JPS6350373A - Porous granular refractory material - Google Patents

Porous granular refractory material

Info

Publication number
JPS6350373A
JPS6350373A JP19622586A JP19622586A JPS6350373A JP S6350373 A JPS6350373 A JP S6350373A JP 19622586 A JP19622586 A JP 19622586A JP 19622586 A JP19622586 A JP 19622586A JP S6350373 A JPS6350373 A JP S6350373A
Authority
JP
Japan
Prior art keywords
porous
parts
weight
fibers
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19622586A
Other languages
Japanese (ja)
Inventor
木戸 兼介
勝美 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP19622586A priority Critical patent/JPS6350373A/en
Publication of JPS6350373A publication Critical patent/JPS6350373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐火断熱材、細孔フィルター、電解隔膜、イ
オン吸着材および触媒担体などの原材料として用いられ
る多孔質粒状耐火材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a porous particulate refractory material used as a raw material for refractory insulation materials, pore filters, electrolytic diaphragms, ion adsorbents, catalyst supports, and the like.

〔従来の技術〕[Conventional technology]

耐火断熱材、細孔フィルター、電解隔膜、イオン吸着、
触媒担体等の原材料としては、多孔質であることが要求
される。この点から、天然の多孔質+オ料1人工バルー
ン、バルク状セラミック繊維等が、その原材料として広
く用いられている。
Fireproof insulation materials, pore filters, electrolytic diaphragms, ion adsorption,
Raw materials such as catalyst carriers are required to be porous. From this point of view, natural porous + organic material 1 artificial balloons, bulk ceramic fibers, etc. are widely used as raw materials.

また、断熱材料として用いられる天然の多孔質材料とし
ては、珪藻土、パーライト抗火石等がある。
Furthermore, natural porous materials used as heat insulating materials include diatomaceous earth, perlite, and the like.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの原材料から特に111以下の細粒を得
ることは非常に困難である。たとえば、天然の多孔質材
料は、気孔が比較的大きいため、粉砕するとその気孔が
壊れ、実質部が増加するため断熱性が低下する欠点をも
つ、また、鹿児島に産出するシラス(火山ガラス)を熱
処理することにより得られるシラスバルーンは、断熱性
の優れた中空粒子であるが、融点が低く耐熱性が十分で
ない。
However, it is very difficult to obtain fine particles of 111 or less from these raw materials. For example, natural porous materials have relatively large pores, so when they are crushed, the pores break down and the substance increases, resulting in a decrease in insulation properties. Shirasu balloons obtained by heat treatment are hollow particles with excellent heat insulation properties, but have a low melting point and insufficient heat resistance.

その他の一般に天然に産する多孔質材料も、充分な耐熱
性を備えていない。
Other naturally occurring porous materials also do not have sufficient heat resistance.

これに対して、バルク状セラミックm維は、優れた断熱
材ではあるが、それを単独で構造材料として用いる場合
には下記のような種々の問題点がある。
On the other hand, bulk ceramic m-fibers are excellent heat insulating materials, but when used alone as a structural material, there are various problems as described below.

1、繊維の分散性が悪い。1. Poor fiber dispersibility.

2、 流動性が悪い。2. Poor liquidity.

3、加圧によってオリエンテーションする。3. Orient by applying pressure.

4、強度が弱い。4. Weak strength.

50作業性が悪い。50 Poor workability.

ところで、細孔フィルター、電解隔膜、イオン吸着材、
触媒担体等は、通気性及び表面積の如何が重用視される
ため、繊維が3次元的につながった構造が望ましい。し
かし、バルク状セラミック繊維にあっては前記したよう
に繊維の分散が悪いこと、流動性の悪いこと、加圧の方
向に対して直角の方向にオリエンテーションすること等
の理由によって、実際に施工する場合均一に3次元的構
造とすることはnしい。
By the way, pore filters, electrolytic diaphragms, ion adsorbents,
Since air permeability and surface area are important considerations for catalyst carriers and the like, it is desirable to have a structure in which fibers are three-dimensionally connected. However, as mentioned above, bulk ceramic fibers have problems in actual construction due to poor fiber dispersion, poor fluidity, and orientation perpendicular to the direction of pressure. In this case, it is difficult to form a uniform three-dimensional structure.

