JP2972883B1 - Hygroscopic porous structure and method for producing the same - Google Patents

Hygroscopic porous structure and method for producing the same

Info

Publication number
JP2972883B1
JP2972883B1 JP29459798A JP29459798A JP2972883B1 JP 2972883 B1 JP2972883 B1 JP 2972883B1 JP 29459798 A JP29459798 A JP 29459798A JP 29459798 A JP29459798 A JP 29459798A JP 2972883 B1 JP2972883 B1 JP 2972883B1
Authority
JP
Japan
Prior art keywords
moisture
porous
absorbing
porous structure
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29459798A
Other languages
Japanese (ja)
Other versions
JP2000104353A (en
Inventor
信治 渡村
雅喜 前田
恵一 犬飼
文彦 大橋
正哉 鈴木
靖雄 芝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP29459798A priority Critical patent/JP2972883B1/en
Application granted granted Critical
Publication of JP2972883B1 publication Critical patent/JP2972883B1/en
Publication of JP2000104353A publication Critical patent/JP2000104353A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Building Environments (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

【要約】 【課題】 成形性を有しない多孔質粉末の水蒸気吸着量
を低減させることなく成形・固化を行い自律的調湿機能
を示す多孔質壁材の製造方法等を提供する。 【解決手段】 シリカゾルの粘性を利用して成形・固化
体を作成し乾燥することにより、多孔質性を損なわずに
吸湿性と吸水性を兼ね備えたナノメートルオーダーの細
孔を有する多孔質壁材を製造する。 【効果】 成形性のない多孔質粉末の強度と水蒸気吸着
量を両立させる成形法でなおかつ省エネルギー的な多孔
質固化体作製法を提供することにより、ナノメートルオ
ーダーの細孔内で生じる毛管凝縮現象により、外部から
エネルギーを与えることなく、自律的に湿度調整機能を
有する機能性材料の供給が可能となる。
An object of the present invention is to provide a method for producing a porous wall material exhibiting an autonomous humidity control function by forming and solidifying a porous powder having no formability without reducing the amount of water vapor adsorbed. SOLUTION: A porous wall material having pores on the order of nanometers having both hygroscopicity and water absorbability without impairing the porosity by forming and drying a molded / solidified body utilizing the viscosity of silica sol. To manufacture. [Effect] Capillary condensation phenomenon that occurs in pores on the order of nanometers by providing an energy-saving method for producing a porous solid body that is a molding method that balances the strength of a non-moldable porous powder with the amount of water vapor adsorbed. Thereby, it is possible to supply a functional material having a humidity adjusting function autonomously without giving external energy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、成形性を有しない
多孔質粉末の水蒸気吸着量を低減させることなく、成
形、固化を行い、自律的調湿機能を示す多孔質構造体を
製造する方法等に関するものであり、さらに詳しくは、
本発明は、結露を防止し、室内の湿度を適正に調整して
快適空間を確保し得るための内装壁材向けタイル等の、
優れた自律的調湿機能を有する内装壁材およびその製造
方法等に関するものである。
The present invention relates to a method for producing a porous structure exhibiting an autonomous humidity control function by molding and solidifying without reducing the amount of water vapor adsorbed on a non-moldable porous powder. Etc., and more specifically,
The present invention prevents condensation, such as tiles for interior wall materials, etc., to ensure a comfortable space by properly adjusting the indoor humidity,
The present invention relates to an interior wall material having an excellent autonomous humidity control function and a method for producing the same.

【0002】[0002]

【従来の技術】近年の居住環境は、断熱性の向上や暖房
設備の充実に伴い、快適性を増しつつあるものの、断熱
材や暖房器等による人工的な環境制御では、断熱材の外
側に内部結露が発生し、腐朽菌等が増殖し壁材の強度を
劣化させ、その結果、震災に対し充分な強度を保持し得
なくなる場合もある。また、ダニやカビの繁殖に伴うア
レルギー問題も発生している。さらに、エネルギー消費
を伴うため、コスト的な面の他、地球環境への影響も無
視できるものではない。
2. Description of the Related Art In recent years, the living environment has been increasing comfort with the improvement of heat insulation and the enhancement of heating equipment. Internal condensation occurs, and rot bacteria and the like multiply and deteriorate the strength of the wall material. As a result, it may not be possible to maintain sufficient strength against the earthquake. In addition, allergic problems associated with the propagation of mites and molds have also occurred. Furthermore, since energy consumption is involved, the impact on the global environment in addition to cost is not negligible.

【0003】上述の、断熱材や暖房器等による人工的な
環境制御は、高温多湿または低温結露を生じるような日
本の環境条件を快適に過ごすために温度の制御を行おう
とするものであるが、湿度制御を行うだけでも体感的に
は快適な環境を実現できると考えられる。
The above-described artificial environmental control using a heat insulating material, a heater, or the like attempts to control the temperature in order to comfortably enjoy Japanese environmental conditions that cause high-temperature, high-humidity or low-temperature dew condensation. It is considered that a comfortable environment can be realized by controlling the humidity only.

