication number
JPS6350427A
JPS6350427A JP19367586A JP19367586A JPS6350427A JP S6350427 A JPS6350427 A JP S6350427A JP 19367586 A JP19367586 A JP 19367586A JP 19367586 A JP19367586 A JP 19367586A JP S6350427 A JPS6350427 A JP S6350427A
Authority
JP
Japan
Prior art keywords
rolling
less
toughness
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19367586A
Other languages
Japanese (ja)
Other versions
JPH0674457B2 (en
Inventor
Takeshi Tsuzuki
岳史 都築
Yukio Tomita
冨田 幸男
Ryota Yamaba
山場 良太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19367586A priority Critical patent/JPH0674457B2/en
Publication of JPS6350427A publication Critical patent/JPS6350427A/en
Publication of JPH0674457B2 publication Critical patent/JPH0674457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled steel plate in which security of high strength under low carbon equivalent, security of superior toughness at low temp. in the steel including the center of plate thickness, and improvement in weldability are simultaneously enabled, by specifying steel components and also by limiting the heating, rolling, and cooling conditions of a slab. CONSTITUTION:A steel consisting of, by weight, 0.03-0.20% C, 0.05-0.60% Si, 0.50-2.50% Mn, 0.001-0.10% Nb, 0.005-0.1% Al, and the balance Fe with inevitable impurities is heated to 900-1,150 deg.C. After heating, the steel is cooled after rolled to a thickness of intermediate stage or is cooled in a state of a slab without rolling, and the steel then is reheated before the temp. in the center of plate thickness drops below the Ar3 point, so that surface temp. of <=Ar3 point is subjected to temp. raise to Ar3 point - 1,150 deg.C. After that, rolling is resumed and rolling is applied to the whole plate thickness at a temp. between Ar3 point and (Ar3+100) deg.C at 50-70% draft. After rolling, the plate is cooled at 1-10 deg.C/sec cooling rate down to 250-600 deg.C and successively air-cooled, so that above-mentioned steel plate can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低温靭性、溶接性に優れた厚手高張力鋼板の製
造方法に関し、特に、加熱条件、圧延条件並びにその後
の冷却速度を制御して、板厚方向に均一でかつ優れた低
温靭性を有する厚手高張力鋼板を製造する方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing thick high-strength steel plates with excellent low-temperature toughness and weldability, and in particular, a method for manufacturing thick high-strength steel plates with excellent low-temperature toughness and weldability. The present invention relates to a method for producing a thick high-strength steel plate that is uniform in the thickness direction and has excellent low-temperature toughness.

〔従来の技術〕[Conventional technology]

近年、エネルギー開発が極地化、深海化しており、使用
される海洋構造物は年々巨大化が著しく、また効率的な
エネルギー輸送のため、砕氷タンカーなどの使用が必要
とされる。そして、これらに使用される鋼材は板厚が厚
くかつ非常に低温靭性が優れたものが要求される。とこ
ろが板厚が増すと板厚方向の材質差が増し、板厚中心部
の機械的性質が他の部分より劣る。特に、低温靭性の劣
化が大きい。さらに、板厚中心部は拘束応力が最大とな
り、破壊の起点となりやすいので、表面から板厚中心部
まで優れた低温靭性を有することが必要である。
In recent years, energy development has become more polarized and deeper into the ocean, and the marine structures used are becoming significantly larger year by year, and the use of ice-breaking tankers and the like is required for efficient energy transport. The steel materials used for these are required to be thick and have extremely good low-temperature toughness. However, as the plate thickness increases, the difference in material properties in the thickness direction increases, and the mechanical properties of the central part of the plate are inferior to other parts. In particular, the deterioration of low-temperature toughness is significant. Furthermore, since the center of the plate thickness has the maximum confining stress and tends to become the starting point of fracture, it is necessary to have excellent low-temperature toughness from the surface to the center of the plate thickness.

また、これらの巨大構造物に対する安全性確保は重要な
問題であり、溶接割れ性、溶接部継手靭性等の向上のた
めに炭素当量を低く抑えることが必要である。
Furthermore, ensuring the safety of these huge structures is an important issue, and it is necessary to keep the carbon equivalent low in order to improve weld cracking resistance, weld joint toughness, etc.

