JPH03193336A - Heat-resistant honeycomb structural body - Google Patents

Heat-resistant honeycomb structural body

Info

Publication number
JPH03193336A
JPH03193336A JP2102783A JP10278390A JPH03193336A JP H03193336 A JPH03193336 A JP H03193336A JP 2102783 A JP2102783 A JP 2102783A JP 10278390 A JP10278390 A JP 10278390A JP H03193336 A JPH03193336 A JP H03193336A
Authority
JP
Japan
Prior art keywords
mullite
heat
honeycomb structure
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2102783A
Other languages
Japanese (ja)
Other versions
JPH054355B2 (en
Inventor
Tatsuo Nishiyama
西山 達男
Shigeo Take
竹 滋雄
Masaaki Kayama
加山 正秋
Masaji Kurosawa
黒沢 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP60292986A external-priority patent/JPS62153175A/en
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2102783A priority Critical patent/JPH03193336A/en
Publication of JPH03193336A publication Critical patent/JPH03193336A/en
Publication of JPH054355B2 publication Critical patent/JPH054355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs

Abstract

PURPOSE:To enhance the heat resistance, by a method wherein a ceramic fiber is constituted of a polycrystalline alumina fiber having a fixed composition and ceramic fibers are joined to each other with mullite. CONSTITUTION:At least 50wt.% of a ceramic fiber is an alpha<->Al2O3 type polycrystalline alumina fiber and the ceramic fibers are joined to each other with mullite, in a honeycomb structural body made of paper comprised of the ceramic fiber or a mixture of the ceramic fiber and a heat-resistant filler. It is preferable that a mean crystal length of the mullite which is a binder of the alumina fiber and heat-resistant filler to be filled up at need is not exceeding 4mum, especially preferably not exceeding 1mum. The heat-resistant filler is selected out of matters having sufficient heat resistance in accordance with improved heat resistance to be expected for the honeycomb structural body. Corundum, the mullite, zirconia, zircon, silicon carbide and silicon nitride which are in a fine powdery state and possess a mean particle diameter of 0.2-10mum are available as the preferable filler.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1000℃上の高温で使われる触媒の担体や
熱交換素子等に有用な、高度の耐熱性を有するハニカム
構造体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a honeycomb structure having a high degree of heat resistance and useful as a catalyst carrier, a heat exchange element, etc. used at high temperatures of 1000°C or higher. be.

〔従来の技術〕[Conventional technology]

各種セラミック繊維を主原料にして紙を作り、これを加
工してハニカム構造体にしたものは、特開昭52−12
7663号公報、同56−136656号公報等に記載
されている。セラミック繊維紙からなるハニカム構造体
は、耐熱性(特に耐熱衝撃性)および耐食性にすぐれて
いるので、押出成形によるセラミックハニカム構造体よ
りも軽量で圧力損失の少ない気相反応用触媒担体や熱交
換素子として近年注目されているものである。
A paper made from various ceramic fibers as the main raw material and processed into a honeycomb structure was disclosed in Japanese Patent Application Laid-open No. 52-12.
It is described in Publication No. 7663, Publication No. 56-136656, etc. Honeycomb structures made of ceramic fiber paper have excellent heat resistance (especially thermal shock resistance) and corrosion resistance, so they are lighter and have less pressure loss than extruded ceramic honeycomb structures, making them suitable for gas phase application catalyst carriers and heat exchange elements. This has attracted attention in recent years.

これら従来のハニカム構造体において、セラミック繊維
は、必要に応じて繊維間間隙に充填された無機質粉末と
ともに、個々の紙の中で、また紙同士の接合点において
、コロイダルシリカ、コロイダルアルミナ等の無機質接
着剤の硬化物により互いに接着されており、それによっ
てハニカム構造体の形状安定性が確保されている。
In these conventional honeycomb structures, the ceramic fibers are filled with inorganic powder such as colloidal silica and colloidal alumina within each paper and at the joints between the papers, along with inorganic powder filled in the gaps between the fibers as needed. They are bonded to each other by a cured adhesive, thereby ensuring the shape stability of the honeycomb structure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

セラミック繊維紙からなるハニカム構造体は、上述のよ
うにすぐれた特性を有するが、その用途開発が進むにつ
れて、一部の用途においてはより高度の耐熱性を有する
ものが望まれるようになった。
Honeycomb structures made of ceramic fiber paper have excellent properties as described above, but as the development of their uses progresses, it has become desirable for some uses to have higher heat resistance.

格別耐熱性のよいハニカム構造体を得るには、セラミッ
ク繊維紙の骨格を形成するセラミック繊維としてできる
限り耐熱性のよいものを使用することがまず必要である
。このような観点から、従来特に高度の耐熱性を有する
ハニカム構造体が望まれる場合はセラミック繊維の中で
も最高度の耐熱性を示すアルミナ繊維が繊維素材として
選ばれている。
In order to obtain a honeycomb structure with particularly good heat resistance, it is first necessary to use ceramic fibers that form the skeleton of the ceramic fiber paper and have as good heat resistance as possible. From this point of view, when a honeycomb structure having a particularly high degree of heat resistance is desired, alumina fiber, which exhibits the highest degree of heat resistance among ceramic fibers, has been selected as the fiber material.