そこで、本発明は、これら従来の材料がもつ欠点を解消
し、優れた空隙率をもつ多孔質体を容易に製造できる多
孔質粒状耐火材料を堤供することを目的とする。
Therefore, an object of the present invention is to provide a porous granular refractory material that eliminates the drawbacks of these conventional materials and allows easy production of porous bodies with excellent porosity.

〔問題点を解決するための手段〕 本発明の多孔質粒状耐火材料は、その目的を達成するた
めに、線径0.1〜5%及びアスペクト比50〜500
のセラミック繊維及び/又はウィスカ100重量部に対
して、結合剤を固体に換算して1〜100重量部を添加
し、粒径10〜3000−に造粒してなることを特徴と
する。
[Means for Solving the Problems] In order to achieve the object, the porous granular refractory material of the present invention has a wire diameter of 0.1 to 5% and an aspect ratio of 50 to 500.
It is characterized by adding 1 to 100 parts by weight of a binder in terms of solids to 100 parts by weight of ceramic fibers and/or whiskers, and granulating the particles to a particle size of 10 to 3,000.

〔作用〕[Effect]

繊維質の原料から多孔質体を製造するとき、その繊維質
原料の分散性及び流動性が低いために、作業性が非常に
悪い、そこで、作業性を改善する方法について種々検討
を行った結果、繊維の線径とアスペクト比を適当に選ぶ
ことにより、セラミック繊維及び/又はウィスカを造粒
することができることを発見した。そして、この場合に
結合剤のみによってセラミック繊維及び/又はウィスカ
を3次元的に絡み合わせ、熱的及び機械的スポーリング
に強い多孔質粒状耐火材料を開発した。
When producing porous bodies from fibrous raw materials, workability is very poor due to the low dispersibility and fluidity of the fibrous raw materials.Therefore, we conducted various studies on ways to improve workability. discovered that ceramic fibers and/or whiskers can be granulated by appropriately selecting the fiber diameter and aspect ratio. In this case, ceramic fibers and/or whiskers were three-dimensionally intertwined using only a binder to develop a porous granular refractory material that is resistant to thermal and mechanical spalling.

本発明で用いられるセラミック繊維及び/又はウィスカ
としては、ジルコニア、アルミナ、ムライト等の結晶質
繊維、各種ガラス繊維及びチタン酸カリウム、炭化珪素
、窒化珪素等のウィスカの1種又は2種以上を組み合わ
せて使用することができる。その組合せにより、製品と
しての多孔質粒状耐火材料の耐火性を自由に選択するこ
とができる。
The ceramic fibers and/or whiskers used in the present invention include one or a combination of crystalline fibers such as zirconia, alumina, and mullite, various glass fibers, and whiskers such as potassium titanate, silicon carbide, and silicon nitride. can be used. Depending on the combination, the fire resistance of the porous granular refractory material as a product can be freely selected.

このセラミック繊維及び/又はウィスカの線径を0.1
〜5戸とし、アスペクト比を50〜5ooとする。
The wire diameter of this ceramic fiber and/or whisker is 0.1
There will be ~5 units, and the aspect ratio will be 50~5oo.

アスペクト比が50未満では繊維としての特徴が少なく
なり、500を越えると造粒が困難となる。また線径が
5戸より大きいと表面積が小さくなり造粒が困難となる
If the aspect ratio is less than 50, the characteristics as a fiber will be reduced, and if it exceeds 500, granulation becomes difficult. Moreover, if the wire diameter is larger than 5 wires, the surface area becomes small and granulation becomes difficult.

このセラミック繊維及び/又はウィスカに混合される結
合剤としては、無機質又はを機質のいずれか、又は両者
を併用して用いることができる。
The binder to be mixed with the ceramic fibers and/or whiskers may be either inorganic or organic, or a combination of both.

無機結合剤としては珪酸ナトリウム、珪酸カリウム、珪
酸リチウム等の珪酸塩系結合剤、第一リン酸アルミニウ
ム、第一リン酸カルシウム、第一リン酸マグネシウム、
縮合リン酸ナトリウム1 リン酸等のリン酸系結合剤、
コロイダルシリカ、コロイダルアルミナ、コロイダルジ
ルコニア等のゾル系結合剤及びエチルシリケート等が適
当である。
Examples of inorganic binders include silicate binders such as sodium silicate, potassium silicate, and lithium silicate, monobasic aluminum phosphate, monobasic calcium phosphate, monobasic magnesium phosphate,
Condensed sodium phosphate 1 Phosphoric acid binder such as phosphoric acid,
Sol binders such as colloidal silica, colloidal alumina, and colloidal zirconia, and ethyl silicate are suitable.