近年、炭素当量を減少して高強度・高靭性を得る手段と
して、制御圧延と制御冷却を組み合せた材質改善技術が
種々検討され、提案されており、例えば提案されたもの
として特開昭57−169019号公報記載のものが公
知である。しかしながら、前記公報記載の技術はライン
パイプや一般造船材を対象とし、加えて板厚50m1以
下の比較的薄いものを対象とした技術であり、このよう
に板厚の薄い領域では板厚方向の材質は、もともと比較
的均一である。
In recent years, various material improvement techniques that combine controlled rolling and controlled cooling have been studied and proposed as a means to reduce carbon equivalent and obtain high strength and toughness. The one described in Publication No. 169019 is known. However, the technology described in the above publication targets line pipes and general shipbuilding materials, as well as relatively thin plates with a thickness of 50 m1 or less. The material is originally relatively uniform.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、板厚が50鶴以上に厚くなると板厚方向に材質
差が大きくなり、特に板厚中心部の靭性は著しく低下す
る。この原因の一つに、従来の加熱、圧延方法では、第
2図に示すように加熱炉で900〜1150℃に加熱後
、粗圧延を経て仕上圧延に至る間に鋼板温度は時間と共
に低下し、板厚中心(+At)部と表面直下では温度差
が大きく、特に未再結晶域の圧延を開始する際に、表面
と板厚中心部の温度差が大きくなり、板厚中心部は再結
晶したり、未再結晶域高温側での圧延になってしまうこ
とが考えられる。このため、最善の未再結晶域低温圧延
が達成できている%を部などに比べ、板厚中心部の靭性
が低い。一方、圧延温度を低下させれば板厚中心部の低
温靭性の改善は可能であるが、表面側の温度が低下しす
ぎ、変態析出したフェライトを加工することになり、表
層側の低温靭性が低下する。従って、板厚方向全域に亘
って優れた低温靭性を有する技術開発が望まれていた。
However, when the plate thickness increases to 50 Tsuru or more, the difference in material properties increases in the thickness direction, and the toughness particularly at the center of the plate thickness decreases significantly. One of the reasons for this is that in conventional heating and rolling methods, as shown in Figure 2, the steel plate temperature decreases over time after being heated to 900 to 1150°C in a heating furnace, through rough rolling, and then to finish rolling. , there is a large temperature difference between the center of the plate thickness (+At) and just below the surface, and especially when starting rolling in the non-recrystallized area, the temperature difference between the surface and the center of the plate becomes large, and the center of the plate is recrystallized. Otherwise, rolling may occur on the high temperature side of the non-recrystallized region. For this reason, the toughness at the center of the sheet thickness is lower than that at the % where the best non-recrystallized region low-temperature rolling has been achieved. On the other hand, it is possible to improve the low-temperature toughness at the center of the sheet thickness by lowering the rolling temperature, but if the temperature at the surface side drops too much, the ferrite that has transformed and precipitated will have to be processed, and the low-temperature toughness at the surface side will decrease. descend. Therefore, it has been desired to develop a technology that provides excellent low-temperature toughness over the entire thickness direction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の如き問題点を有利に解決し、仮に50t
、以上、引張強さ50kgf/鰭2以上の厚手高張力鋼
板において、板厚方向全域にわたり靭性の均質化と向上
が可能な製造方法の提供を目的とする。
The present invention advantageously solves the above-mentioned problems, and even if 50t
The above aims to provide a manufacturing method capable of homogenizing and improving toughness over the entire thickness direction of a thick high-tensile steel plate having a tensile strength of 50 kgf/fin 2 or more.