しかしながら、アルミナ繊維自身は最高約1600℃の
高温にも耐えるものの、これから作られた従来のハニカ
ム構造体は、約1200’O以上での使用には到底耐え
られないものであった。これは、ハニカム構造体の形状
保持に重要な役割を演じている結合剤の熱劣化が比較的
低い温度で始まるため、耐熱温度の高い繊維を用いても
その耐熱度があまり生かされないことによるものである
。たとえばケイ酸ゲルで結合されたものは1000℃付
近から始まるケイ酸ゲルの軟化溶融により、またアルミ
ナゲルにより結合されたものは1000℃付近から始ま
るアルミナゲルの結晶化に基づく脆化により、それぞれ
接合強度が低下してしまうので、繊維部分は劣化してい
ないのにハニカム構造が崩壊し易くなってしまう。
However, although alumina fiber itself can withstand high temperatures of up to about 1600°C, conventional honeycomb structures made from it cannot withstand use at temperatures above about 1200'O. This is because the thermal deterioration of the binder, which plays an important role in maintaining the shape of the honeycomb structure, begins at a relatively low temperature, so even if fibers with a high heat-resistant temperature are used, their heat resistance is not fully utilized. It is. For example, those bonded with silicic acid gel are bonded by softening and melting of the silicic acid gel that starts at around 1000℃, and those bonded with alumina gel are bonded by embrittlement due to crystallization of alumina gel that starts around 1000℃. Since the strength decreases, the honeycomb structure becomes prone to collapse even though the fiber portions have not deteriorated.

本発明は、従来のセラミック繊維紙製ハニカム構造体に
おける上記問題点を解決し、アルミナ繊維のすぐれた耐
熱性が充分生かされた高度耐熱性ハニカム構造体を提供
しようとするものである。
The present invention aims to solve the above-mentioned problems in conventional honeycomb structures made of ceramic fiber paper and to provide a highly heat-resistant honeycomb structure in which the excellent heat resistance of alumina fibers is fully utilized.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成することに成功した本発明は、セラミッ
ク繊維またはセラミック繊維と耐熱性充填材との混合物
よりなる紙から作られたハニカム構造体において、セラ
ミック繊維の少なくとも50重量%がα−A 1.OS
型多結晶質アルミナ繊維であり、且つセラミック繊維同
士がムライトにより結合されていることを特徴とする耐
熱性ハニカム構造体を提供するものである。
Successfully achieving the above object, the present invention provides a honeycomb structure made from paper consisting of ceramic fibers or a mixture of ceramic fibers and a refractory filler, in which at least 50% by weight of the ceramic fibers contain α-A 1 .. OS
The present invention provides a heat-resistant honeycomb structure that is made of polycrystalline alumina fibers and is characterized in that ceramic fibers are bonded together by mullite.

周知のように、アルミナ繊維にはα−A l x Os
単結晶質のもののほかに、微結晶質のものがあり、後者
にも、α−A1.0!型のもの、θ−AIto、型のも
の、γ−A 1.0 S型のものなど、種々の結晶形の
ものがあるが、本発明ノ耐熱性ハニカム構造体における
アルミナ繊維は、α−A 1.0 mを少なくとも20
重量%含む11−A 120 S型のものである。α−
A I、0 、型でも単結晶質のものは、剛直でコルゲ
ート加工が困難なため本発明のハニカム構造を得ること
が難しい。また、微結晶質のものでも他の結晶型のもの
は、約1100℃以上で使用した場合に他の結晶形に転
移し、脆化を起こすことが多いので、好ましくない。
As is well known, alumina fiber contains α-A l x Os
In addition to the single crystalline type, there is also the microcrystalline type, and the latter also has α-A1.0! There are various crystal forms such as type, θ-AIto type, γ-A 1.0 S type, etc., but the alumina fiber in the heat-resistant honeycomb structure of the present invention is α-A 1.0 m at least 20
11-A 120 S type containing % by weight. α−
Even if the A I,0 type is single crystal, it is difficult to obtain the honeycomb structure of the present invention because it is rigid and difficult to corrugate. Further, even if the material is microcrystalline, it is not preferable because it often transforms into other crystal forms and becomes brittle when used at temperatures above about 1100°C.

アルミナ繊維とともに本発明の耐熱性ハニカム構造体中
に存在させてもよい他の繊維質材料としては、多結晶ム
ライト繊維、多結晶ムライト−ジルコニア繊維、ジルコ
ニア繊維、炭化ケイ素繊維などがある。但しその総量は
α−AlzOs型アルミナ繊維の量をこえないことが望
ましい。
Other fibrous materials that may be present in the heat resistant honeycomb structures of the present invention along with alumina fibers include polycrystalline mullite fibers, polycrystalline mullite-zirconia fibers, zirconia fibers, silicon carbide fibers, and the like. However, it is desirable that the total amount does not exceed the amount of α-AlzOs type alumina fibers.