【0004】このようなことから、建材自体に調湿機能
を持たせ、空調設備や電力などを必要とせずに室内の湿
度調整を行い、防露性、防黴性を得ることができる調湿
建材の開発が行われている。従来、調湿建材としては珪
酸カルシウム建材(特開平5−293367号公報)、
珪藻土系調建材(特開平4−354514号公報)、ゼ
オライト系建材(特開平3−93662号公報)、シリ
カゲル系建材(特開平7−284658公報)等の開発
が行われている。また、カオリン鉱物を熱処理した後、
非晶質シリカを溶出させること(選択溶解法)で多孔質
の自律的調湿機能を有する内装壁材を製造する方法(特
願平9−202522号)が開発されている。
[0004] For this reason, the humidity control function is provided to the building material itself so that the humidity in the room can be adjusted without the need for air conditioning equipment or electric power, and the dehumidification and mold resistance can be obtained. Construction materials are being developed. Conventionally, calcium silicate building materials (Japanese Unexamined Patent Publication No. Hei 5-29367) have been used as humidity control building materials.
Diatomaceous earth-based building materials (JP-A-4-354514), zeolite-based building materials (JP-A-3-93662), and silica gel-based building materials (JP-A-7-284658) have been developed. Also, after heat treatment of kaolin mineral,
A method for producing a porous interior wall material having an autonomous humidity control function by eluting amorphous silica (selective dissolution method) has been developed (Japanese Patent Application No. 9-202522).

【0005】上述の如く、調湿建材としてはすでに各種
のものが開発されているが、次のような問題点を残して
いる。従来の珪酸カルシウム調湿建材は、吸湿容量が1
0wt%以下であるため梅雨時のように長期間高湿度状
態が続いた場合に建材の吸湿量がすぐに飽和し、調湿
性、防露性を失ってしまう。ゼオライト系建材はセメン
ト系結合材を用いているため吸放湿性が低下し効率的な
調湿建材に利用するには必ずしも適していない。珪藻土
系調湿建材では、800〜1000℃で焼成固化してい
るため省エネルギー的に難点がある。また、選択溶解法
によるγ−アルミナ多孔体の製造方法では熱処理後、調
製した多孔質粉体をさらに成形し1000℃前後で焼成
するプロセスが必要となり、エネルギーコスト的にも不
利である。さらに、吸湿量に優れたシリカゲルも、成形
性に乏しく大型化するとひび割れや強度の問題があり、
もっぱら粒状で用いられるのみで、大きな成形体として
壁材として用いることはできなかった。
As described above, various humidity control building materials have already been developed, but they have the following problems. Conventional calcium silicate humidity control building materials have a moisture absorption capacity of 1
Since the content is 0% by weight or less, when the high humidity state continues for a long period of time such as during the rainy season, the amount of moisture absorption of the building material is quickly saturated, and the humidity control property and the dew-proof property are lost. Since a zeolite-based building material uses a cement-based binder, its moisture absorption / desorption property is reduced, and is not necessarily suitable for use as an efficient humidity-controlling building material. Diatomaceous earth humidity control building materials are difficult to save energy because they are fired and solidified at 800 to 1000 ° C. In addition, the method for producing a porous γ-alumina body by the selective melting method requires a process of further molding the prepared porous powder after heat treatment and firing at about 1000 ° C., which is disadvantageous in energy cost. Furthermore, silica gel, which has excellent moisture absorption, also has problems of cracking and strength when it becomes large due to poor moldability.
It was used only in granular form and could not be used as a wall material as a large molded body.

【0006】一部のシリカゲルについては、有機系のバ
インダー(ポリビニルアルコール、デンプン、カルボキ
シメチルセルロース、水溶性アクリル樹脂)を用て成形
体となすことが例示されている(特開平7−28465
8号公報)。しかし、有機系のバインダーは耐熱性に乏
しく、また、気孔を塞いで吸湿性を阻害する二重の欠点
があり、この実施例では、シリカゲル単独の平衡吸湿率
は90%RHで50重量%あったが、有機バインダーに
よる成形後は90%RHで10時間放置しても吸湿率が
23重量%に低下したことが例示されている。
Some silica gels are exemplified to be formed into a molded body by using an organic binder (polyvinyl alcohol, starch, carboxymethyl cellulose, water-soluble acrylic resin) (Japanese Patent Application Laid-Open No. 7-28465).
No. 8). However, the organic binder has poor heat resistance and has the double drawback of blocking pores and inhibiting moisture absorption. In this embodiment, the equilibrium moisture absorption of silica gel alone is 50% by weight at 90% RH. However, after molding with an organic binder, even when left at 90% RH for 10 hours, the moisture absorption rate is reduced to 23% by weight.