上記目的を達成するため本発明は、 (11重量比にて CF 0.03〜0.20%、Si:0.05〜0.6
0%、 Mn: 0.50〜2.50%、 Nb : 
0.001〜0.10%、 AA : 0.005〜0
.1%を含有し、残部Feおよび不可避不純物からなる
鋼を900〜1150℃に加熱し、中間段階厚さ迄圧延
した後、一旦圧延を中断して冷却するか、あるいは圧延
しないでスラブ状態のまま板厚中心部がAr=以下にな
る前に再加熱し、Ar3以下となった表面部分をAc3
〜1150℃に昇熱し、次いで圧延を再開し、圧延時全
板厚に亘ってAr3+b 率50〜70%の圧延を行い、圧延後、冷却速度1〜1
0℃/secで250〜600℃迄冷却し、引き続き空
冷することを特徴とする低温靭性並びに溶接性に優れた
厚手高張力鋼板の製造方法。
In order to achieve the above object, the present invention provides (11 weight ratio of CF 0.03 to 0.20%, Si: 0.05 to 0.6
0%, Mn: 0.50-2.50%, Nb:
0.001-0.10%, AA: 0.005-0
.. Steel containing 1% Fe and unavoidable impurities is heated to 900-1150°C and rolled to an intermediate thickness, then the rolling is stopped and cooled, or the steel is left in a slab state without being rolled. Before the central part of the plate thickness becomes Ar= or less, reheat it, and the surface part where Ar is below Ar3 is heated to Ac3.
The temperature was raised to ~1150°C, then rolling was restarted, and rolling was performed at an Ar3+b ratio of 50 to 70% over the entire plate thickness during rolling, and after rolling, the cooling rate was 1 to 1.
A method for producing a thick high-strength steel plate with excellent low-temperature toughness and weldability, characterized by cooling to 250 to 600°C at a rate of 0°C/sec and then air cooling.

(2)重量比にて C: 0.03〜0.20%、Si:0.05〜0.6
0%、 Mn: 0.50〜2.50%、 Nb : 
0.001〜0.10%、Af:0.005〜0.1%
を基本成分とし、更に、Cr : 1.0%以下、Mo
:1.0%以下、V:O,t%以下、Cu:2.0%以
下のうち1種又は2種以上を含有し、更にNi:4.0
%以下、Ti:0.15%以下、Ca:0.01%以下
のうち1種又は2種以上を含有し、残部Feおよび不可
避不純物からなる鋼を900〜1150℃に加熱し、中
間段階厚さ迄圧延した後、一旦圧延を中断して冷却する
か、あるいは圧延しないでスラブ状態のまま板厚中心部
がAr3以下になる前に再加熱し、Ar3以下となった
表面部分をAc=〜1150℃に胃熱し、次いで圧延を
再開し、圧延時全板厚に亘ってAr、、+100℃〜A
r3の温度で圧下率50〜70%の圧延を行い、圧延後
、冷却速度1〜b °C迄冷却し、引き続き空冷することを特徴とする低温
靭性並びに溶接性に優れた厚手高張力鋼板の製造方法。
(2) C: 0.03-0.20%, Si: 0.05-0.6 in weight ratio
0%, Mn: 0.50-2.50%, Nb:
0.001-0.10%, Af: 0.005-0.1%
is the basic component, furthermore, Cr: 1.0% or less, Mo
Contains one or more of the following: 1.0% or less, V: O, t% or less, Cu: 2.0% or less, and further Ni: 4.0%.
% or less, Ti: 0.15% or less, Ca: 0.01% or less, and the balance consists of Fe and unavoidable impurities. After rolling until the point, the rolling is stopped and cooled, or the slab is left unrolled and reheated before the central part of the plate becomes Ar3 or less, and the surface area where Ar3 or less is Ac = ~ The stomach was heated to 1150°C, then rolling was restarted, and Ar, +100°C to A was applied over the entire plate thickness during rolling.
A thick high-strength steel plate with excellent low-temperature toughness and weldability characterized by rolling at a temperature of r3 with a reduction rate of 50 to 70%, and after rolling, cooling to a cooling rate of 1 to b °C and then air cooling. Production method.

を要旨とするものである。The main points are as follows.

前記のように、従来、板厚50nを越えるような厚手調
板においては板厚方向に材質差、特に低温靭性の差が生
じるのは圧延温度を管理する制御圧延プロセスが含まれ
るためその宿命であり、やむを得ない現象と考えられて
来た。
As mentioned above, conventionally, in thick conditioned plates with a thickness exceeding 50 nm, differences in material properties, especially differences in low-temperature toughness, occur in the thickness direction because it involves a controlled rolling process that controls the rolling temperature. This has been considered an unavoidable phenomenon.