他方、有機結合剤としてはポリビニールアルコール、C
MC,ザンサルエキス、ワックス煩等が適当である。
On the other hand, polyvinyl alcohol, C
MC, zansal extract, wax lacquer, etc. are suitable.

この結合剤は、セラミック繊維及び/又はウィスカ10
0重量部に対して固体に換算して1〜100重量部の割
合で添加される。
This bonding agent is made of ceramic fibers and/or whiskers.
It is added in a proportion of 1 to 100 parts by weight in terms of solids relative to 0 parts by weight.

多孔質粒状耐火材料の熱間強度に重点を置く場合は無機
結合剤を用いるのが良く、結合剤の盪が1重量部未満で
あれば造粒が困難であるとともに造粒子の強度が得られ
ない。また10重量部を趨えると多孔性が阻害されると
共に結合剤により耐火性が低下する。
When placing emphasis on the hot strength of porous granular refractory materials, it is better to use an inorganic binder; if the amount of binder is less than 1 part by weight, granulation is difficult and the strength of the granules cannot be obtained. do not have. If the amount exceeds 10 parts by weight, the porosity will be inhibited and the fire resistance will decrease due to the binder.

繊維特性をフルに発揮する場合は有機質結合剤を用いる
と良<、有機質結合剤の量が5Mm部未満であれば造粒
が困難であるとともに造粒子の強度が得られない。また
100重量部を超えると繊維結合部に入り込む結合剤の
量が多くなり、繊維の3次元的つながりが悪くなる。
If the fiber properties are to be fully exhibited, it is preferable to use an organic binder; however, if the amount of the organic binder is less than 5 mm parts, granulation is difficult and the strength of the granules cannot be obtained. Moreover, if it exceeds 100 parts by weight, the amount of binder that enters the fiber bonding portion increases, and the three-dimensional connection of the fibers deteriorates.

ポリビニールアルコールやCM Cのような一般の結合
剤は固体に換算して5〜10重■部が望ましく、ワック
スを熱融解して使用する特殊な場合は70〜100重量
部が適当である。
A general binder such as polyvinyl alcohol or CMC is preferably used in an amount of 5 to 10 parts by weight on a solid basis, and in special cases where the wax is used by thermal melting, an appropriate amount is 70 to 100 parts by weight.

そして、得られた違金物を、粒径10〜3000戸に造
粒する。なお、無m質結合剤と存機質結合剤を併用する
とき、多孔質粒状耐火材料の使用目的に応じて無機結合
剤と−f機結合剤との配合割合を1〜100重量部の範
囲で適宜選択すると良い。
Then, the obtained foreign metal product is granulated to a particle size of 10 to 3,000 particles. In addition, when using an inorganic binder and an organic binder together, the blending ratio of the inorganic binder and -f organic binder may be in the range of 1 to 100 parts by weight depending on the purpose of use of the porous granular fireproof material. It is best to choose accordingly.

〔実施例〕〔Example〕

以下、実施例により本発明の特徴を具体的に説明する。 Hereinafter, the features of the present invention will be specifically explained with reference to Examples.

実施例1゜ 直径0.1〜0.5戸及び長さ10〜30JJllのチ
タン酸カリウム(KzTiJ+z)短繊維100重1部
に対して、無機結合剤としての珪酸リチウム23九i8
液25重量部(固体換算5.75重量部)に水70重量
部を添加しながらスプレードライ造粒機によって10〜
100 )mに造粒し、多孔質の球状に近い粒子(多孔
質球状粒子)を得た。
Example 1 100 parts by weight of potassium titanate (KzTiJ+z) short fibers having a diameter of 0.1 to 0.5 mm and a length of 10 to 30 JJl, and 239i8 of lithium silicate as an inorganic binder.
While adding 70 parts by weight of water to 25 parts by weight of liquid (5.75 parts by weight in terms of solids), 10~
The particles were granulated to a size of 100) m to obtain porous, nearly spherical particles (porous spherical particles).