アルミナ繊維および必要に応じて充填される耐熱性充填
材の結合剤であるムライト(3AI!03・2Si02
)は、望ましくはその平均結晶長さ(後記測定法による
)が4μ以下、特に望ましくは1μ以下のものである。
Mullite (3AI!03・2Si02
) preferably has an average crystal length (according to the measurement method described below) of 4 μ or less, particularly preferably 1 μ or less.

結晶が粗大化したものは充分な接合力を示さないので、
使用温度の高低とは無関係に、強度の劣るノ\ニカム構
造体を与える。
Coarse crystals do not exhibit sufficient bonding force, so
To provide a nicum structure with inferior strength regardless of the high or low operating temperature.

耐熱性充填材は、従来の耐熱性/1ニカム構造体の場合
と同様に、紙の強度を高め、また通気性を調節するため
に加えられるが、ハニカム構造体に期待される耐熱度が
高くなっているのにあわせて、充分な耐熱性を有するも
のから選ばれる。好ましい充填材としては、平均粒径が
0.2〜10μの微粉末状であるコランダム、ムライト
、ジルコニア、ジルコン、炭化ケイ素、窒化ケイ素など
がある。
Heat-resistant fillers are added to increase the strength of the paper and adjust its air permeability, as in the case of conventional heat-resistant/1 nicomb structures, but they do not have the high heat resistance expected of honeycomb structures. be selected from those that have sufficient heat resistance. Preferred fillers include corundum, mullite, zirconia, zircon, silicon carbide, and silicon nitride, which are in the form of fine powder with an average particle size of 0.2 to 10 μm.

ハニカム構造体を構成するセラミック繊維紙の通気性す
なわち気孔率は、本発明において特に限定されるもので
はないが、触媒担体として用いられる/%ニカム構造体
の場合は気孔率40〜85%程度のものが適当であり、
また熱交換素子として用いられるものの場合は気孔率3
0〜75%程度のものが好ましい。気孔率は繊維質材料
に対するムライト質結合剤および充填材の量比によって
決まるので、用途および要求される強度等も考慮しなが
ら、約20〜80重量%の範囲で結合剤の量を、またO
〜約70重量%の範囲で充填材の量を、それぞれ選定す
ることが望ましい。紙の厚さも用途に応じて適宜選ばれ
るが、製造容易なのは0.2〜0.8mm程度のもので
ある。
The air permeability, that is, the porosity of the ceramic fiber paper constituting the honeycomb structure is not particularly limited in the present invention, but in the case of a honeycomb structure used as a catalyst carrier, the porosity is about 40 to 85%. things are appropriate,
In addition, in the case of those used as heat exchange elements, the porosity is 3.
It is preferably about 0 to 75%. The porosity is determined by the ratio of the mullite binder and filler to the fibrous material, so the amount of binder can be adjusted in the range of about 20 to 80% by weight, and the amount of O
It is desirable to select the amount of filler, respectively, in the range from about 70% by weight. The thickness of the paper is also appropriately selected depending on the intended use, but a thickness of about 0.2 to 0.8 mm is easy to manufacture.

本発明の耐熱性ハニカム構造体におけるハニカム構造も
また限定されるものではなく、第1図に示すような、常
法により製造された波板状の紙1と平板状の紙2との交
互積層体など、任意の構成のものとすることができる。
The honeycomb structure of the heat-resistant honeycomb structure of the present invention is also not limited, and as shown in FIG. It can be of any configuration, such as a body.

ムライトを結合剤とする上記耐熱性ハニカム構造体は、
本発明者らにより発明された製造法、すなわちアルミナ
繊維、易反応性ケイ酸原料および易反応性アルミナ、ま
たはこれらに耐熱性充填材を加えた材料よりこれらの材
料のシート状成形物からなるハニカム構造体(生ハニカ
ム体)を製造し、次いでこれを1100〜1500℃で
焼成することにより易反応性ケイ酸原料および易反応性
アルミナからムライトを生成させる方法により、容易に
製造することができる。
The above heat-resistant honeycomb structure using mullite as a binder is
A honeycomb made of a sheet-like molded product of alumina fiber, easily reactive silicic acid raw material, easily reactive alumina, or a material obtained by adding a heat-resistant filler to these materials using the manufacturing method invented by the present inventors. It can be easily manufactured by a method in which a structure (raw honeycomb body) is manufactured and then fired at 1100 to 1500°C to generate mullite from a highly reactive silicic acid raw material and a highly reactive alumina.