しかしながら、発明者らはこのような板厚方向の靭性差
の要因につき、種々検討を加えた結果、圧延前ないし圧
延中途で板厚中心がAr3近(なった状態でAr3以下
に低下した表層部を強制昇熱して、Ac3以上に上げて
圧延することにより、その後の制御圧延−制御冷却後に
も板厚方向に均質で優れた機械的性質、特に低温靭性が
得られることを見出し、本発明はかかる知見により構成
されたものである。
However, the inventors conducted various studies on the factors behind such differences in toughness in the sheet thickness direction, and found that the surface layer where the center of the sheet thickness was close to Ar3 (or below Ar3) before or during rolling. It has been discovered that by forcibly heating the material to Ac3 or higher and rolling it, even after the subsequent controlled rolling and controlled cooling, uniform and excellent mechanical properties in the thickness direction, especially low temperature toughness, can be obtained, and the present invention has been made. It was constructed based on this knowledge.

次に、本発明における成分限定理由を述べる。Next, the reason for limiting the components in the present invention will be described.

Cは安価に強度を上昇させる元素であり、強度確保のた
め0.03%以上必要であるが、多量に添加すると鋼の
靭性および溶接性を害するので上限を0.20%とした
C is an element that increases strength at a low cost, and is required in an amount of 0.03% or more to ensure strength, but since adding a large amount impairs the toughness and weldability of the steel, the upper limit is set at 0.20%.

Siは鋼の脱酸のため0.05%以上必要であるが、多
くなると溶接性を害するので上限を0.60%とする。
0.05% or more of Si is necessary for deoxidizing the steel, but if it increases, weldability will be impaired, so the upper limit is set at 0.60%.

Mnは強度確保のため0.50%以上は必要であるが、
多くなると溶接性、靭性の低下を招くため上限を2.5
0%とする。
Mn is required at 0.50% or more to ensure strength, but
The upper limit is set at 2.5 because if it increases, the weldability and toughness will deteriorate.
Set to 0%.

Nbはオーステナイト粒の粗大化防止と再結晶抑制効果
および強度確保のため0.001%以上必要であるが、
多くなると溶接性を阻害するため、0.10%を上限と
する。
Nb is required in an amount of 0.001% or more to prevent coarsening of austenite grains, suppress recrystallization, and ensure strength.
If the amount increases, weldability will be impaired, so the upper limit is set at 0.10%.

Arは脱酸のためO,OO5%以上必要であるが、多く
なると靭性が著しく低下するため0.1%を上限とする
Ar is required to be 5% or more of O and OO for deoxidation, but if the amount is too large, the toughness will drop significantly, so the upper limit is set at 0.1%.

本発明は上記の基本成分のほかに、要求される綱の特性
に応じて次の元素を1種または2種以上選択的に添加す
ることができる。
In the present invention, in addition to the above-mentioned basic components, one or more of the following elements can be selectively added depending on the required properties of the steel.

Crは焼入れ性を向上させ強度上昇に有用な元素である
が、多くなると靭性、溶接性を阻害するため1.0%以
下とする。
Cr is an element that is useful for improving hardenability and increasing strength, but if it increases, it impedes toughness and weldability, so it is limited to 1.0% or less.

Moは焼入れ性を向上させ強度上昇に有用な元素である
が、多くなると溶接性、靭性を低下させるので1.0%
以下とする。
Mo is an element that is useful for improving hardenability and increasing strength, but if it increases, it decreases weldability and toughness, so 1.0%
The following shall apply.

Cuは強度上昇に有用な元素であるが、多くなると熱間
加工の際、割れを発生し、かつ溶接性を害するため2.
0%以下とする。
2. Cu is an element useful for increasing strength, but if it increases, it can cause cracks during hot working and impair weldability.
0% or less.

■は析出硬化による強度上昇に有用な元素であるが、多
くなると溶接性を阻害するため0.1%以下とする。
(2) is an element useful for increasing strength through precipitation hardening, but if it increases, it inhibits weldability, so it should be kept at 0.1% or less.

Niは靭性向上に有用な元素であるが、高価な元素であ
るため4.0%以下とする。
Ni is an element useful for improving toughness, but since it is an expensive element, its content is set to 4.0% or less.