この様にして得られた多孔質球状粒子をSEMで観察す
ると第1図に示す様にウィスカはそれぞれ交差した部分
でのみ結合しており、空隙部分は完全に連続している3
次元的に絡み合った多孔質球状粒子であった。この多孔
質球状粒子は、充填かさ密度0.29、見掛は密度0.
61及び空隙率88%であった。
When the porous spherical particles obtained in this way are observed with an SEM, as shown in Figure 1, the whiskers are connected only at their intersections, and the voids are completely continuous.
They were porous spherical particles that were dimensionally entangled. These porous spherical particles have a packed bulk density of 0.29 and an apparent density of 0.29.
61 and the porosity was 88%.

実施例2゜ 実施例!、と同じチタン酸カリウムウィスカ100重通
部に対して、存機質結合剤としてパラフィンワックスエ
マルジョン(平均粒径2戸、濃度40%)を96重量部
(固体換算38.4重量部)添加しながら、スパルタン
造粒機によって10〜200%の粒度に造粒し、50℃
で乾燥した。
Example 2゜Example! , 96 parts by weight (38.4 parts by weight in terms of solids) of paraffin wax emulsion (average particle size 2, concentration 40%) was added as a organic binder to 100 parts of the same potassium titanate whisker. At the same time, it was granulated to a particle size of 10 to 200% using a Spartan granulator, and heated at 50°C.
It was dried.

この様にして得られた多孔質球状粒子をSEMで観察す
ると、ウィスカはそれぞれ交差した部分でパラフィン粒
子で結合されており、空隙部分は完全に連続している3
次元的に絡み合った多孔質球状粒子であった。得られた
多孔質球状粒子は、粒度44〜250 )m、充填かさ
密度0.33、見掛は密度0.91、空隙率64%であ
った。
When the porous spherical particles obtained in this way are observed with an SEM, the whiskers are connected by paraffin particles at their intersections, and the voids are completely continuous3.
They were porous spherical particles that were dimensionally entangled. The obtained porous spherical particles had a particle size of 44 to 250 m, a packed bulk density of 0.33, an apparent density of 0.91, and a porosity of 64%.

実施例3、 線径3〜5P及びアスペクト比100〜400の結晶質
ムライト繊維(A!zOi 80%)100重量部に対
し、無機質結合剤として珪曹比2.5.7届度36%の
珪酸ナトリウム14重量部(固体換算5.03!1ff
i部)に水82重量部添加しながらスパルタン造粒機に
よって粒径500〜2000戸に造粒し、300℃で乾
燥し多孔質球状粒子を得た。
Example 3: For 100 parts by weight of crystalline mullite fibers (A!zOi 80%) with a wire diameter of 3 to 5P and an aspect ratio of 100 to 400, silica ratio of 2.5.7 and a degree of delivery of 36% was used as an inorganic binder. 14 parts by weight of sodium silicate (solid equivalent: 5.03!1ff
Part i) was granulated using a Spartan granulator while adding 82 parts by weight of water to a particle size of 500 to 2000 particles, and dried at 300°C to obtain porous spherical particles.

この様にして得られた多孔質球状粒子をSEMで観察す
ると結晶質ムライト繊維は第2図に示す様にそれぞれ交
差した部分でのみ結合しており、空隙部分は完全に連続
している3次元的に絡み合った多孔質球状粒子であった
。この多孔質球状粒子は充填かさ密度0.40、見掛は
密度0.89、空隙率58%であった。
Observation of the porous spherical particles obtained in this way using an SEM shows that the crystalline mullite fibers are bonded only at the intersections, as shown in Figure 2, and the voids are completely continuous three-dimensional. They were porous spherical particles entangled with each other. The porous spherical particles had a packed bulk density of 0.40, an apparent density of 0.89, and a porosity of 58%.

なお実施例1.で得た多孔質球状粒子100重量部に対
して、無機結合剤として珪酸リチウム23%溶液10重
量部を添加し20kg/c+Jで230 X 230 
X 30の形状に成形し800℃で熱処理した後で熱伝
専率を測定したところ、平均温度350℃において0.
32Kcal/m、h、’cであり、熱処理後の通気率
を測定した結果30ad −as / cJ ・cm、
H2oであった。
Note that Example 1. 10 parts by weight of a 23% lithium silicate solution was added as an inorganic binder to 100 parts by weight of the porous spherical particles obtained in 230 x 230 at 20 kg/c+J.
When the heat transfer rate was measured after being molded into the shape of X30 and heat treated at 800°C, it was found to be 0.
It is 32Kcal/m, h, 'c, and the result of measuring the air permeability after heat treatment is 30ad - as / cJ ・cm,
It was H2o.

したがって、この多孔質粒状耐火材ギ4から作られた成
形体は、乾燥収縮及び焼成収縮が小さことから、製品に
おける寸法精度の向上及び歩留りの向上が期待できる。
Therefore, since the molded body made from this porous granular refractory material 4 has small drying shrinkage and firing shrinkage, it can be expected to improve the dimensional accuracy and yield of the product.

また、第3図は第一実施例の造粒用繊維と同じチタン酸
カリウム繊維体のSEMによる拡大写真である。この写
真から明らかなように、無造粒のものを掻き混ぜると、
局部的には空隙状態が良くみえるが、空隙を維持する強
度はなく、繊維の長さ方向に絡み合った状態で束になる
傾向がみえ、そのまま使用したのでは分散性も悪く、3
次元的につながった構造を得るのは難しい。
Moreover, FIG. 3 is an enlarged SEM photograph of the same potassium titanate fiber as the granulation fiber of the first example. As you can see from this photo, when you stir the non-granulated material,
Although the voids look good locally, there is no strength to maintain the voids, and the fibers tend to become entangled in the longitudinal direction and form bundles, and if used as is, the dispersibility is poor.
It is difficult to obtain a dimensionally connected structure.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、分散性及び
流動性の非常に悪いバルク状繊維を球状に近い形に造粒
しているので、その繊維を粒子と同様な状態で使用する
ことができる。また、本発明の多孔質粒状耐火材料は微
細な繊維を造粒することにより作られているので、発塵
が非常に減少する。そして、造粒されたものは、繊維が
3次元的に絡まった構造となっているので、多孔質であ
ると共に粒子としての強度を持ってδす、流動性がよく
なり充填性の良い多孔質粒状耐火材料として使用される
。更には、少量の結合剤によって造粒した場合、熱的特
性が向上し、機械的スポーリングに優れた多孔質粒状耐
火材料として使用される。
As explained above, in the present invention, bulk fibers with very poor dispersibility and fluidity are granulated into a nearly spherical shape, so the fibers can be used in the same state as particles. can. Further, since the porous granular fireproof material of the present invention is made by granulating fine fibers, dust generation is greatly reduced. The granulated product has a structure in which the fibers are three-dimensionally entangled, so it is porous and has strength as a particle. Used as granular refractory material. Furthermore, when granulated with a small amount of binder, the thermal properties are improved and the material is used as a porous granular refractory material with excellent mechanical spalling properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例におけるチタン酸カリウム繊維から
なる造粒物(粒径80戸)をSEM(走査電子顕微鏡)
によって観察した粒子構造を示し、第2図は第3実施例
における結晶質ムライト繊維からなる造粒物(粒径12
00JJII+)をSEM(走査電子顕微鏡)によって
観察した粒子構造を示し、第3図は無造粒のチタン酸カ
リウム繊維をSEM(走査電子顕微鏡)によって観察し
た繊維構造を示す。 特許出願人     FA  崎 窯 業 株式会社代
理人  小児 益(ほか2名) 第 1−に 1・ 22、 藁 3
Figure 1 shows an SEM (scanning electron microscope) of the granulated material (particle size: 80 particles) made of potassium titanate fibers in the first example.
Fig. 2 shows the particle structure of the granulated material (particle size: 12
00JJII+) observed by SEM (scanning electron microscope), and FIG. 3 shows the fiber structure of ungranulated potassium titanate fiber observed by SEM (scanning electron microscope). Patent Applicant FA Saki Ceramics Co., Ltd. Agent Masu Kodo (and 2 others) No. 1-21, 22, Wara 3

Claims (1)

【特許請求の範囲】[Claims] 1、線径0.1〜5μm及びアスペクト比50〜500
のセラミック繊維及び/又はウイスカ100重量部に対
して、結合剤を固体に換算して1〜100重量部を添加
し、粒径10〜3000μmに造粒してなることを特徴
とする多孔質粒状耐火材料。
1. Wire diameter 0.1-5μm and aspect ratio 50-500
Porous granules characterized by adding 1 to 100 parts by weight of a binder in terms of solids to 100 parts by weight of ceramic fibers and/or whiskers, and granulating the particles to a particle size of 10 to 3000 μm. Fireproof material.
JP19622586A 1986-08-20 1986-08-20 Porous granular refractory material Pending JPS6350373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19622586A JPS6350373A (en) 1986-08-20 1986-08-20 Porous granular refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19622586A JPS6350373A (en) 1986-08-20 1986-08-20 Porous granular refractory material

Publications (1)

Publication Number Publication Date
JPS6350373A true JPS6350373A (en) 1988-03-03

Family

ID=16354281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19622586A Pending JPS6350373A (en) 1986-08-20 1986-08-20 Porous granular refractory material

Country Status (1)

Country Link
JP (1) JPS6350373A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145491A (en) * 1988-11-24 1990-06-04 Natl House Ind Co Ltd Porous ceramic plate
JPH02164751A (en) * 1988-12-19 1990-06-25 Kawatetsu Mining Co Ltd Granular whisker and production thereof
JPH02242854A (en) * 1989-03-16 1990-09-27 Shin Etsu Chem Co Ltd Curable silicone rubber composition
JPH0848885A (en) * 1995-07-31 1996-02-20 Shin Etsu Chem Co Ltd Curable silicone rubber composition for roll member
JP2008138157A (en) * 2006-03-23 2008-06-19 Sumitomo Chemical Co Ltd Granules and heat-conductive resin composition using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145491A (en) * 1988-11-24 1990-06-04 Natl House Ind Co Ltd Porous ceramic plate
JPH02164751A (en) * 1988-12-19 1990-06-25 Kawatetsu Mining Co Ltd Granular whisker and production thereof
JPH0478600B2 (en) * 1988-12-19 1992-12-11 Kawatetsu Kogyo Kk
JPH02242854A (en) * 1989-03-16 1990-09-27 Shin Etsu Chem Co Ltd Curable silicone rubber composition
JPH0655895B2 (en) * 1989-03-16 1994-07-27 信越化学工業株式会社 Curable silicone rubber composition
JPH0848885A (en) * 1995-07-31 1996-02-20 Shin Etsu Chem Co Ltd Curable silicone rubber composition for roll member
JP2008138157A (en) * 2006-03-23 2008-06-19 Sumitomo Chemical Co Ltd Granules and heat-conductive resin composition using the same

Similar Documents

Publication Publication Date Title
US7491263B2 (en) Storage assembly
US6080475A (en) Composite material containing aerogel, process for manufacturing the same and the use thereof
JPH01264978A (en) Porous inorganic material
JPS6291448A (en) Burnt hollow ceramic sphere
CN107511077A (en) A kind of preparation method of industrial air filter filter membrane
JPH0228546B2 (en)
CA2048502A1 (en) Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
CN108176249A (en) A kind of preparation method of SiC nano fiber film
US20150361652A1 (en) Thermal and/or acoustic insulation materials shaped from silica
JPS6350373A (en) Porous granular refractory material
Zou et al. Efficient construction of tubular mullite fiber membrane filter with high gas permeance for gas/solid filtration
Liu et al. Ultralight and mechanically robust SiC foams with interconnected cellular architecture
CN108164282A (en) A kind of attapulgite composite ceramics film support and its preparation method and application
CA2022186A1 (en) Ceramic material
JPH0212910B2 (en)
JP3794914B2 (en) Ceramic adhesive
ES2211893T3 (en) THERMALLY INSULATING MATERIAL BASED ON ALUMINUM FIBERS AND ITS MANUFACTURE.
JPH03193336A (en) Heat-resistant honeycomb structural body
JPH04209772A (en) Ceramic porous material
JPS62125060A (en) Heat insulating material and its production
JP2958472B2 (en) High strength porous member and method of manufacturing the same
KR850006169A (en) Porous ceramic filter medium and method of manufacturing the filter medium
JPH0388787A (en) Porous refractory material
JP2972883B1 (en) Hygroscopic porous structure and method for producing the same
JP2517225B2 (en) Manufacturing method of porous inorganic material molded plate