この製法による場合、生ハニカム体を得るまでの工程に
は種々の変法があり得る。代表的なものを示すと、アル
ミナ繊維、易反応性ケイ酸原料および易反応性アルミナ
、またはこれらに他の繊維質材料、耐熱性充填材、有機
質結合材等を適宜加えた材料を水に分散させて紙を抄造
し、得られた紙にコルゲート加工を施し、更に未加工の
平板状の紙と積層して生ハニカム体を製造する。あるい
は、繊維質材料から紙を抄造し更にそれをハニカム構造
体に成形したのち、それに粉体状材料の水分散液を含浸
させる方法によってもよい。これらの製法においては、
ハニカム構造を得るための紙の接着にも易反応性ケイ酸
原料と易反応性アルミナとの混合物を用いることが望ま
しい。
When this manufacturing method is used, various modifications may be made to the steps up to obtaining the raw honeycomb body. Typical examples include alumina fibers, easily reactive silicic acid raw materials, easily reactive alumina, or materials in which other fibrous materials, heat-resistant fillers, organic binders, etc. are appropriately added to water. The resulting paper is corrugated and laminated with unprocessed flat paper to produce a raw honeycomb body. Alternatively, a method may be used in which paper is made from a fibrous material, further formed into a honeycomb structure, and then impregnated with an aqueous dispersion of a powdery material. In these manufacturing methods,
It is desirable to use a mixture of a highly reactive silicic acid raw material and a highly reactive alumina for bonding paper to obtain a honeycomb structure.

原料のアルミナ繊維としては、α−AI20xWのもの
のほか、θ−A 1.0 、型のもの、δ−A 1.0
 、型のもの、γ−A +、o 3型のものなどを用い
ることができる。
Raw material alumina fibers include α-AI20xW, θ-A 1.0 type, δ-A 1.0
, type, γ-A + , o 3 type, etc. can be used.

また易反応性ケイ酸原料としては、コロイダルシリカ、
アルコール性シリカゾル、その他平均粒径0.5μ以下
のシリカ微粉末、カオリン粉末などを用いることができ
るほか、約1100°C以上に加熱されたときシリカ(
クリストバライト)を遊離するアルミノシリケート繊維
も使用可能である。易反応性アルミナとしては、アルミ
ナゾル、平均粒径0.5μ以下のアルミナ微粉末などを
用いることができる。易反応性ケイ酸原料と易反応性ア
ルミナとの使用比率は、重量比で3ニアないし6:4が
適当である。これ以上にシリカの比率が高いと過剰のシ
リカがクリストバライトとなって製品の耐熱性を下げ、
一方アルミナが過剰の場合は充分な結合力が得られず、
製品の強度が不足する。易反応性ケイ酸原料および易反
応性アルミナは、それらから生成するムライトが製品中
で20〜80重量%を占める程度に使用する。
In addition, as easily reactive silicic acid raw materials, colloidal silica,
Alcoholic silica sol, other fine silica powder with an average particle size of 0.5μ or less, kaolin powder, etc. can be used, and when heated to about 1100°C or higher, silica (
Aluminosilicate fibers that release cristobalite) can also be used. As the easily reactive alumina, alumina sol, alumina fine powder with an average particle size of 0.5 μm or less, etc. can be used. The appropriate ratio of the easily reactive silicic acid raw material to the easily reactive alumina is 3 to 6:4 by weight. If the silica ratio is higher than this, excess silica will turn into cristobalite and reduce the heat resistance of the product.
On the other hand, if there is an excess of alumina, sufficient bonding strength cannot be obtained.
Product strength is insufficient. The easily reactive silicic acid raw material and the easily reactive alumina are used to the extent that the mullite produced therefrom accounts for 20 to 80% by weight in the product.

耐熱性充填材としては、粒径0.2〜lOμの微粒子状
の、コランダム、ムライト、ジルコニア、ジルコン、炭
化ケイ素、窒化ケイ素などが適当である。
Suitable heat-resistant fillers include corundum, mullite, zirconia, zircon, silicon carbide, and silicon nitride in the form of fine particles with a particle size of 0.2 to 10 μm.

生ハニカム体の焼成は、電気炉中で1100〜1500
℃に加熱することにより行う。これにより、ケイ酸原料
およびアルミナからからムライトが生成してハニカム構
造を強固に固定する。なお焼成に先立って生ハニカム体
に約3%迄の酸化ホウ素、ナトリウム塩、リチウム塩、
マグネシウム塩、フッ化物等をアルコール溶液などの形
で吸収させておくと、ムライトの生成が促進されて焼成
が低温度かつ短時間ですむほか、焼成にともなうハニカ
ム構造体の収縮が少なくなる。最適焼成条件は、酸化ホ
ウ素を1%程度添加した場合、約1200〜1400℃
で約3〜10時間、酸化ホウ素無添加の場合、約130
0−1500℃で約6〜20時間である。酸化ホウ素を
添加した場合は、焼成温度が高すぎるとムライトの結晶
粒子が成長して粗大になり、強度の低い製品となるので
、最高焼成温度に注意することが望ましい。
The raw honeycomb body is fired in an electric furnace at a temperature of 1100 to 1500
This is done by heating to ℃. As a result, mullite is generated from the silicic acid raw material and alumina, and the honeycomb structure is firmly fixed. Prior to firing, the raw honeycomb body is coated with up to about 3% boron oxide, sodium salt, lithium salt,
Absorbing magnesium salts, fluorides, etc. in the form of an alcohol solution promotes the formation of mullite, allowing firing to be performed at a lower temperature and in a shorter time, and also reduces shrinkage of the honeycomb structure during firing. The optimum firing conditions are approximately 1200-1400°C when approximately 1% boron oxide is added.
Approximately 3 to 10 hours, approximately 130 hours without boron oxide
It is about 6-20 hours at 0-1500°C. When boron oxide is added, it is desirable to pay attention to the maximum firing temperature, since if the firing temperature is too high, the mullite crystal particles will grow and become coarse, resulting in a product with low strength.