【0007】また、特開平10−18445号公報で
は、上記のポリビニルアルコールを始め、MMA樹脂、
ポリアクリル酸塩、デンプン−アクリル酸グラフト共重
合体、酢酸ビニル−アクリル酸エステル共重合体ケトン
化合物等の吸水性高分子は、吸水により強度低下を起こ
すばかりでなく、吸水時に大きな寸法変化を起こすこと
から、これらを用いて壁材を構成することは困難である
と指摘されている。また、この特開平10−18445
号公報ではポリオレフィン系樹脂をバインダーとして用
いているが、その表1で示されている実施例の吸湿量は
最大のものでも7%以下の少ないものでしかなかった。
[0007] In Japanese Patent Application Laid-Open No. 10-18445, the above polyvinyl alcohol, MMA resin,
Water-absorbing polymers such as polyacrylates, starch-acrylic acid graft copolymers, and vinyl acetate-acrylic acid ester copolymer ketone compounds cause not only a decrease in strength due to water absorption, but also a large dimensional change upon water absorption. Therefore, it is pointed out that it is difficult to form a wall material using these materials. Further, Japanese Patent Application Laid-Open No. 10-18445
In the publication, a polyolefin-based resin is used as a binder, but the examples shown in Table 1 have a maximum moisture absorption of only 7% or less.

【0008】[0008]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、省エネルギ
ー的に自律的調湿機能を有する機能性建材等として有用
な多孔質構造体を開発することを目標として鋭意研究を
積み重ねた結果、成形性を有しない多孔質粉体にコロイ
ド状のシリカゾルを添加し、水蒸気の吸放湿特性を減少
させないように成形、乾燥、固化することにより所期の
目的を達成し得ることを見出し、本発明を完成するに至
った。本発明は、上記の問題を根本的に解決するため
に、吸湿量が多く強度を有した「呼吸する壁材」成形体
を提供せんことを目的とし、その要旨は成形性に乏しい
無機の多孔質粉体に数ナノメートルオーダーの極微細粒
子のシリカゾルを不燃性のバインダーとして添加すると
ともに、ひび割れや収縮を防止するための繊維状物質を
添加することにより、吸湿量を低下させず強度にも優れ
たナノメートルオーダーの細孔を有する吸放湿性多孔質
壁材を形成することに存する。
Under such circumstances, the present inventors, in view of the above-mentioned prior art, have proposed a porous structure useful as a functional building material having an autonomous humidity control function in an energy-saving manner. As a result of intensive research with the aim of developing a body, colloidal silica sol is added to porous powder that does not have moldability, and it is molded, dried, and solidified so as not to reduce the moisture absorption and desorption characteristics of water vapor As a result, it has been found that the intended purpose can be achieved, and the present invention has been completed. An object of the present invention is to provide a “breathing wall material” molded body having a large amount of moisture absorption and strength in order to fundamentally solve the above-mentioned problems, and its gist is an inorganic porous material having poor moldability. By adding silica sol of ultra-fine particles of the order of several nanometers to the porous powder as a nonflammable binder, and adding a fibrous substance to prevent cracking and shrinkage, it does not reduce the moisture absorption and also increases the strength. The purpose of the present invention is to form a moisture-absorbing and releasing porous wall material having excellent nanometer-order pores.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段からなる。 (1)自律的調湿機能を有する吸放湿性多孔質構造体を
製造する方法であって、水蒸気の吸放湿特性を減少させ
ないように、メソスコピックなサイズ(2〜50nm)
の細孔を有する多孔質粉末にシリカゾルを混合後乾燥す
ることにより多孔質材料を固化させ、焼結しないことを
特徴とする省エネルギー的な吸放湿性多孔質構造体の製
造方法。 (2)上記の固化体の乾燥時の収縮によるひび割れや表
面の凹凸を防止するために、上記組成に繊維物質を混合
させることを特徴とする上記(1)記載の吸放湿性多孔
質構造体の製造方法。 (3)多孔質粉末がメソスコピックなサイズ(2〜50
nm)の細孔を有するシリカゲル、メソポーラスシリ
カ、M41S、FSM16、ピラード・クレー、選択溶
解法カオリナイト、多孔質ガラス粉末、アロフェン、珪
藻土、水酸化アルミニウム脱水物から選ばれた一種類以
上であることを特徴とする上記(1)記載の吸放湿性多
孔質構造体の製造方法。 (4)シリカゾルが粒径20nm以下の微細粒子から成
ることを特徴とする上記(1)記載の吸放湿性多孔質構
造体の製造方法。 (5)シリカゾルが多孔質粉末100重量部に対して乾
燥重量で20〜50重量部保持されていることを特徴と
する上記(1)記載の吸放湿性多孔質構造体の製造方
法。 (6)上記(1)から(5)のいずれか1つに記載の方
法により得られる自律的調湿機能を有する吸放湿性多孔
質構造体。 (7)上記(6)記載の自律的調湿機能を有する吸放湿
性多孔質構造体から成る調湿材料。 (8)調湿建材、壁材、内壁材、天井材、乾燥剤、また
は調湿機能を有する空間を構成するための部材である上
記(7)記載の調湿材料。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A method for producing a moisture-absorbing and desorbing porous structure having an autonomous humidity control function, wherein a mesoscopic size (2 to 50 nm) is used so as not to reduce the moisture-absorbing and desorbing characteristics of water vapor.
A method for producing an energy-saving moisture-absorbing and desorbing porous structure, characterized in that a porous material is solidified by mixing a silica sol with a porous powder having the above-mentioned pores and then drying, followed by sintering. (2) The moisture absorbing and releasing porous structure according to (1), wherein a fibrous substance is mixed with the composition in order to prevent cracks and surface irregularities due to shrinkage of the solidified body during drying. Manufacturing method. (3) Mesoscopic size of porous powder (2 to 50)
at least one selected from the group consisting of silica gel, mesoporous silica, M41S, FSM16, pillared clay, selective dissolution method kaolinite, porous glass powder, allophane, diatomaceous earth, and aluminum hydroxide dehydrate having pores of (nm) The method for producing a moisture-absorbing and releasing porous structure according to the above (1), which is characterized in that: (4) The method for producing a moisture-absorbing and releasing porous structure according to the above (1), wherein the silica sol comprises fine particles having a particle size of 20 nm or less. (5) The method for producing a moisture-absorbing / desorbing porous structure according to the above (1), wherein the silica sol is held in a dry weight of 20 to 50 parts by weight with respect to 100 parts by weight of the porous powder. (6) A moisture-absorbing and releasing porous structure having an autonomous humidity control function obtained by the method according to any one of the above (1) to (5). (7) A humidity control material comprising a moisture-absorbing and releasing porous structure having an autonomous humidity control function according to (6). (8) The humidity control material according to (7), which is a humidity control building material, a wall material, an inner wall material, a ceiling material, a desiccant, or a member for configuring a space having a humidity control function.