Tiはオーステナイト粒の粗大化を防ぎ靭性確保に有用
であり、また析出硬化により強度上昇にも有用な元素で
あるが、多くなると溶接性を阻害するため0.1%以下
とする。
Ti is an element that is useful for preventing coarsening of austenite grains and ensuring toughness, and is also useful for increasing strength through precipitation hardening, but since Ti is an element that is useful in increasing strength by precipitation hardening, it is limited to 0.1% or less since it inhibits weldability when it is in a large amount.

Caは鋼中硫化物の形態制御によりZ方向の材質改善に
有効であるが、多くなると鋼中介在物が増加し、靭性、
溶接性を害するため0.01%以下とする。
Ca is effective in improving the material quality in the Z direction by controlling the morphology of sulfides in steel, but when the amount increases, inclusions in the steel increase and the toughness and
Because it impairs weldability, the content should be 0.01% or less.

これらの添加元素のうち、V、 Cu、 Cr、 Mo
は主に強度上昇に有用な元素で必要に応じて1種または
2種以上添加する。また、Ti、 Ni、 Caは主に
靭性向上に有用な元素で、必要に応し、1種または2種
以上添加する。
Among these additive elements, V, Cu, Cr, Mo
is an element that is mainly useful for increasing strength, and one or more of these elements may be added as necessary. Further, Ti, Ni, and Ca are elements mainly useful for improving toughness, and one or more of them may be added as necessary.

次に加熱、圧延、冷却条件について限定理由を述べる。Next, the reasons for limiting the heating, rolling, and cooling conditions will be described.

加熱温度はオーステナイト粒の細粒化のため1150℃
以下の低温加熱がよいが、低過ぎると析出硬化元素が固
溶しなくなるため900℃以上とするが、強度、靭性の
点からは950〜1050℃の範囲が最も好ましい。
The heating temperature is 1150℃ to refine the austenite grains.
The following low-temperature heating is preferred; however, if the temperature is too low, the precipitation hardening elements will not form a solid solution, so the heating temperature should be 900°C or higher, but from the viewpoint of strength and toughness, a temperature in the range of 950 to 1050°C is most preferable.

これらの温度で加熱後、中間段階厚さまで圧延したのち
一旦圧延を中断して冷却するかあるいは圧延しないでス
ラブ状態のまま冷却し、板厚中心部がAr3以下になる
前に再加熱する。すなわち、再加熱は第1図に示すよう
に加熱炉抽出後中間段階厚に至らせた後あるいは圧延し
ないでスラブ状態のまま冷却しAr3以下まで冷えた表
層部を再加熱によりAc=〜1150℃まで昇熱させる
ものである。
After heating at these temperatures, the sheet is rolled to an intermediate thickness, and then the rolling is stopped and cooled, or the sheet is cooled in the slab state without rolling, and then reheated before the center thickness of the sheet reaches Ar3 or less. That is, as shown in Fig. 1, reheating is carried out after extraction in a heating furnace to reach an intermediate stage thickness, or after cooling in the slab state without rolling, the surface layer cooled to Ar3 or less is reheated to Ac=~1150°C. It raises the temperature to .

ここに再加熱の上限を1150℃とするのはこれ以上に
なるとオーステナイトが粗大化するためである。
The reason why the upper limit of reheating is set at 1150° C. is that if the temperature is higher than this, the austenite becomes coarse.

このような加熱方法により、圧延時の温度を全厚ともA
r3〜Arz+100℃に、より厳密に制御すればAr
、〜At3+50℃にして次の未再結晶域圧延を行うこ
とができる。この結果、表面は変態温度(A、)を上下
することによる細粒化効果、板厚中心部は圧延温度が低
下することによる効果で、通常の加熱、空冷後、制御圧
延を開始する方法に比べて、著しく板厚全体の靭性を向
上させることができる。
With this heating method, the temperature during rolling can be maintained at A for the entire thickness.
Ar
, ~At3+50°C, and the next rolling in the non-recrystallized area can be performed. As a result, the surface grain refinement effect is achieved by raising and lowering the transformation temperature (A,), while the center part of the sheet thickness is affected by lowering the rolling temperature. Compared to this, the toughness of the entire plate thickness can be significantly improved.