原料のアルミナ繊維としてσ−A 1.0 、型以外の
ものを使用した場合は、焼成条件に応じてα−A I2
03型への転移が進む。また易反応性ケイ酸原料として
アルミノシリケート繊維を用いた場合は、アルミノシリ
ケートからシリカとともにムライトが生成するので、シ
リカが易反応性アルミナと反応した後でも主としてムラ
イトからなる繊維状物が製品中に残る。
σ-A 1.0 as the raw material alumina fiber, α-A I2 depending on the firing conditions when using something other than a mold
Metastasis to type 03 progresses. In addition, when aluminosilicate fibers are used as a raw material for easily reactive silicic acid, mullite is produced along with silica from the aluminosilicate, so even after the silica reacts with easily reactive alumina, fibrous materials mainly consisting of mullite remain in the product. remain.

〔実施例〕〔Example〕

以下、実施例および比較例を示して本発明を説明する。 The present invention will be described below with reference to Examples and Comparative Examples.

実施例1 組成がA1.0.95重量%、Sin、5重量%のアル
ミナ繊維(θ型のもの;平均繊維径3μ)85重量%と
有機質結合材15重量%とからなる紙(厚さ0.35■
、坪量100(7mつを常法により抄造した。次いで、
得られた紙の半量を段ポール加工機によりコルゲート加
工しくピッチ7 、6 in、段高さ3 、7 mm)
、未加工の平板状のものと交互に重ねて接着し、第1図
のようなハニカム構造にした。接着には、固形分20重
量%のコロイダルシリカ20重量部と固形分10重量%
のアルミナゾル60重量部との混合物を用いた。得られ
た生ハニカム体を、次いで下記組成の含浸液に20分間
浸漬したのち、110’Oで乾燥して硬化させ、更に4
50°Cで加熱して有機質分を分解させた。
Example 1 A paper (thickness 0 .35■
, basis weight 100 (7 m pieces were made by a conventional method. Then,
Half of the obtained paper was corrugated using a corrugated pole processing machine (pitch 7.6 in, corrugation height 3.7 mm).
, unprocessed flat plates were alternately stacked and glued together to form a honeycomb structure as shown in Figure 1. For adhesion, 20 parts by weight of colloidal silica with a solid content of 20% by weight and 10% by weight of a solid content
A mixture of 60 parts by weight of alumina sol was used. The obtained raw honeycomb body was then immersed in an impregnating solution having the following composition for 20 minutes, dried and hardened at 110'O, and further 4
The organic matter was decomposed by heating at 50°C.

コロイダルシリカ(固形分20重量%) 35重量部ア
ルミナゾル(固形分10重量%)  105重量部コラ
ンダム粉(平均粒径2μ)     84重量部水  
              100重量部上記含浸、
乾燥の各処理を再度施して、繊維間間隙に含浸液成分が
固定された生ハニカム体を得たのち、これを電気炉に入
れて1450℃で6時間焼成することにより、1辺が約
20011111の立方体状ハニカム構造体を得た。な
お焼成による収縮率は、積層方向2%、面方向(タテ、
ヨコとも)1.2%であった。
Colloidal silica (solid content 20% by weight) 35 parts by weight Alumina sol (solid content 10% by weight) 105 parts by weight Corundum powder (average particle size 2μ) 84 parts by weight Water
100 parts by weight of the above impregnated;
After applying each drying process again to obtain a raw honeycomb body in which the impregnating liquid component is fixed in the gaps between the fibers, this body is placed in an electric furnace and fired at 1450°C for 6 hours, so that one side is approximately 20011111 mm. A cubic honeycomb structure was obtained. The shrinkage rate due to firing is 2% in the stacking direction and 2% in the plane direction (vertical,
(both horizontally and horizontally) was 1.2%.

第2図はこのハニカム構造体の表面の電子顕微鏡写真(
倍率SOO倍)である。
Figure 2 is an electron micrograph of the surface of this honeycomb structure (
The magnification is SOO times).

このハニカム構造体の結晶組成を粉末X線回折法により
調べたところ、第3図に示したとおり、ムライトとコラ
ンダム(α−A 1.Os)からなるものであった。
The crystal composition of this honeycomb structure was examined by powder X-ray diffraction, and as shown in FIG. 3, it was found to be composed of mullite and corundum (α-A 1.Os).

比較例1 実施例1で作製したアルミナ繊維紙を実施例1の場合と
同様にコルゲート加工し、更に積層加工したものを、下
記組成の含浸液に20分間浸漬した後、110°Cで乾
燥し、さらに450℃で加熱して有機質分を分解させた
Comparative Example 1 The alumina fiber paper produced in Example 1 was corrugated in the same manner as in Example 1, and then laminated and immersed in an impregnating solution having the following composition for 20 minutes, and then dried at 110°C. Then, the mixture was further heated at 450° C. to decompose the organic matter.