【0010】[0010]

【発明の実施の形態】次に、本発明についてさらに詳述
する。本発明は、上記のとおり、シリカゾルの粘性を利
用して成形、固化体を作製することにより、多孔性を損
なわずに吸湿性と吸水性を兼ね備えたナノメートルオー
ダーの細孔を有する多孔質構造体を製造することを特徴
とする。本発明方法で原料として用いるメソスコピック
な細孔(2〜50nm)を有する多孔質材料としては、
例えばJIS Z0701に規定するB形シリカゲル、
および液体クロマトグラフ用のシリカゲルを用いてもよ
い。また、選択溶解法カオリナイト、多孔質ガラス粉
末、珪藻土、水酸化アルミニウム脱水物やアロフェンな
どでもよい。さらには非晶質ではなく構造を持たせたM
CM41、M41S、FSM16などのメソポーラスシ
リカなどが、水蒸気吸放湿特性に優れたものとして例示
される。これらの原料を適宜の手段で解砕し、例えば3
0mesh以下、より好ましくは70mesh以下に調
整した後、これにシリカゾル、例えばコロイダルシリ
カ、ヒュームドシリカ、スノーテックス、Ludox、
カタロイドSなどを流動性がでるまで添加し、型に流し
込んだ後、例えば、室温から100℃で3から24時間
乾燥して多孔質材料を固化させ、焼結することなく、多
孔質構造体を得る。
Next, the present invention will be described in more detail. As described above, the present invention provides a porous structure having nanometer-order pores having both hygroscopicity and water absorbency without impairing porosity by forming and solidifying a body utilizing the viscosity of silica sol. It is characterized by producing the body. Examples of the porous material having mesoscopic pores (2 to 50 nm) used as a raw material in the method of the present invention include:
For example, B-type silica gel specified in JIS Z0701,
Alternatively, silica gel for liquid chromatography may be used. Alternatively, kaolinite, porous glass powder, diatomaceous earth, aluminum hydroxide dehydrate, allophane, or the like may be used. Furthermore, M which is not amorphous but has a structure
Mesoporous silica such as CM41, M41S, FSM16 and the like are exemplified as having excellent water vapor absorption / release properties. These raw materials are crushed by an appropriate means, for example, 3
After being adjusted to 0 mesh or less, more preferably 70 mesh or less, a silica sol such as colloidal silica, fumed silica, snowtex, Ludox,
After adding cataloid S or the like until fluidity is obtained and pouring into a mold, for example, the porous material is solidified by drying at room temperature to 100 ° C. for 3 to 24 hours, and the porous structure is formed without sintering. obtain.