しかして冷却は水冷及び空冷のいずれでもよく、また再
加熱は圧延ラインに併設した再加熱炉あるいはスラブ加
熱炉に逆送して装入し再加熱する方式でもよい。
Cooling may be performed by either water cooling or air cooling, and reheating may be performed by returning the material to a reheating furnace attached to the rolling line or charging it into a slab heating furnace and reheating it.

圧延温度をこれらの温度に限定するのは、圧延温度が高
すぎると、細粒化が十分なされず、またAr3未満の温
度で圧延すると、その後の制御冷却時に十分焼きが入ら
ず所要の強度が得られないためである。
The reason why the rolling temperature is limited to these temperatures is that if the rolling temperature is too high, the grains will not be refined sufficiently, and if the rolling temperature is lower than Ar3, sufficient hardening will not occur during the subsequent controlled cooling and the required strength will not be achieved. This is because they cannot be obtained.

これらの温度における圧下率を50%以上とするのは、
これ以下では細粒化が十分なされず、靭性が悪いためで
ある。上限は制御圧延の効果が飽和しだす70%とする
ことが好ましい。
The reduction rate at these temperatures is set to 50% or more because
This is because if it is less than this, the grain size is not sufficiently refined and the toughness is poor. The upper limit is preferably 70% at which the effect of controlled rolling begins to be saturated.

次に熱間圧延後の冷却速度を1℃/sec以上としたの
は、板厚中心部まで焼入れ組織とし、所定の強度を確保
するためであり、これ未満では強度不足となる。
Next, the reason why the cooling rate after hot rolling is set to 1° C./sec or more is to obtain a hardened structure up to the center of the plate thickness and to ensure a predetermined strength. If the cooling rate is less than this, the strength will be insufficient.

一方、上限は表面硬さの急上昇を抑え、また靭性の悪い
中間組織を呈さない10℃/secとすることが好まし
い。
On the other hand, the upper limit is preferably 10° C./sec, which suppresses a sudden increase in surface hardness and does not exhibit an intermediate structure with poor toughness.

次に冷却停止温度の下限を250℃とするのは、強度の
上がりすぎによる靭性の低下を防ぐためであり、上限を
600°Cとするのは、これ以上では所定の強度が得ら
れず、細粒化も不十分になるためである。
Next, the lower limit of the cooling stop temperature is set at 250°C to prevent a decrease in toughness due to an excessive increase in strength, and the upper limit is set at 600°C because the specified strength cannot be obtained at higher temperatures. This is because grain refinement also becomes insufficient.

なお、前記冷却停止後の空冷は、空冷中のオートテンパ
ー効果により強度の上がりすぎと靭性の低下を防止する
ためである。
Note that the air cooling after the cooling is stopped is to prevent an excessive increase in strength and a decrease in toughness due to the auto-tempering effect during air cooling.

(実施例) 次に本発明の実施例と比較例を挙げる。(Example) Next, examples of the present invention and comparative examples will be given.

供試材の化学組成を第1表に示し、製造条件を第2表に
、得られた厚鋼板の機械的性質を第3表に示す。
The chemical composition of the sample material is shown in Table 1, the manufacturing conditions are shown in Table 2, and the mechanical properties of the obtained thick steel plate are shown in Table 3.

第  3  表 以上の通り、本発明法を通用して得た厚鋼板AI、Bl
、CI、DI、E1.Fl、Gl。
Table 3 As shown above, thick steel plates AI and Bl obtained through the method of the present invention
, CI, DI, E1. Fl, Gl.

Hlはいずれも板厚方向の靭性差が小さく、表面直下、
At1%Lとも良好な靭性を示している。これに対し、
比較例のA2は水冷停止温度が低いため、強度は高いが
靭性が低い。B2は表面がAc3以上まで復熱していな
いため表面の靭性が悪い。
Hl has a small difference in toughness in the thickness direction, just below the surface,
Both At1%L exhibit good toughness. On the other hand,
Comparative example A2 has a low water-cooling stop temperature, so it has high strength but low toughness. B2 has poor surface toughness because the surface has not been reheated to Ac3 or higher.

C2,B2.H2は再加熱していないため、板厚中心部
の圧延温度が高く、靭性が悪い。B2は制御圧延を38
%しか行っていないため、板厚全体の靭性が悪い。F2
は板厚中心部がAr3より低下しており、表面もAC3
以上まで復熱していないため、板厚中心部と表面の靭性
が悪い。G2は、加熱温度が高いため、板厚全体の靭性
が悪い。
C2, B2. Since H2 was not reheated, the rolling temperature at the center of the plate thickness was high and the toughness was poor. B2 is controlled rolling 38
%, the toughness of the entire plate thickness is poor. F2
The central part of the plate thickness is lower than Ar3, and the surface is also AC3.
Since the heat has not been recovered to the above level, the toughness of the central part of the plate thickness and the surface is poor. Since G2 has a high heating temperature, the toughness of the entire plate thickness is poor.

(発明の効果) 以上の如く、本発明は板厚50酊以上で1mm”当たり
50kgf以上の引張強さを有する鋼板の板厚中心部の
細粒化を加熱、圧延、冷却を制御することにより達成し
たもので、板厚中心部まで含めた良好な低温靭性の確保
と成分組成及び含有量の適切な限定により低炭素当量下
での高強度の確保を同時に可能としたもので、工業上そ
の効果の大きい発明である。
(Effects of the Invention) As described above, the present invention achieves grain refinement at the center of the thickness of a steel plate having a thickness of 50 kg or more and a tensile strength of 50 kgf or more per 1 mm by controlling heating, rolling, and cooling. This achievement has made it possible to simultaneously ensure good low-temperature toughness up to the center of the plate thickness and to ensure high strength at low carbon equivalents by appropriately limiting the component composition and content. This is a highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明により再加熱した場合の表面直下と〃
もの温度履歴を示す説明図、第2図は、再加熱をしない
従来法の温度履歴を示す説明図である。 第2図 □時間
Figure 1 shows the area just below the surface and the area when reheated according to the present invention.
FIG. 2 is an explanatory diagram showing the temperature history of a conventional method without reheating. Figure 2 □ Time

Claims (2)

【特許請求の範囲】[Claims] (1)重量比にて C:0.03〜0.20%、Si:0.05〜0.60
%、Mn:0.50〜2.50%、Nb:0.001〜
0.10%、Al:0.005〜0.1%を含有し、残
部Feおよび不可避不純物からなる鋼を900〜115
0℃に加熱し、中間段階厚さ迄圧延した後、一旦圧延を
中断して冷却するか、あるいは圧延しないでスラブ状態
のまま板厚中心部がAr_3以下になる前に再加熱し、
Ar_3以下となった表面部分をAc_3〜1150℃
に昇熱し、次いで圧延を再開し、圧延時全板厚に亘って
Ar_3+100℃〜Ar_3の温度で圧下率50〜7
0%の圧延を行い、圧延後、冷却速度1〜10℃/se
cで250〜600℃迄冷却し、引き続き空冷すること
を特徴とする低温靭性並びに溶接性に優れた厚手高張力
鋼板の製造方法。
(1) C: 0.03-0.20%, Si: 0.05-0.60 in weight ratio
%, Mn: 0.50-2.50%, Nb: 0.001-
0.10%, Al: 0.005 to 0.1%, and the balance is Fe and inevitable impurities.
After heating to 0°C and rolling to an intermediate stage thickness, the rolling is temporarily interrupted and cooled, or the slab is not rolled and is reheated before the center thickness becomes Ar_3 or less,
Ac_3~1150℃ of the surface area where Ar_3 or less
The temperature was raised to
0% rolling, cooling rate 1~10℃/se after rolling
A method for producing a thick high-strength steel plate having excellent low-temperature toughness and weldability, the method comprising cooling the steel plate to 250 to 600° C. at c. and then air cooling.
(2)重量比にて C:0.03〜0.20%、Si:0.05〜0.60
%、Mn:0.50〜2.50%、Nb:0.001〜
0.10%、Al:0.005〜0.1%を基本成分と
し、更に、Cr:1.0%以下、Mo:1.0%以下、
V:0.1%以下、Cu:2.0%以下のうち1種又は
2種以上を含有し、更にNi:4.0%以下、Ti:0
.15%以下、Ca:0.01%以下のうち1種又は2
種以上を含有し、残部Feおよび不可避不純物からなる
鋼を900〜1150℃に加熱し、中間段階厚さ迄圧延
した後、一旦圧延を中断して冷却するか、あるいは圧延
しないでスラブ状態のまま板厚中心部がAr_3以下に
なる前に再加熱し、Ar_3以下となった表面部分をA
c_3〜1150℃に昇熱し、次いで圧延を再開し、圧
延時全板厚に亘ってAr_3+100℃〜Ar_3の温
度で圧下率50〜70%の圧延を行い、圧延後、冷却速
度1〜10℃/sec以上で250〜600℃迄冷却し
、引き続き空冷することを特徴とする低温靭性並びに溶
接性に優れた厚手高張力鋼板の製造方法。
(2) C: 0.03-0.20%, Si: 0.05-0.60 in weight ratio
%, Mn: 0.50-2.50%, Nb: 0.001-
0.10%, Al: 0.005 to 0.1% as basic components, further Cr: 1.0% or less, Mo: 1.0% or less,
Contains one or more of V: 0.1% or less, Cu: 2.0% or less, further Ni: 4.0% or less, Ti: 0
.. 15% or less, Ca: 1 or 2 of 0.01% or less
After heating the steel to 900 to 1150°C and rolling it to an intermediate thickness, the rolling is stopped and cooled, or the steel is left in a slab state without being rolled. Before the central part of the plate thickness reaches Ar_3 or less, reheat it, and heat the surface part where Ar_3 or less becomes
The temperature is raised to c_3~1150°C, then rolling is restarted, and rolling is performed at a temperature of Ar_3+100°C to Ar_3 with a reduction rate of 50~70% over the entire plate thickness during rolling, and after rolling, the cooling rate is 1~10°C/ A method for producing a thick high-strength steel plate having excellent low-temperature toughness and weldability, which comprises cooling the steel plate to 250 to 600°C for more than sec and then air cooling.
JP19367586A 1986-08-19 1986-08-19 Method for manufacturing thick high-strength steel sheet excellent in low temperature toughness and weldability Expired - Lifetime JPH0674457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19367586A JPH0674457B2 (en) 1986-08-19 1986-08-19 Method for manufacturing thick high-strength steel sheet excellent in low temperature toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19367586A JPH0674457B2 (en) 1986-08-19 1986-08-19 Method for manufacturing thick high-strength steel sheet excellent in low temperature toughness and weldability

Publications (2)

Publication Number Publication Date
JPS6350427A true JPS6350427A (en) 1988-03-03
JPH0674457B2 JPH0674457B2 (en) 1994-09-21

Family

ID=16311915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19367586A Expired - Lifetime JPH0674457B2 (en) 1986-08-19 1986-08-19 Method for manufacturing thick high-strength steel sheet excellent in low temperature toughness and weldability

Country Status (1)

Country Link
JP (1) JPH0674457B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141518A (en) * 1990-10-02 1992-05-15 Nippon Steel Corp Production of structural steel plate having high young's modulus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141518A (en) * 1990-10-02 1992-05-15 Nippon Steel Corp Production of structural steel plate having high young's modulus

Also Published As

Publication number Publication date
JPH0674457B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
CN114959460B (en) Low-yield-ratio easy-welding weather-resistant bridge steel and manufacturing method thereof
JP6886519B2 (en) Sour-resistant thick plate steel with excellent low-temperature toughness and post-heat treatment characteristics and its manufacturing method
JP2008266758A (en) High tensile strength steel having excellent low temperature toughness and reduced strength anisotropy, and method for producing the same
JP6682988B2 (en) High-tensile steel plate with excellent ductility and method of manufacturing the same
JPS605647B2 (en) Method for manufacturing boron-containing non-thermal high tensile strength steel with excellent low-temperature toughness and weldability
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JP2004269924A (en) High efficient producing method of steel sheet excellent in strength and toughness
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPS6350427A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JP2585321B2 (en) Manufacturing method of high strength and high toughness steel sheet with excellent weldability
JPH05148544A (en) Production of high-strength high-toughness steel plate having uniform hardness distribution in thickness direction
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JPH07292414A (en) Production of thin high strength steel plate having superior toughness at low temperature and sour resistance
JPS6350423A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JPH0670249B2 (en) Manufacturing method of tempered high strength steel sheet with excellent toughness
JP3848415B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness
JPS6367524B2 (en)
JPH0247525B2 (en)