コロイダルシリカ(固形分20重量%) 100重量部
コランダム粉(平均粒径2μ)    83重量部水 
               100重量部上記含浸
、乾燥の各処理を再度施して、アルミナ繊維およびコラ
ンダム粉がケイ酸ゲルで結合されたハニカム構造体を得
た。
Colloidal silica (solid content 20% by weight) 100 parts by weight Corundum powder (average particle size 2μ) 83 parts by weight Water
100 parts by weight The above-mentioned impregnation and drying treatments were performed again to obtain a honeycomb structure in which alumina fibers and corundum powder were bonded with silicic acid gel.

実施例2 実施例1で用いたものと同じアルミナ繊維45重量部と
組成がA1.0.48重量%、5iOz49重量%のア
ルミノシリケート繊維(平均繊維径4μ)40重量部と
を有機質結合材15重量部とともに抄造して、厚さ0 
、4 Ilk11重量00 (/ tm”の紙を製造し
た。以下、実施例1と同様にして生ハニカム体の製造と
含浸処理を行い、最後に、1300℃で10時間焼成し
た。焼成による収縮率(3方向平均値)は1.3%であ
った。
Example 2 45 parts by weight of the same alumina fibers as those used in Example 1 and 40 parts by weight of aluminosilicate fibers (average fiber diameter 4μ) having a composition of 0.48% by weight of A1 and 49% by weight of 5iOz were combined into an organic binder of 15% by weight. Paper-formed together with weight part, thickness 0
, 4 Ilk11 weight 00 (/tm) paper was manufactured.A raw honeycomb body was manufactured and impregnated in the same manner as in Example 1, and finally, it was fired at 1300°C for 10 hours.Shrinkage rate due to firing (3-way average value) was 1.3%.

得られたハニカム構造体の結晶組成は、ムライト、コラ
ンダムおよび少量のクリストバライトからなるものであ
った。
The crystal composition of the obtained honeycomb structure consisted of mullite, corundum, and a small amount of cristobalite.

比較例2 実施例2で用いたものと同じアルミノシリケート繊維8
5重量部を有機質結合材15重量部とともに抄造して、
厚さが0.4mm、坪量が90(7m”の紙を製造した
。以下、実施例1と同様にして生ハニカム体の製造と含
浸処理を行い、最後に1300℃で10時間焼成した。
Comparative Example 2 Same aluminosilicate fiber 8 as used in Example 2
5 parts by weight are made into paper together with 15 parts by weight of an organic binder,
A paper having a thickness of 0.4 mm and a basis weight of 90 (7 m'') was produced.A raw honeycomb body was produced and impregnated in the same manner as in Example 1, and finally it was fired at 1300°C for 10 hours.

焼成による収縮率(3方向平均値)は3.2%であった
The shrinkage rate (average value in three directions) due to firing was 3.2%.

得られたハニカム構造体の結晶組成は、ムライトおよび
クリストバライトからなるものであった。電子顕微鏡で
観察したところ、この構造体には反応で生成したムライ
トのほかに、アルミノシリケート繊維からの析出ムライ
トおよび析出クリストバライトが多数認められた。
The crystal composition of the obtained honeycomb structure consisted of mullite and cristobalite. When observed under an electron microscope, in addition to the mullite produced by the reaction, a large amount of mullite and cristobalite precipitated from the aluminosilicate fibers were observed in this structure.

実施例3 実施例1と同様にして、コロイダルシリカ等が固定され
た生ハニカム体を製造し、これをホウ酸の飽和アルコー
ル溶液に浸漬して、生ハニカム体に対して1重量%のB
、O,を吸収させた。この後1200℃で6時間焼成し
て、結晶組成がムライトおよびコランダムであるハニカ
ム構造体を得た。焼成による収縮率(3方向平均値)は
0.3%であった。
Example 3 In the same manner as in Example 1, a raw honeycomb body with fixed colloidal silica etc. was produced, and this was immersed in a saturated alcohol solution of boric acid to add 1% by weight of B to the raw honeycomb body.
, O, was absorbed. Thereafter, it was fired at 1200° C. for 6 hours to obtain a honeycomb structure having a crystal composition of mullite and corundum. The shrinkage rate (average value in three directions) due to firing was 0.3%.

実施例4 ホウ酸溶液浸漬を行わないほかは実施例3と同様にして
、ハニカム構造体を製造した。焼成による収縮率(3方
向平均値)は0.6%であった。結晶組成は、ムライト
、コランダムおよび少量のクリストバライトからなるも
のであった。
Example 4 A honeycomb structure was manufactured in the same manner as in Example 3 except that immersion in a boric acid solution was not performed. The shrinkage rate (average value in three directions) due to firing was 0.6%. The crystal composition consisted of mullite, corundum and a small amount of cristobalite.

以上の各側によるハニカム構造体および下記参考例1.
2の特性値および性能試験の結果を第1表に示す。
The honeycomb structure according to each side above and the following reference example 1.
The characteristic values and performance test results of No. 2 are shown in Table 1.