【0011】本発明においては、上記多孔質粉末から選
ばれた適宜の一種以上を使用することができる。シリカ
ゾルは粒径20nm以下の微細粒子から成ることが好ま
しい。それにより数ミクロンの大きな粒子の間にゾル粒
子が入り込み粘着固結効果が増大するという効果が得ら
れる。また、シリカゾルは多孔質粉末100重量部に対
して乾燥重量で20〜50重量部混合することが好まし
い。この場合、シリカゾルが20重量部より少ないと固
結性が低下し脆い状態となり好ましくなく、また、50
重量部より多いと多孔質粉末とシリカゾルが脱泡時に上
下に分離しやすくなり好ましくない。上記構造体の形状
および構造、その成形方法、乾燥方法および条件などは
特に限定されるものではないが、好適には、板状・中実
の形状および構造で、陶磁器の泥しょう鋳込成形方法を
応用し、室温から100℃で3から24時間乾燥する方
法が例示される。本発明においては、多孔質材料を固化
させるだけでよく、焼結しないことを特徴とする。それ
により、省エネルギーであり、焼成収縮のない、工程の
少ない、焼成炉など高価な設備が不要、などのメリット
が得られる。上記多孔質構造体は、例えば、壁材、タン
ス、押入・収蔵庫の大面積の乾燥剤、美術品展示ケース
の上面や底に敷く調湿材などとして有用である。
In the present invention, any one or more selected from the above porous powders can be used. The silica sol is preferably composed of fine particles having a particle size of 20 nm or less. As a result, an effect is obtained in which the sol particles enter between large particles of several microns and the adhesive consolidation effect increases. Further, it is preferable that the silica sol is mixed in a dry weight of 20 to 50 parts by weight with respect to 100 parts by weight of the porous powder. In this case, if the amount of the silica sol is less than 20 parts by weight, the consolidation property is reduced and a brittle state is caused, which is not preferable.
If the amount is more than the weight part, the porous powder and the silica sol are easily separated up and down during defoaming, which is not preferable. The shape and structure of the above-mentioned structure, its forming method, drying method and conditions are not particularly limited, but preferably, it is a plate-shaped / solid shape and structure, and a ceramic slurry casting method. And drying at room temperature to 100 ° C. for 3 to 24 hours. The present invention is characterized in that it only needs to solidify the porous material and does not sinter. As a result, advantages such as energy saving, no firing shrinkage, few steps, and no need for expensive equipment such as a firing furnace are obtained. The porous structure is useful as, for example, a wall material, a closet, a desiccant for a large area of a closet / storage, a humidity control material laid on the top or bottom of an art display case, and the like.

【0012】本発明方法の一態様として、上記の固化体
の乾燥時の収縮によるひび割れや表面の凹凸を防止する
ために、適宜の長さのパルプやガラス繊維などの繊維を
添加後、攪拌、真空脱泡して型に流し込み乾燥すること
により、上記の方法よりもひび割れや収縮を防止し強度
を増加させることができる。この場合、繊維物質の種
類、形態などは特に限定されないが、好適には、短繊維
パルプ、長繊維パルプ、ガラスウール、炭素繊維、ビニ
ールなどの高分子繊維、セピオライトなどの鉱物質繊維
が例示される。上記方法により、優れた自律的調湿機能
を示すナノメートルオーダーの細孔を有する多孔質構造
体を製造することができる。
As one embodiment of the method of the present invention, in order to prevent cracks and surface irregularities due to shrinkage during drying of the solidified product, after adding fibers such as pulp or glass fiber of an appropriate length, stirring is performed. By vacuum defoaming, pouring into a mold and drying, cracking and shrinkage can be prevented and the strength can be increased as compared with the above method. In this case, the type and form of the fibrous material are not particularly limited, but preferably, short fiber pulp, long fiber pulp, glass wool, carbon fiber, polymer fibers such as vinyl, and mineral fibers such as sepiolite are exemplified. You. By the above method, a porous structure having pores on the order of nanometers exhibiting an excellent autonomous humidity control function can be manufactured.

【0013】上記方法により製造された多孔質構造体の
主な特性を以下に示す。 1)1g当たり0.5g以上の吸水性を有する。 2)1g当たり0.25g以上の吸湿性を有する。 3)乾燥時と吸水時の寸法変化率が0.5%以下であ
る。 4)成形体の1平方ミリメートル当たり14kgf/c
2 以上の圧縮強度を有する。
The main characteristics of the porous structure manufactured by the above method are shown below. 1) It has a water absorption of 0.5 g or more per 1 g. 2) It has a hygroscopic property of 0.25 g or more per 1 g. 3) The dimensional change between drying and water absorption is 0.5% or less. 4) 14 kgf / c per square millimeter of molded article
It has a compressive strength of at least m 2 .

【0014】本発明においては、成形性のない多孔質粉
末の強度と水蒸気吸着量を両立させる成形法、および焼
結工程等を含まない省エネルギー的な多孔質固化体作製
法を採用することが重要であり、本発明は、これによ
り、ナノメートルオーダーの細孔内で生じる毛細凝縮現
象により、外部からエネルギーを与えることなく、自律
的に湿度調整機能を有する機能性材料を提供することを
可能とする。
In the present invention, it is important to employ a molding method that balances the strength of a non-moldable porous powder with the amount of water vapor adsorbed, and an energy-saving porous solid preparation method that does not include a sintering step. Accordingly, the present invention makes it possible to provide a functional material having a humidity adjusting function autonomously without giving energy from the outside, due to a capillary condensation phenomenon occurring in pores on the order of nanometers. I do.