参考例1 市販の自動車排気浄化用ハニカム構造担体(コーディラ
イト質押出成形品) 壁厚0.3m+m、セルピッチ1.5+am、開ロ率7
9%参考例 2 市販の脱硝用ハニカム構造担体(ムライト質押出成形品
) 壁厚0.45mm、セルピッチ4.25mm、開口率7
9% なお荷重破壊温度および熱衝撃試験の試験法とムライト
の平均結晶長さの測定法は次のとおりである。
Reference example 1 Commercially available honeycomb structure carrier for automobile exhaust purification (cordierite extrusion molded product) Wall thickness 0.3 m + m, cell pitch 1.5 + am, opening ratio 7
9% Reference Example 2 Commercially available honeycomb structure carrier for denitrification (mullite extrusion molded product) Wall thickness 0.45 mm, cell pitch 4.25 mm, aperture ratio 7
9% The test methods for the load failure temperature and thermal shock test and the method for measuring the average crystal length of mullite are as follows.

荷重破壊温度+ 15 K17cm2の荷重を試験体(
30X 3Q x 30 mm)のフルート方向に加え
ながら5°O/winで昇温し、試験体が破壊または軟
化変形した時の温度を測定する。
Load failure temperature + 15K17cm2 load was applied to the test specimen (
30 x 3 Q x 30 mm) in the direction of the flute, the temperature is raised at 5° O/win, and the temperature at which the specimen breaks or softens and deforms is measured.

熱衝撃試験:試験体を800℃に加熱した状態から25
°Cの水中に投入し、外観を検査する。
Thermal shock test: test specimen heated to 800°C
Place it in water at °C and inspect its appearance.

ムライトの平均結晶長さ:試料の代表的な部分を走査型
電子顕微鏡(倍率5000倍〜20000倍)で観察し
、視野内にある針状または柱状のムライト結晶の長さ(
慨数)を測定する。
Average crystal length of mullite: Observe a representative part of the sample with a scanning electron microscope (magnification of 5000x to 20000x), and calculate the length of the acicular or columnar mullite crystals within the field of view (
measurement).

〔発明の効果〕〔Effect of the invention〕

本発明によるハニカム構造体は、第1表のデータが示す
ようにきわめて高性能のものである。すなわち、100
0°C以上でも他の結晶形に転移しないσ−A1□03
型アルミナ繊維とムライトからなることにより1000
℃以上の高温における強度等の物性および耐久性におい
て従来のセラミック繊維紙系ハニカム構造体よりも格段
にすぐれている。また、細いアルミナ繊維を骨格とする
柔構造およびアルミナ繊維表面とムライト質結合材との
強固な結合に基づき、耐熱衝撃性においても最高度の性
能を示す。
The honeycomb structure according to the present invention has extremely high performance, as shown by the data in Table 1. That is, 100
σ-A1□03 that does not transform to other crystal forms even above 0°C
1000 by consisting of type alumina fiber and mullite
It is significantly superior to conventional ceramic fiber paper-based honeycomb structures in terms of physical properties such as strength and durability at high temperatures of .degree. C. or higher. It also exhibits the highest performance in terms of thermal shock resistance due to its flexible structure with thin alumina fibers as its backbone and the strong bond between the surface of the alumina fibers and the mullite binder.

上述のような特長により、本発明のハニカム構造体は高
温気相触媒反応用触媒担体や熱交換素子として使った場
合に従来品よりもはるかにすぐれた耐久性を示すもので
あり、また従来品では使用困難であったような苛酷な条
件での使用たとえば触媒接触燃焼用素子としての使用も
可能なものである。
Due to the above-mentioned features, the honeycomb structure of the present invention exhibits far superior durability than conventional products when used as a catalyst carrier for high-temperature gas phase catalytic reactions or as a heat exchange element. It is also possible to use it under severe conditions that would otherwise be difficult to use, for example, as an element for catalytic catalytic combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本発明によるハニカム構造体の一例の斜視図 第2図:実施例1によるハニカム構造体の表面の電子顕
微鏡写真 第3図:実施例1によるハニカム構造体のX線回折図
Figure 1: A perspective view of an example of a honeycomb structure according to the present invention Figure 2: Electron micrograph of the surface of a honeycomb structure according to Example 1 Figure 3: X-ray diffraction diagram of a honeycomb structure according to Example 1

Claims (3)