【0015】[0015]

【実施例】次に、本発明を実施例に基づいて具体的に説
明するが、本発明は当該実施例のみに限定されるもので
はない。 実施例1〜7 原料にはシリカゲルB形を用いた。この原料をポットミ
ルで解砕した後、70meshのふるい下の粉末を調製
した。さらに、長さが40〜100mesh(0.15
−0.425mm)の短繊維パルプ( アドバンテック東
洋製Cellulose powder D)および2
mm長以下の長繊維パルプ( アドバンテック東洋製As
hless Pulp)、およびGlass wool
(増田理化製φ1μm)の3種類を調製した。シリカゾ
ルにはスノーテックスN型(日産化学製、粒子径10〜
20nm)を用いた。シリカゲル、シリカゾルと繊維と
の割合を26:64.9:9.1、28.1:70.
3:1.5、28.3:70.3:1.0および21.
9:76.5:1.6の重量比で混合し室温および40
℃、で24時間乾燥し、それぞれ実施例1〜7とした。
(表1)
Next, the present invention will be specifically described based on examples, but the present invention is not limited to only the examples. Examples 1 to 7 Silica gel B was used as a raw material. After crushing this raw material in a pot mill, a powder under a 70 mesh sieve was prepared. Furthermore, the length is 40-100 mesh (0.15
-0.425 mm) short fiber pulp (Cellulose powder D, manufactured by Advantech Toyo) and 2
mm long fiber pulp (Advantech Toyo As
hless Pulp) and Glass wool
(Φ1 μm manufactured by Masuda Rika) were prepared. Silica sol includes Snowtex N-type (Nissan Chemical, particle size 10 ~
20 nm). The ratio of silica gel, silica sol and fiber is 26: 64.9: 9.1, 28.1: 70.
3: 1.5, 28.3: 70.3: 1.0 and 21.
Mix at a weight ratio of 9: 76.5: 1.6 and mix at room temperature and 40
It dried at 24 degreeC and 24 hours, and was set to Examples 1-7, respectively.
(Table 1)

【0016】圧縮強度(表1および図1)は、短繊維パ
ルプを混ぜたもの(実施例1および2)が最も弱く15
kgf/cm2 前後であり、長繊維パルプを混ぜたもの
(実施例5および6)は20kgf/cm2 前後とやや
大きく、ガラス繊維を混ぜたもの(実施例3、4および
7)が25kgf/cm2 前後と珪藻頁岩セラミックス
と同等の最も大きな値を示した。
The compressive strength (Table 1 and FIG. 1) was the weakest when mixed with short fiber pulp (Examples 1 and 2).
kgf / cm 2 , the mixture of long fiber pulp (Examples 5 and 6) was slightly larger than about 20 kgf / cm 2 , and the mixture of glass fibers (Examples 3, 4, and 7) was 25 kgf / cm 2. cm 2 , which was the largest value equivalent to that of diatom shale ceramics.

【0017】試料の水蒸気吸着等温線はJTトーシ
(株)製EAM−01を用いて25℃相対湿度10〜9
0%の範囲で測定した(図2)。短繊維パルプを混ぜて
室温および40℃で乾燥したもの(実施例1および2)
の最大吸湿率は30%前後と低下が大きく、100℃で
乾燥したものでは40%前後に回復していた。長繊維パ
ルプを混ぜたものでは乾燥に伴う少量の反りが認めら
れ、最大吸湿率は室温および40℃乾燥(実施例5およ
び6)では40%前後、100℃乾燥では50%前後と
大きかった。ガラス繊維を混ぜて室温および40℃で乾
燥したもの(実施例3、4および7)では最大吸湿率は
45%前後であった。
The water vapor adsorption isotherm of the sample was measured at 25 ° C. and a relative humidity of 10 to 9 using EAM-01 manufactured by JT Toshi.
It was measured in the range of 0% (FIG. 2). Short fiber pulp mixed and dried at room temperature and 40 ° C. (Examples 1 and 2)
Has a large decrease of about 30%, and has recovered to about 40% when dried at 100 ° C. The mixture containing long fiber pulp showed a small amount of warpage due to drying, and the maximum moisture absorption was as large as about 40% at room temperature and 40 ° C. drying (Examples 5 and 6), and about 50% at 100 ° C. drying. Glass fibers mixed and dried at room temperature and 40 ° C. (Examples 3, 4 and 7) had a maximum moisture absorption of about 45%.

【0018】実施例1〜7を水中に24時間浸漬後の吸
水率は50%以上、密度は0.8g/cm3 前後であ
り、水中に1日浸漬後も寸法変化は0.1%以下で、測
定誤差以下であった。
The water absorption of Examples 1 to 7 after immersion in water for 24 hours is 50% or more, the density is about 0.8 g / cm 3 , and the dimensional change after immersion in water for 1 day is 0.1% or less. Was less than the measurement error.

【0019】比較例1 市販のケイ酸カルシウム系調湿材料(旭硝子製、ミュー
ジライト)の圧縮強度および水蒸気吸着等温線を調べ
た。最大水蒸気吸着量は約7%であった。圧縮強度は
6.5kgf/cm2 であった。以上の結果から、本発
明の方法により、市販のケイ酸カルシウム系調湿壁材の
最大水蒸気吸着量と比べて5から7倍、圧縮強度は2か
ら3倍のシリカゲル固化体が調製できたといえる。本発
明の実施例1〜7と比較例1の諸特性を示す。
Comparative Example 1 The compressive strength and water vapor adsorption isotherm of a commercially available calcium silicate-based humidity control material (Muselite manufactured by Asahi Glass Co., Ltd.) were examined. The maximum water vapor adsorption was about 7%. The compressive strength was 6.5 kgf / cm 2 . From the above results, it can be said that the method of the present invention was able to prepare a solidified silica gel having a compressive strength of 5 to 7 times and a compressive strength of 2 to 3 times as large as the maximum water vapor adsorption of a commercially available calcium silicate-based humidity control wall material. . The characteristics of Examples 1 to 7 of the present invention and Comparative Example 1 are shown.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上に説明したように、本発明は、成形
性を有しない多孔質粉体にコロイド状のシリカゾルを添
加、成形、乾燥することにより、水蒸気吸着量を損なう
ことなく自律的調湿機能を有するタイル等の製造を可能
としたものであり、本発明によれば、多孔質性を損なわ
ずに吸湿性と吸水性を兼ね備えたナノメートルオーダー
の細孔を有する多孔質構造体を製造することが可能であ
り、省エネルギー的に自律的調湿機能を有する機能性建
材を生産することができる。よって、本発明は快適な居
住環境の実現と省エネルギー、環境低負荷型材料の提供
に寄与する技術として、業界に寄与するところは極めて
大きいものである。
As described above, the present invention provides an autonomous control without impairing the amount of adsorbed water vapor by adding colloidal silica sol to porous powder having no moldability, molding and drying. According to the present invention, it is possible to manufacture a tile or the like having a wet function, and according to the present invention, a porous structure having nanometer-order pores having both moisture absorption and water absorption without impairing the porosity. It can be manufactured, and a functional building material having an autonomous humidity control function can be produced in an energy-saving manner. Therefore, the present invention greatly contributes to the industry as a technology that contributes to realizing a comfortable living environment, saving energy, and providing environmentally friendly materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1〜7と比較例1の圧縮強度と
密度の関係を示す。
FIG. 1 shows the relationship between compressive strength and density in Examples 1 to 7 of the present invention and Comparative Example 1.

【図2】本発明の実施例1〜4と比較例1の水蒸気吸着
等温線を示す。
FIG. 2 shows water vapor adsorption isotherms of Examples 1 to 4 and Comparative Example 1 of the present invention.

【図3】本発明の実施例5〜7、原料のシリカゲル粉末
および比較例1の水蒸気吸着等温線を示す。
FIG. 3 shows water vapor adsorption isotherms of Examples 5 to 7, raw material silica gel powder and Comparative Example 1 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 正哉 岐阜県多治見市松阪町4−8−212 (72)発明者 芝崎 靖雄 愛知県名古屋市熱田区大宝2−4 (56)参考文献 特開 平8−26842(JP,A) 特開 平5−293367(JP,A) 特開 平8−299745(JP,A) 特開 昭63−217040(JP,A) (58)調査した分野(Int.Cl.6,DB名) E04B 1/64 C04B 38/00 301 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masaya Suzuki 4-8-212 Matsusaka-cho, Tajimi-shi, Gifu (72) Inventor Yasuo Shibazaki 2-4, Daiho, Atsuta-ku, Nagoya-shi, Aichi (56) References 8-26842 (JP, A) JP-A-5-29333 (JP, A) JP-A 8-299745 (JP, A) JP-A-63-217040 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) E04B 1/64 C04B 38/00 301

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 自律的調湿機能を有する吸放湿性多孔質
構造体を製造する方法であって、水蒸気の吸放湿特性を
減少させないように、メソスコピックなサイズ(2〜5
0nm)の細孔を有する多孔質粉末にシリカゾルを混合
後乾燥することにより多孔質材料を固化させ、焼結しな
いことを特徴とする省エネルギー的な吸放湿性多孔質構
造体の製造方法。
1. A method for producing a moisture-absorbing and desorbing porous structure having an autonomous humidity control function, wherein a mesoscopic size (2 to 5) is selected so as not to reduce the moisture-absorbing and desorbing characteristics of water vapor.
An energy-saving method for producing a moisture-absorbing and desorbing porous structure, comprising mixing a silica sol with a porous powder having fine pores having a pore size of 0 nm, followed by drying to solidify the porous material and not sintering.
【請求項2】 上記の固化体の乾燥時の収縮によるひび
割れや表面の凹凸を防止するために、上記組成に繊維物
質を混合させることを特徴とする請求項1記載の吸放湿
性多孔質構造体の製造方法。
2. The moisture-absorbing and releasing porous structure according to claim 1, wherein a fibrous substance is mixed with said composition in order to prevent cracks and surface irregularities due to shrinkage of said solidified body during drying. How to make the body.
【請求項3】 多孔質粉末がメソスコピックなサイズ
(2〜50nm)の細孔を有するシリカゲル、メソポー
ラスシリカ、M41S、FSM16、ピラード・クレ
ー、選択溶解法カオリナイト、多孔質ガラス粉末、アロ
フェン、珪藻土、水酸化アルミニウム脱水物から選ばれ
た一種類以上であることを特徴とする請求項1記載の吸
放湿性多孔質構造体の製造方法。
3. The porous powder has silica gel having pores of mesoscopic size (2 to 50 nm), mesoporous silica, M41S, FSM16, pillared clay, selective dissolution method kaolinite, porous glass powder, allophane, diatomaceous earth, 2. The method for producing a moisture-absorbing and releasing porous structure according to claim 1, wherein the porous structure is at least one selected from dehydrated aluminum hydroxide.
【請求項4】 シリカゾルが粒径20nm以下の微細粒
子から成ることを特徴とする請求項1記載の吸放湿性多
孔質構造体の製造方法。
4. The method for producing a moisture-absorbing and releasing porous structure according to claim 1, wherein the silica sol comprises fine particles having a particle size of 20 nm or less.
【請求項5】 シリカゾルが多孔質粉末100重量部に
対して乾燥重量で20〜50重量部保持されていること
を特徴とする請求項1記載の吸放湿性多孔質構造体の製
造方法。
5. The method for producing a moisture-absorbing and desorbing porous structure according to claim 1, wherein the silica sol is held in a dry weight of 20 to 50 parts by weight with respect to 100 parts by weight of the porous powder.
【請求項6】 請求項1から請求項5のいずれか1項に
記載の方法により得られる自律的調湿機能を有する吸放
湿性多孔質構造体。
6. A moisture-absorbing / desorbing porous structure having an autonomous humidity control function obtained by the method according to claim 1. Description:
【請求項7】 請求項6記載の自律的調湿機能を有する
吸放湿性多孔質構造体から成る調湿材料。
7. A moisture-conditioning material comprising a moisture-absorbing and releasing porous structure having an autonomous humidity-controlling function according to claim 6.
【請求項8】 調湿建材、壁材、内壁材、天井材、乾燥
剤、または調湿機能を有する空間を構成するための部材
である請求項7記載の調湿材料。
8. The humidity control material according to claim 7, which is a humidity control building material, a wall material, an inner wall material, a ceiling material, a desiccant, or a member for forming a space having a humidity control function.
JP29459798A 1998-09-30 1998-09-30 Hygroscopic porous structure and method for producing the same Expired - Lifetime JP2972883B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29459798A JP2972883B1 (en) 1998-09-30 1998-09-30 Hygroscopic porous structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29459798A JP2972883B1 (en) 1998-09-30 1998-09-30 Hygroscopic porous structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2972883B1 true JP2972883B1 (en) 1999-11-08
JP2000104353A JP2000104353A (en) 2000-04-11

Family

ID=17809830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29459798A Expired - Lifetime JP2972883B1 (en) 1998-09-30 1998-09-30 Hygroscopic porous structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP2972883B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731668B2 (en) * 2000-10-17 2011-07-27 株式会社豊田中央研究所 Method for producing porous molded body
JP2003090563A (en) * 2001-09-19 2003-03-28 Chiyonobu Eguchi Humidity control panel and means therefor

Also Published As

Publication number Publication date
JP2000104353A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
US6080475A (en) Composite material containing aerogel, process for manufacturing the same and the use thereof
KR101546240B1 (en) Antimicrobial porous ceramic tile and method of manufacturing the same
US8187701B2 (en) Porous humidity-control tile and method for manufacturing the same
CN109250964B (en) Composite geopolymer light humidity-controlling material and preparation method thereof
CN107935618B (en) Ecological decoration diatom ooze-artificial sandstone composite board and preparation method thereof
JP4767678B2 (en) Hygroscopic coating wall material and its construction method, and wall structure of buildings
JP2972883B1 (en) Hygroscopic porous structure and method for producing the same
JP2652593B2 (en) Production method of humidity control material using Wakkanai diatomaceous earth
JP2964393B2 (en) Humidity control ceramic building materials
JPH11347341A (en) Granular moisture absorbing and releasing material and manufacture thereof
JPH07109161A (en) Mortar composition and panel material and production of the panel material
JPS63218234A (en) Permeable structure having hygroscopic property
JP3212587B1 (en) Humidity control building materials
JP2004285611A (en) Thermal insulation humidity conditioning material and building material using it
KR101228222B1 (en) Ceramic material having humidity controlling performance and preparing method thereof
JP2000282593A (en) Humidity conditioning wall material and humidity conditioning wall structure
JP3028502B2 (en) Manufacturing method of large panel materials for environmental control
JP3469208B2 (en) Method for producing alumina-based building material having autonomous humidity control function
JP6342996B2 (en) Porous ceramic tile with high strength and high moisture absorption and desorption
JP3156003B2 (en) Manufacturing method of interior wall material with autonomous humidity control function
JP2517225B2 (en) Manufacturing method of porous inorganic material molded plate
JP6166965B2 (en) Method for producing moisture-conditioning building material and method for producing moisture-conditioning building material
JP4204218B2 (en) Composition for building materials
JP2002145679A (en) Method of producing porous ceramic
KR101232381B1 (en) A humidity-control tile having a high adsorption and desorption, high strength and Method for manufacturing the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term