【特許請求の範囲】[Claims] (1)セラミック繊維またはセラミック繊維と耐熱性充
填材との混合物よりなる紙から作られたハニカム構造体
において、セラミック繊維の少なくとも50重量%がα
−Al_2O_3型多結晶質アルミナ繊維であり、且つ
セラミック繊維同士がムライトにより結合されているこ
とを特徴とする耐熱性ハニカム構造体。
(1) In a honeycomb structure made from paper consisting of ceramic fibers or a mixture of ceramic fibers and a heat-resistant filler, at least 50% by weight of the ceramic fibers are α
- A heat-resistant honeycomb structure comprising Al_2O_3 type polycrystalline alumina fibers and ceramic fibers bonded together by mullite.
(2)ムライトが平均結晶長さ4μ以下のものである特
許請求の範囲第1項記載の耐熱性ハニカム構造体。
(2) The heat-resistant honeycomb structure according to claim 1, wherein the mullite has an average crystal length of 4 μm or less.
(3)耐熱性充填材が微粒子状コランダムである特許請
求の範囲第1項記載の耐熱性ハニカム構造体。
(3) The heat-resistant honeycomb structure according to claim 1, wherein the heat-resistant filler is particulate corundum.
JP2102783A 1985-12-27 1990-04-20 Heat-resistant honeycomb structural body Granted JPH03193336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2102783A JPH03193336A (en) 1985-12-27 1990-04-20 Heat-resistant honeycomb structural body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60292986A JPS62153175A (en) 1985-12-27 1985-12-27 Heat resistant honeycomb structure and manufacture
JP2102783A JPH03193336A (en) 1985-12-27 1990-04-20 Heat-resistant honeycomb structural body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60292986A Division JPS62153175A (en) 1985-12-27 1985-12-27 Heat resistant honeycomb structure and manufacture

Publications (2)

Publication Number Publication Date
JPH03193336A true JPH03193336A (en) 1991-08-23
JPH054355B2 JPH054355B2 (en) 1993-01-19

Family

ID=26443459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2102783A Granted JPH03193336A (en) 1985-12-27 1990-04-20 Heat-resistant honeycomb structural body

Country Status (1)

Country Link
JP (1) JPH03193336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018440A1 (en) * 1993-02-10 1994-08-18 Alfred Buck Device for the catalytic purification of flowing gases, especially exhaust gases of internal combustion engines
WO2016199505A1 (en) * 2015-06-08 2016-12-15 株式会社デンソー Honeycomb structure and method for manufacturing same
CN109851378A (en) * 2018-12-28 2019-06-07 天津大学 Preparation method of ceramic matrix fiber composite sealing gasket
CN110452004A (en) * 2019-09-04 2019-11-15 郑州瑞泰耐火科技有限公司 A kind of cement rotary kiln transition belt novel fire-resistant lining brick and preparation method thereof
CN112479695A (en) * 2020-12-08 2021-03-12 湖北省轻工业科学研究设计院有限公司 High-performance honeycomb ceramic heat accumulator and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018440A1 (en) * 1993-02-10 1994-08-18 Alfred Buck Device for the catalytic purification of flowing gases, especially exhaust gases of internal combustion engines
AU668283B2 (en) * 1993-02-10 1996-04-26 Alfred Buck Device for the catalytic purification of flowing gases, especially exhaust gases of internal combustion engines
WO2016199505A1 (en) * 2015-06-08 2016-12-15 株式会社デンソー Honeycomb structure and method for manufacturing same
JP2017000936A (en) * 2015-06-08 2017-01-05 株式会社デンソー Honeycomb structure and method for producing the same
CN109851378A (en) * 2018-12-28 2019-06-07 天津大学 Preparation method of ceramic matrix fiber composite sealing gasket
CN110452004A (en) * 2019-09-04 2019-11-15 郑州瑞泰耐火科技有限公司 A kind of cement rotary kiln transition belt novel fire-resistant lining brick and preparation method thereof
CN112479695A (en) * 2020-12-08 2021-03-12 湖北省轻工业科学研究设计院有限公司 High-performance honeycomb ceramic heat accumulator and preparation method thereof

Also Published As

Publication number Publication date
JPH054355B2 (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US4608361A (en) Catalyst carriers and process for preparation of the same
JP5091226B2 (en) Ceramic filter containing clay and method for producing the same
JP3150928B2 (en) Method for manufacturing thin-walled cordierite-based honeycomb structure
US20170198622A1 (en) Thermally Stable Inorganic Fibers For Exhaust Gas Treatment Device Insulating Mat
JP2010528857A (en) Corrosion-resistant mounting material, and its production and use
CA2048502A1 (en) Thermal shock and creep resistant porous mullite articles prepared from topaz and process for manufacture
WO2004063125A1 (en) Coating material, ceramic honeycomb structure and method for production thereof
JPS5910345A (en) Carrier of catalyst
JPH013067A (en) Manufacturing method of cordierite honeycomb structure
JPH0567877B2 (en)
JPH03193336A (en) Heat-resistant honeycomb structural body
JPH0362672B2 (en)
JP5318753B2 (en) JOINT BODY, MANUFACTURING METHOD THEREOF, JOINT MATERIAL COMPOSITION, AND MANUFACTURING METHOD THEREOF
JPH0558773B2 (en)
US5141579A (en) ProducingSi3 N4 composite by sheeting a mixture of Si3 N.sub.
JP2001158673A (en) Method for producing structure of porous silicon carbide fiber
JPH0254301B2 (en)
CN111233502B (en) Light heat-insulating high-strength mullite material and preparation method thereof
JPH11180780A (en) Ceramic sheet and its production
JPH11209185A (en) Ceramic sheet using porous fiber and its production
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JP3484756B2 (en) Aluminum titanate low thermal expansion porous ceramic body and method for producing the same
JPS5939765A (en) Manufacture of porous alumina sintered body
JPS63288978A (en) Honeycomb structural body and its production
JPH0459271B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees