JPS5910345A - Carrier of catalyst - Google Patents

Carrier of catalyst

Info

Publication number
JPS5910345A
JPS5910345A JP58099608A JP9960883A JPS5910345A JP S5910345 A JPS5910345 A JP S5910345A JP 58099608 A JP58099608 A JP 58099608A JP 9960883 A JP9960883 A JP 9960883A JP S5910345 A JPS5910345 A JP S5910345A
Authority
JP
Japan
Prior art keywords
paper
fibers
catalyst
carrier
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58099608A
Other languages
Japanese (ja)
Other versions
JPH0418896B2 (en
Inventor
Nobuyoshi Kanamori
金森 伸好
Masaji Kurosawa
黒沢 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Paper Co Ltd
Nichias Corp
Sakai Chemical Industry Co Ltd
Original Assignee
Honshu Paper Co Ltd
Nichias Corp
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Paper Co Ltd, Nichias Corp, Sakai Chemical Industry Co Ltd filed Critical Honshu Paper Co Ltd
Priority to JP58099608A priority Critical patent/JPS5910345A/en
Publication of JPS5910345A publication Critical patent/JPS5910345A/en
Publication of JPH0418896B2 publication Critical patent/JPH0418896B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To produce easily and surely a titled carrier, by laminating paper obtd. by using ceramic fibers as a basic constituting material with an adhesive agent incorporated with a silicon compd. such as colloidal silica or the like. CONSTITUTION:Paper is made by compounding 80-96wt% ceramic fibers, 2- 10wt% org. fibers of PE, acrylic, polyester fibers or the like, and 2-10wt% an org. binder (for example, an acrylic resin, vinyl acetate resin, melamine resin, etc.) Sheets of such paper are superposed alternately by using an adhesive agent consisting of refined bentonite, or the same added with titanium oxide, silica powder, alumina sol, etc., or alumina powder and kaolin added with colloidal silica or ceramic fibers, zirconia powder and colloidal silica, whereby a ceramic fiber sheet is obtd.

Description

【発明の詳細な説明】 本発明は、気相化学反応用触媒に好適な担体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carrier suitable for a catalyst for gas phase chemical reactions.

気相化学反応用触媒のための担体とし・では、従来、コ
ープイライトまたはムライトを押出成形したもの、石綿
紙を成形加工したものなどが使われてきた。ほかにも種
々の担体が提案されており、例えば特開昭47−136
12号公報には、セラミックス材料を有機質繊維ととも
に抄造し、得られた紙葉を焼結させてなる担体が記載さ
れている。しかしながら、これら従来の担体は、実用上
必要な機械的強度および耐久性等を具備させるためには
かなり緻密な組織のものにせざるを得ないものであった
。したがって、微細な連通孔を多くすることが触媒担持
能力を高めるのに有効であろうことがわかってはいても
、その限界を極め且つ必要な物性をも付与することに成
功した例は見当らず、従来の担体は、空隙率が高々30
〜50%程度のものであった(なお空隙率とは、紙の多
孔性の度合を示す空隙率と同じ意味のものであって、下
記の式から求められる値である。)。
Conventionally, extrusion-molded copierite or mullite, and molded asbestos paper have been used as carriers for gas-phase chemical reaction catalysts. Various other carriers have also been proposed, for example, in JP-A-47-136.
Publication No. 12 describes a carrier made by paper-making a ceramic material together with organic fibers and sintering the obtained paper sheets. However, these conventional carriers had to have a fairly dense structure in order to have the mechanical strength and durability required for practical use. Therefore, even though it is known that increasing the number of fine communicating pores is effective in increasing the catalyst supporting capacity, there are no examples of success in reaching the limits of this and imparting the necessary physical properties. , the conventional carrier has a porosity of at most 30
~50% (note that porosity has the same meaning as porosity indicating the degree of porosity of paper, and is a value determined from the following formula).

本発明者らは、各種気相化学反応用触媒、特に燃焼排ガ
ス中の窒素酸化物、イオウ酸化物、有機物等処理用触媒
のように、苛酷な条件で使用される触媒の担体としてよ
りすぐれた性能を持つものが求められていることに鑑み
種々研究を重ねた結果、新規な高性能担体、すなわちケ
イ酸ゲルにより互に結合されているセラミック繊維のシ
ート状集合体からなり空隙率が75%以上であることを
特徴とする担体を発明した。
The present inventors have discovered a catalyst that is better as a carrier for catalysts used under harsh conditions, such as catalysts for various gas-phase chemical reactions, especially catalysts for treating nitrogen oxides, sulfur oxides, and organic substances in combustion exhaust gas. As a result of various researches in view of the demand for products with high performance, we have developed a new high-performance carrier, a sheet-like aggregate of ceramic fibers interconnected by silicic acid gel, with a porosity of 75%. We have invented a carrier characterized by the above characteristics.

上記本発明による担体は、セラミック繊維を基本構成材
とし、かつ第1図として示した電子顕微鏡写真(倍率3
00倍)からも明らかなように大きな空隙率を有するた
め、セラミック構造体からなる従来の担体と比べて単位
重量当りの表面積および細孔容積が著しく大きい。この
ような独特の構造に基づ外、本発明の担体は、後に詳述
するような、多くのすぐれた性質を示すものである。
The carrier according to the present invention has ceramic fibers as its basic constituent material, and the electron micrograph shown in FIG. 1 (magnification: 3
00 times), it has a large porosity, so the surface area and pore volume per unit weight are significantly larger than conventional carriers made of ceramic structures. In addition to this unique structure, the carrier of the present invention exhibits many excellent properties as detailed below.

本発明の抗体の構成について更にくわしく説明すると、
この担体においでセラミツ゛り繊維は担体総重量の好ま
しくは80〜96重量%を占める。セラミック繊維とし
ては、いわゆるシリカ繊維、アルミナ繊維、アルミ7シ
シリケート繊維、シルフニア繊維などの高耐熱性無機繊
維、ナことえばファインフレンクスにチアスKK製品)
、リフラシール(HITCO社製品)などが用いられる
To explain in more detail the structure of the antibody of the present invention,
In this carrier, the ceramic fibers preferably account for 80 to 96% by weight of the total weight of the carrier. Ceramic fibers include highly heat-resistant inorganic fibers such as silica fibers, alumina fibers, aluminum 7-silicate fibers, and Sylphnia fibers (for example, Fineflex and Chias KK products).
, Refura Seal (manufactured by HITCO), etc. are used.

ケイ酸ゲルは、主としてセラミックi*i同士の接触点
に存在し、その点においてimtを結合するバインダー
の役割を果している。このバインダーは、耐熱性および
剛性の高いものであるから、その存在量が比較的少ない
にもかかわらず、剛直なセラミック繊維の性状とあいま
って、担体を保形性のよいものにしている。
The silicic acid gel is mainly present at the contact points between the ceramic i*i and plays the role of a binder that binds the imt at that point. This binder has high heat resistance and rigidity, and thus, in combination with the rigid properties of the ceramic fibers, makes the carrier good in shape retention, even though its amount is relatively small.

空隙率は75%以」二、1l−rましくは約75〜80
%である。
The porosity is 75% or more, or about 75 to 80%.
%.

空隙率が75%未満のものは、同じようにセラミック繊
維とケイ酸ゲルからなるものであっても、触媒担持能力
、触媒を担持させて使用した場合の触媒性能およびその
安定性、耐久性など、担体として最も重要視される性能
において劣ったものとなる。一方、80%をこえる高空
隙率のものとすることは、製造上困難になるばか機械的
強度の不足を招くし、担体としての基本性能が更に向上
することもないので、好ましくない。 ゛ シートの厚さは特に制限されるものではないが、実用上
0゜15〜0.5 mm程度とすることが望ましい。シ
ートの形状にも制限はなく、任意の寸法の平板状のもの
のほか、有孔平板状のもの、波板状のもの(波の形は正
弦波に限らず、矩形波、鋸歯状波など、任意である。)
、あるいはこれらを通気間隙を設けて積層したものなど
、いずれであってもよい。第2図〜第5図は、担体とし
て特−二適した構造の積層物lこ加工された状態を示す
斜視図である。これらの例においては、平板状部分と波
板状部分との間のトンネル状部分が、被処理気体の流路
となる。
Items with a porosity of less than 75%, even if they are made of ceramic fibers and silicic acid gel, have poor catalyst support capacity, catalyst performance when used with a supported catalyst, and their stability and durability. , it is inferior in performance, which is considered most important as a carrier. On the other hand, a high porosity of more than 80% is not preferable because it will be difficult to manufacture and will lead to insufficient mechanical strength, and the basic performance as a carrier will not be further improved. Although the thickness of the sheet is not particularly limited, it is practically desirable to set it to about 0.15 to 0.5 mm. There are no restrictions on the shape of the sheet; in addition to flat sheets of any size, flat sheets with holes, corrugated sheets (the wave shapes are not limited to sine waves, but square waves, sawtooth waves, etc.). (Optional.)
, or one in which these are laminated with ventilation gaps provided. 2 to 5 are perspective views showing processed laminates having a structure particularly suitable as carriers. In these examples, the tunnel-shaped portion between the flat plate-shaped portion and the corrugated plate-shaped portion serves as a flow path for the gas to be treated.

」二連のような担体、特に波板状の成形物を少なくとも
一部に持つものを剛直なセラミック繊維から製造するこ
とは、従来のこの種のシート状物の製造法によっては至
難であって、セラミック繊維の抄造、抄造物の成形加工
、75%以上とし)う高い空隙率を確保しながら繊維同
士を結合させるための処理など、多くの工程において生
じる種々の課題を解決しなけ3− ればならないが、本発明者らが発明した製法によれば上
記担体を容易かつ確実に製造することができる。
It is extremely difficult to manufacture carriers such as ``2-strand'' from rigid ceramic fibers, especially those having at least a portion of a corrugated sheet-like molding, using conventional manufacturing methods for this type of sheet-like material. We must solve various problems that arise in many processes, such as papermaking of ceramic fibers, molding of paper products, and processing to bond fibers together while ensuring a high porosity of 75% or more. However, according to the production method invented by the present inventors, the above carrier can be produced easily and reliably.

本発明者らによる触媒担体の製造法は、セラミックに&
維80〜96重量%、有taw1.維2〜10重量%お
よび有機結合剤2〜10重量%の混合物より紙を抄造し
、得られた紙またはその成形物にフロイダルシリ力また
はエチルシリケートを含浸させた後このケイ素化合物を
ケイ酸ゲルに変換し、次いで一上記処理後の紙または成
形物を焼成して紙の中の有機i維および有機結合剤を燃
焼させることを特徴とするものである。
The method for manufacturing a catalyst carrier by the present inventors uses ceramic &
fiber 80-96% by weight, taw1. Paper is made from a mixture of 2 to 10% by weight of fiber and 2 to 10% by weight of organic binder, and the resulting paper or its molded product is impregnated with froidal silicate or ethyl silicate, and then the silicon compound is converted into silicic acid gel. The method is characterized in that the paper or molded article after the above-mentioned treatment is burned to burn out the organic fibers and organic binder in the paper.

以下、この担体製造法を]−栓類に詳しく説明する。Hereinafter, this carrier manufacturing method will be explained in detail with respect to the plugs.

まずセラミック繊mに有機繊維および有機結合剤を加え
た混合物から紙を抄造する。
First, paper is made from a mixture of ceramic fibers m, organic fibers, and an organic binder.

有W1繊維としては、親水性で水中分散性がよく且つ熱
可塑性でない繊維、例えばレーヨンa維、木材パルプ等
のセルロース系繊維が最適であるが、ビニロン繊M[、
ポリエチレン繊維、アクリル繊維、ポリエステル繊維等
の各種合成繊維を使用する三ともできる。繊度は3デニ
ール以下、繊維長は3〜10關程度であることが、繊維
の水中分散性および紙強度の点からして望ましい。
The best suitable W1 fibers are hydrophilic, highly dispersible in water, and non-thermoplastic fibers, such as cellulose fibers such as rayon A fibers and wood pulp, but vinylon fibers M[,
It is possible to use various synthetic fibers such as polyethylene fiber, acrylic fiber, and polyester fiber. It is desirable that the fineness is 3 deniers or less and the fiber length is about 3 to 10 deniers from the viewpoint of fiber dispersibility in water and paper strength.

この製法において有機繊維の役割は三つあり、その第一
は、4− 抄造工程において、有機結合剤との相乗作用により、剛
直かつ自着性のないセラミック繊維の分散を助長し、抄
造性を高めることにある。他の二つの役割については後
に述べる。
In this manufacturing method, organic fibers have three roles; the first is 4- In the papermaking process, through a synergistic effect with the organic binder, they promote the dispersion of rigid and non-self-adhesive ceramic fibers, improving papermaking properties. It is about increasing. The other two roles will be discussed later.

また有機結合剤は繊維の分散性を高め、更に繊維を接着
して焼成前の紙力を大にするために用いられ、繊維状の
ポリビニルアルコール樹脂が抄造時の歩留りもよく最適
のものであるが、他にもアクリル樹脂、酢酸ビニル樹脂
、エチレン・酢酸ビニル樹脂、尿素樹脂、メラミン樹脂
、CMC、デンプン等を、水溶液、エマルジョン、粉末
、繊維などの形で用いることができる。
In addition, organic binders are used to improve the dispersibility of fibers and further bond fibers to increase paper strength before firing, and fibrous polyvinyl alcohol resin is the best choice because it has a good yield during papermaking. However, acrylic resins, vinyl acetate resins, ethylene/vinyl acetate resins, urea resins, melamine resins, CMC, starch, etc. can also be used in the form of aqueous solutions, emulsions, powders, fibers, and the like.

以上のような抄造原料の配合比は、セラミックwL維8
0〜96重量%、有機41ffi2〜10重量%(好ま
しくは3〜6重量%)、有機結合剤2〜10重量%(好
ましくは3〜6重量%)とする。有機物が多いほど、抄
紙および後記焼成前の成形加工は容易であるが、最終製
品の強度不足を招き易いので、合計量で15重量%以内
とすることが望ましい。
The blending ratio of the papermaking raw materials as described above is ceramic wL fiber 8
0 to 96% by weight, organic 41ffi 2 to 10% by weight (preferably 3 to 6% by weight), and organic binder 2 to 10% by weight (preferably 3 to 6% by weight). The greater the amount of organic matter, the easier the paper making and the shaping process before firing described below, but the final product is likely to lack strength, so it is desirable that the total amount be within 15% by weight.

なお上記抄紙原料以外に、この種のシート抄造に通常使
用される助剤を併用してもよいが、無機質のもの、特に
最終製品中に残留して触媒毒となるような成分を含むも
のの使用は避けることが望ましい。
In addition to the above-mentioned papermaking raw materials, auxiliaries commonly used in this type of sheet making may also be used, but inorganic ones, especially those containing ingredients that may remain in the final product and become catalyst poisons, should not be used. It is desirable to avoid.

抄紙原料は常法により()、1〜0.3%程度の濃度の
スラリーとした後、長網式または丸網式等の抄紙機によ
り、厚さ0゜15−0.S Omm、密度0 、2−0
 、4 B7cm3(イずれも乾燥物についての値〕の
紙に抄造する。
The raw material for papermaking is made into a slurry with a concentration of about 1 to 0.3% by a conventional method (1), and then processed into a slurry with a thickness of 0°15-0. S Omm, density 0, 2-0
, 4 B7cm3 (all values are for dry matter).

得られた紙に、次いで触媒担体として好ましい形状への
成形加]−を施す(平板状のままで担体とする場合は、
もちろんこの加工は不要である。)。紙の所望形状への
加工は、接着や穿孔など曲げを伴なわないものならば最
終製品について行うこともできるが、波状に型付けする
ような曲げ加工はこの段階で行わなければならない。
The obtained paper is then shaped into a shape suitable as a catalyst carrier.
Of course, this processing is unnecessary. ). Processing the paper into the desired shape can be carried out on the final product if it does not involve bending, such as gluing or perforation, but bending processes such as wavy shaping must be carried out at this stage.

成形加工は、例えば段ボール製造用のフルゲート加工機
を用いて、任意の波高および波間隔の波形を付与する。
The forming process uses, for example, a full-gate processing machine for manufacturing corrugated board to give a waveform with an arbitrary wave height and wave interval.

この製法における有磯繊M[の役割の第二は、−1−記
成形加工工程における加工性を高めるとともに、得られ
る成形物のその後の処理中の保形性をよくすることにあ
る。剛直なセラミック繊維のみからなる紙では、上述の
ような細かな型付けを確実に行うことができない。
The second role of Ariiso fiber M in this manufacturing method is to improve the workability in the molding process described in -1- and to improve the shape retention of the resulting molded product during subsequent processing. Paper made only of rigid ceramic fibers cannot reliably perform the detailed molding described above.

この段階の成形加工として、上述のような曲げ加工のほ
かに、接着加工など立体的な構造体とするための加工を
併せて行なってもよい。例えば」1記フルゲート加工を
すませたちのを、未加工の平板状の紙と交互に重ねて接
着して第2図の製品と同様の構造のものとする。接着剤
としては有機質のものは不適当であって、後記焼成処理
に耐え、更には数百度から1000°Cに達する使用条
件にも耐える接着を可能にする無機質のものを選んで用
いなければならない。但し、アルカリ金属イオンなど、
触媒毒となる恐れのある成分を含むものの使用は避ける
ことが望ましい。好ましい接着剤の具体例を示せば、次
のようなものがある。
In addition to the above-mentioned bending process, the forming process at this stage may include bonding process and other processes to form a three-dimensional structure. For example, the products that have undergone full gate processing in step 1 are alternately stacked and glued together with unprocessed flat sheets of paper to create a structure similar to the product shown in Figure 2. Organic adhesives are unsuitable; an inorganic adhesive must be selected that can withstand the firing process described later and can also withstand use conditions ranging from several hundred degrees to 1000°C. . However, alkali metal ions, etc.
It is desirable to avoid using products that contain components that may poison the catalyst. Specific examples of preferred adhesives include the following.

■ 精製ベントナイト、またはこれに酸化チタン、シリ
カ粉末、アルミナゾル等を加えたもの。
■ Refined bentonite or products to which titanium oxide, silica powder, alumina sol, etc. are added.

■ シリカ粉末およびアルミナ粉末からなるもの。■ Made of silica powder and alumina powder.

■ アルミナ粉末およびカオリンにコロイダルシリカま
たはセラミック繊維を加えたもの。
■ Alumina powder and kaolin with colloidal silica or ceramic fibers.

■ ンルコニア粉末およびコロイダルシリカからなるも
の。
■ Consisting of luconia powder and colloidal silica.

(いずれも水を希釈剤として用いる。)市販品としては
、FF接着剤にチアスKK製品)、スミセラム(住人化
学工業KK製品)等がある。
(Water is used as a diluent in both cases.) Commercially available products include FF adhesive (Chias KK product), Sumiceram (Suminami Kagaku Kogyo KK product), and the like.

成形加工を終った紙または成形加工を行わず平板状に仕
上げる紙は、次いでコロイダルシリカまたはエチルシリ
ケートを均一に含浸させ、その後、含浸されたケイ素化
合物をケイ=7− 酸ゲルに変換して硬化させる処理に付する。
Paper that has been formed or that is to be finished into a flat sheet without forming is then uniformly impregnated with colloidal silica or ethyl silicate, and then the impregnated silicon compound is converted into a silicic acid gel and cured. Subject to processing to make

コロイダルシリカを含浸させた場合は、150〜170
°Cで乾燥すれば上記硬化が完了する。
When impregnated with colloidal silica, 150 to 170
The above curing is completed by drying at °C.

エチルシリケートを含浸させた場合は、エチルシリケー
トを紙の組朧内で加水分解してケイ酸ゲルを生成させる
。このためには、エチルシリケートの原液または溶液を
含浸後、高温蒸気暴露するか、含浸させるエチルシリケ
ート溶液に塩酸などを触媒として加えてお外、含浸後数
時間放置するなどの方法を採用する。
When impregnated with ethyl silicate, the ethyl silicate is hydrolyzed within the paper matrix to form a silicic acid gel. For this purpose, a method is adopted, such as impregnating with an ethyl silicate stock solution or solution and then exposing it to high temperature steam, or adding hydrochloric acid or the like as a catalyst to the ethyl silicate solution to be impregnated, and leaving it for several hours after impregnation.

エチルシリケートを用いる方法は、均一な処理効果が得
られ易い点で、コロイダルシリカを用いる方法よりも好
ましいものである。
The method using ethyl silicate is more preferable than the method using colloidal silica because it is easier to obtain a uniform treatment effect.

いずれの方法による場合も、含浸量は最終製品の空隙率
を75%未満に低下させることのないよう制限しなけれ
ばならない。一方、含浸量は、紙を焼成した後の状態に
おいて実質的にすべてのセラミック繊維同士の接触点に
ケイ酸ゲルを存在させるに十分な量でなければならず、
これ以下のときは製品が保形性の悪いものとなる。これ
らの条件にかなう含浸量の範囲は、原料の特性および配
合、更には抄紙条件によっても異なるので、実験により
確認するしかないが、多くの場合8− に好ましい結果を与える含浸量を示すと、紙100g当
り、5in2として60〜120g程度である。
With either method, the amount of impregnation must be limited so as not to reduce the porosity of the final product below 75%. On the other hand, the amount of impregnation must be sufficient to cause silicic acid gel to be present at substantially all contact points between ceramic fibers in the state after the paper is fired,
If it is less than this, the product will have poor shape retention. The range of the amount of impregnation that satisfies these conditions varies depending on the characteristics and composition of the raw materials, as well as the paper-making conditions, so it can only be confirmed by experiment, but in most cases, the amount of impregnation that gives favorable results is as follows: It is about 60 to 120 g per 100 g of paper, assuming 5 in2.

ケイ酸ゲルを生成させた後、紙またはその成形物を酸化
性雰囲気において約1000°C以下で焼成することに
より有機繊維および有機結合剤を燃焼させると、後には
ケイ酸ゲルで結合されたセラミック繊維からなるシート
が残る。このシートは、前記成形加工工程で紙が付与さ
れた形状をそのまま承継している。しかも、有機繊維お
よび有機結合剤が燃えて消失した後、シートのケイ酸ゲ
ル部分には微細な気孔あるいは凹凸が残されるため、こ
のシートの触媒担持力(担体表面−触媒量結合力)は、
セラミック繊維とケイ酸ゲル形成性結合剤から直接製造
した類似組成かつ同一密度のシートのそれと比べるとは
るかに大きい(上記微細な気孔および凹凸を最後に形成
させることが、この製造法における有機繊維の第三の役
割である。)。
After producing the silicic acid gel, the organic fibers and the organic binder are burned by firing the paper or its molded product in an oxidizing atmosphere at a temperature below about 1000°C, resulting in a ceramic bonded with the silicic acid gel. A sheet of fiber remains. This sheet inherits the shape given to the paper in the above-mentioned forming process. Moreover, after the organic fibers and organic binder burn and disappear, fine pores or unevenness are left in the silicic acid gel portion of the sheet, so the catalyst supporting power of this sheet (support surface - catalyst amount binding force) is
This is much larger than that of a sheet of similar composition and the same density produced directly from ceramic fibers and a silicate gel-forming binder (the final formation of the fine pores and irregularities is the This is the third role.)

上述のようにして得られたセラミック繊維シートは、そ
のままで、あるいは担体として必要な寸法、形状、構造
のものとするため、切断、穿孔あるいは再度接着するな
どの加工を適宜施せば、本発明の触媒担体となる。
The ceramic fiber sheet obtained as described above can be used as it is, or if it is appropriately processed such as cutting, perforating, or bonding again in order to have the size, shape, and structure required as a carrier, it can be used as it is, or it can be used as a carrier according to the present invention. Becomes a catalyst carrier.

本発明による担体は、上述のような構成に基づき、シー
ト表面だけでなくシート中にも有効に利用される触媒を
多量に担持することができ、触媒相持のためのコーティ
ング処理も通常−回ですみ、しかもそのようにして担持
された触媒が苛酷な使用条件下においても脱落し難いな
ど、触媒の担持能力にすぐれている。したがって本発明
の担体は、押出し成形物または抄造物を焼結して得られ
るセラミック構造体からなる従来の担体と比べて、同一
量の触媒を担持させる場合、処理が容易であるとともに
得られた触媒の性能がはるかにすぐれている。本発明の
担体の特にすぐれている点は、単に触媒担持能力がすぐ
れているだけでなく、この担体を用いて得られた触媒が
、担体の品質、特に空隙率に多少の変動があってもそれ
に影響されることなくきわめて安定した性能を示すこと
である(後記試験側参照)。これは、担体の空隙率が増
大するにつれて顕著に向1ニする触媒性能が空隙率約7
5%以上では空隙率とは無関係にほぼ一定の触媒性能を
示すようになるという、興味ある事実によるものであっ
て、触媒性能の信頼性を高めることにつながる、きわめ
て有利な性質である。これらの特長により、本発明の担
体に触媒を担持させて用いると外は単位ガス処理鼠あた
り必要な触媒量が少なくてすむから(換言すれば反応器
中で触媒が占有する空間が少なくてすむから)、そのぶ
ん反応器を小型化することができる。本発明の触媒はま
たその独特の構造に基づき、軽く、まtこ空隙率が高い
にもかかわらず自己保形性がよい。しかもサーマルショ
ックlこ強いという利点があり、石綿製の紙からなる担
体と比べても、耐熱性、耐久性、触媒担持能力が大で、
触媒毒作用により触媒を劣化させることがないなどの点
で、はるかにすぐれたものである。
Based on the above-described structure, the carrier according to the present invention can support a large amount of catalyst that is effectively used not only on the sheet surface but also in the sheet, and the coating treatment for supporting the catalyst is usually required. Moreover, the catalyst supported in this way is difficult to fall off even under severe usage conditions, and has excellent catalyst supporting ability. Therefore, when supporting the same amount of catalyst, the support of the present invention is easier to process and easier to obtain than the conventional support made of a ceramic structure obtained by sintering an extrusion or paper product. Catalyst performance is much better. The particular advantage of the support of the present invention is that it not only has an excellent catalyst supporting ability, but also that the catalyst obtained using this support can be used even if there are slight variations in the quality of the support, especially in the porosity. It shows extremely stable performance without being affected by this (see test side below). This indicates that as the porosity of the carrier increases, the catalytic performance significantly improves with the porosity of about 7.
This is due to the interesting fact that at 5% or more, catalyst performance is almost constant regardless of the porosity, and this is an extremely advantageous property that leads to increased reliability of catalyst performance. Due to these features, when the carrier of the present invention is used with a catalyst supported, the amount of catalyst required per unit gas processing unit can be reduced (in other words, the space occupied by the catalyst in the reactor can be reduced). ), the reactor can be made smaller accordingly. Due to its unique structure, the catalyst of the present invention is also light and has good self-shape retention despite its high porosity. Moreover, it has the advantage of being resistant to thermal shock, and has greater heat resistance, durability, and catalyst support capacity than asbestos paper carriers.
It is far superior in that it does not cause deterioration of the catalyst due to catalyst poisoning.

次に実施例を示すが、第1表の「座屈強度」はJIS 
 Z0401に従って測定しtこものであり、また「耐
熱性」は、種々の温度で3時間加熱した試料につき座屈
強度を測定し、その値が初期強度の50%となった場合
の加熱温度を表示したものである。
Next, an example will be shown. The "buckling strength" in Table 1 is based on JIS
Measured according to Z0401, and "heat resistance" is measured by measuring the buckling strength of samples heated at various temperatures for 3 hours, and indicating the heating temperature when the value becomes 50% of the initial strength. This is what I did.

実施例 1〜4 アルミナシリカ系セラミックa維・ファインフレックス
にチアスKK製品、太さ2.6−3.Ou、長さ5−3
0a+m)、レーヨン繊維<1 、5 clX 5mm
>および有機結合剤としての繊維状ポリビニルアルコー
ル樹脂を340倍の水に分散させた後、丸網式抄紙機で
常法により抄造し、得られた紙を段ボール加工機により
180℃でフルゲート加工する(波の高さ2.2 mm
)。次いでエチルシリケート (シリカ固形分40%)
11− 8.0部、エチルアルコール13部、水6部および5%
塩酸1部の混合液を、5102として100g/紙io
ogの割合で吹付け、3時間湿空中に放置したのち乾燥
する。この後、紙を800℃の酸化性雰囲気で焼成して
、有機物を焼去する。
Examples 1 to 4 Chias KK product made of alumina-silica ceramic A-fiber/fine flex, thickness 2.6-3. Ou, length 5-3
0a+m), rayon fiber <1, 5 clX 5mm
> and a fibrous polyvinyl alcohol resin as an organic binder are dispersed in 340 times the amount of water, and then paper is made by a conventional method using a circular mesh paper machine, and the obtained paper is full-gate processed at 180°C using a corrugated board processing machine. (Wave height 2.2 mm
). Then ethyl silicate (silica solid content 40%)
11- 8.0 parts, 13 parts of ethyl alcohol, 6 parts of water and 5%
A mixed solution of 1 part of hydrochloric acid was used as 5102, 100g/paper io
Spray at a rate of 0.3 oz., leave in humid air for 3 hours, and then dry. Thereafter, the paper is fired in an oxidizing atmosphere at 800°C to burn off the organic matter.

種々の原料配合比で上記のようにして得られtこセラミ
ック繊維シートからなる触媒担体および焼成前の原紙(
フルデー1体)の特性値は第1表のとおりであった。
Catalyst carriers made of ceramic fiber sheets obtained as described above with various raw material blending ratios and base paper before firing (
Table 1 shows the characteristic values of the full day (1 body).

実施例 5,6 レー ヨン繊維にかえてポリプロピレン繊維(1,5d
X5mm)を用いたほかは実施例1〜4の場合と同ヒ原
料および処理条件でセラミック繊維紙からなる担体を製
造した。その結果を第1表に示す。
Example 5, 6 Polypropylene fiber (1,5 d
A carrier made of ceramic fiber paper was produced using the same raw materials and processing conditions as in Examples 1 to 4, except that a paper (X5 mm) was used. The results are shown in Table 1.

実施例 7.8 有機繊維として3dX7mmのレーヨン繊維またはこれ
と叩解した木材パルプとの混合物を用いたほかは実施例
1〜4の場合と同じ原料および処理条件でセラミックN
tL維紙からなる担体を製造した。その結果を第1表に
示す。
Example 7.8 Ceramic N was produced using the same raw materials and processing conditions as in Examples 1 to 4, except that 3 d x 7 mm rayon fiber or a mixture of this and beaten wood pulp was used as the organic fiber.
A carrier made of tL fiber paper was produced. The results are shown in Table 1.

比較例 1,2 レーヨンwkAMおよびポリビニルアルフール樹脂の配
合比を本発明の範囲外としたほかは実施例1〜4と同様
にして、セ12− ラミック繊維紙からなる担体を製造した。その結果を第
1表に示す。有機繊維および有機結合剤の使用量が不十
分な比較例2の場合、抄造された紙はコルゲート加工を
ほとんど受けつけない粗剛なものであり、したがって座
屈強度は測定不能であった(このため以後の処理は中止
した)。一方、レーヨン繊維およびポリビニルアルコー
ル樹脂を過剰に使用した比較例1の場合は、原紙の段階
では紙力が大でコルデート加工も容易であったが、焼成
後は、0.1 Kg/am2という着しく低い座屈強度
から明らかなように、保形性が悪く、成形担体とはなり
得ないものであった。
Comparative Examples 1 and 2 A carrier made of ceramic fiber paper was produced in the same manner as in Examples 1 to 4, except that the blending ratio of rayon wkAM and polyvinyl alfur resin was outside the range of the present invention. The results are shown in Table 1. In the case of Comparative Example 2, in which the amounts of organic fibers and organic binder were insufficient, the paper produced was rough and rigid and could hardly be corrugated, so the buckling strength could not be measured (for this reason, (Further processing was canceled). On the other hand, in the case of Comparative Example 1 in which rayon fibers and polyvinyl alcohol resin were used in excess, the paper strength was high at the base paper stage and cordate processing was easy, but after firing, the strength was 0.1 Kg/am2. As is clear from the extremely low buckling strength, the shape retention was poor and it could not be used as a molded carrier.

比較例 3 レーヨン繊維および木材パルプを用いないほかは実施例
1〜8の各側と同じ原料配合および抄造法により8種類
のセラミック繊維紙を抄造した。次いで、得られた紙を
実施例1〜4の場合と同様にフルゲート加工したが、い
ずれの紙も、柔軟性がないためほとんど加工を受は付け
なかった。
Comparative Example 3 Eight types of ceramic fiber papers were made using the same raw material formulation and papermaking method as in Examples 1 to 8, except that rayon fibers and wood pulp were not used. Next, the obtained papers were subjected to full-gate processing in the same manner as in Examples 1 to 4, but all papers were hardly processed because of their lack of flexibility.

比較例 4 ポリビニルアルコール樹脂を用いないほかは実施例1〜
8の各側と同し原料配合および抄造法により8種類のセ
ラミック繊維紙を抄造したが、得られた紙はいずれも強
度がきわめて低く、コルデート加工等、その後の処理に
耐えられないものであった。
Comparative Example 4 Example 1~ except that polyvinyl alcohol resin is not used
Eight types of ceramic fiber papers were made using the same raw material composition and paper-making method as in Section 8, but all of the papers obtained had extremely low strength and could not withstand subsequent processing such as cordate processing. Ta.

比較例 5,6 実施例5と同様にしてフルゲート加工紙を製造し、次い
でこの紙にフロイグルシリ力をよく含浸させ、約160
°Cで乾燥後、800°Cで焼成した。得られた製品の
特性を第1表に示す。
Comparative Examples 5 and 6 A full-gate processed paper was produced in the same manner as in Example 5, and then this paper was well impregnated with Froegl Siri force to give about 160%
After drying at °C, it was fired at 800 °C. The properties of the obtained product are shown in Table 1.

試験例 実施例2,4.8および比較例5.6で得られた担体な
らびに市販のムライト質担体を用いて、以下の製法によ
り脱硝触媒を製造した。
Test Examples A denitrification catalyst was produced by the following method using the carriers obtained in Examples 2, 4.8 and Comparative Example 5.6 and a commercially available mullite carrier.

五酸化バナジウム3重量部、酸化チタン(平均粒子径1
μ顛。
3 parts by weight of vanadium pentoxide, titanium oxide (average particle size 1
μ size.

比表面積75I+127g)30重量部、シリカゾル(
シリカ固形分20%)18重量部および水58重量部か
らなるスラリー(常温における粘度12センチポイズ)
を調製し、このスラリーを用いて、実施例2 、4. 
、8による担体は2回、他は3回、それぞれつオツシュ
コートを行う(コーティング回数が異なるのは触媒の付
着量を揃えるためである)。
Specific surface area 75I + 127g) 30 parts by weight, silica sol (
Slurry consisting of 18 parts by weight of silica (solid content 20%) and 58 parts by weight of water (viscosity 12 centipoise at room temperature)
was prepared, and using this slurry, Examples 2, 4.
, 8 was coated twice, and the others were coated three times (the number of coatings was different to equalize the amount of catalyst deposited).

その後、120℃で乾燥し、4()0°Cで3時間焼成
する。
Thereafter, it is dried at 120°C and fired at 4()0°C for 3 hours.

上記方法により得られた触媒について、次のような性能
試験を行なった。
The following performance tests were conducted on the catalyst obtained by the above method.

所定の温度に調ffI+されたオーブン中の反応器に触
媒を装填し、組成がNo 200ppm、 NH320
0ppm、 820 10%、023%、5O2100
p、輸、残部N2である試験用ガスをSV  17,2
00/Hr(NTP)で通し、通過ガスを分析して、窒
素酸化物除去率および実施例4による担体を用いた触媒
の場合の反応速度に0に対する各試験例の反応速度にの
比に/に、を求める。
A catalyst was loaded into a reactor in an oven adjusted to a predetermined temperature, and the composition was No. 200 ppm, NH320.
0ppm, 820 10%, 023%, 5O2100
SV 17,2 of the test gas, which is p,
00/Hr (NTP) and the gas passing through was analyzed to determine the nitrogen oxide removal rate and the ratio of the reaction rate for each test example to 0/ for the reaction rate in the case of the catalyst using the support according to Example 4. to ask for.

試験結果は第2表に示したとおりであった。The test results were as shown in Table 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1l:本発明にょる担体の1例の電子顕微鏡写真。 第2図〜第5図:いずれも本発明に上る担体の具体例を
示す斜視図。 代理人 弁理士 板弁−瀧 18− 才1図
Part 1: Electron micrograph of an example of a carrier according to the present invention. FIGS. 2 to 5 are perspective views showing specific examples of carriers according to the present invention. Agent Patent Attorney Itaben - Taki 18 - Year 1 figure

Claims (1)

【特許請求の範囲】[Claims] ケイ酸ゲルにより互に結合されているセラミック繊維の
シート状集合体からなり、空隙率が75%以上であるこ
とを特徴とする気相・反応用触媒の担体。
A carrier for a gas phase/reaction catalyst, which is made of a sheet-like aggregate of ceramic fibers mutually bonded by silicic acid gel, and has a porosity of 75% or more.
JP58099608A 1983-06-06 1983-06-06 Carrier of catalyst Granted JPS5910345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58099608A JPS5910345A (en) 1983-06-06 1983-06-06 Carrier of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58099608A JPS5910345A (en) 1983-06-06 1983-06-06 Carrier of catalyst

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55037495A Division JPS5915028B2 (en) 1980-03-26 1980-03-26 Manufacturing method of catalyst carrier

Publications (2)

Publication Number Publication Date
JPS5910345A true JPS5910345A (en) 1984-01-19
JPH0418896B2 JPH0418896B2 (en) 1992-03-30

Family

ID=14251805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58099608A Granted JPS5910345A (en) 1983-06-06 1983-06-06 Carrier of catalyst

Country Status (1)

Country Link
JP (1) JPS5910345A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242747A (en) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd Structure for carrying catalyst
JPH02164455A (en) * 1988-12-15 1990-06-25 Matsushita Electric Ind Co Ltd Exhaust gas purifying catalyst
JPH0332747A (en) * 1989-06-30 1991-02-13 Matsushita Electric Ind Co Ltd Catalytic body for purification of exhaust gas and production thereof
JPH03157140A (en) * 1989-11-15 1991-07-05 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas and its production
JPH0564745A (en) * 1991-01-21 1993-03-19 Seibu Giken:Kk Production of honeycomb-shaped gas adsorbing element and catalyst carrier
JPH06106070A (en) * 1993-03-26 1994-04-19 Nichias Corp Catalyst unit for gaseous phase reaction
JPH0871369A (en) * 1994-08-31 1996-03-19 Nichias Corp Ozone filter
US5790267A (en) * 1994-03-14 1998-08-04 Mita Industrial Co., Ltd. Communications method
WO2002053511A1 (en) 2000-12-28 2002-07-11 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
JP2006007118A (en) * 2004-06-25 2006-01-12 K2R:Kk Waste gas purifying apparatus
US7261864B2 (en) 2001-06-22 2007-08-28 3M Innovative Properties Company Catalyst carrier holding material and catalytic converter
US7524546B2 (en) 2000-12-28 2009-04-28 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
US8226897B2 (en) 2007-03-30 2012-07-24 3M Innovative Properties Company Fiber mat containing an organosilicon compound and pollution control device using it
JP2012517343A (en) * 2009-02-25 2012-08-02 エルジー・ハウシス・リミテッド Catalyst body and method for removing formaldehyde using the same
WO2012127777A1 (en) 2011-03-18 2012-09-27 ニチアス株式会社 Adhesive for inorganic fibers
US8821626B2 (en) 2011-03-18 2014-09-02 Nichias Corporation Adhesive for inorganic fiber
WO2015099114A1 (en) * 2013-12-27 2015-07-02 株式会社エフ・シ-・シ- Method for producing catalyst structure, and catalyst structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8734931B2 (en) * 2007-07-23 2014-05-27 3M Innovative Properties Company Aerogel composites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881789A (en) * 1972-01-18 1973-11-01
JPS4934489A (en) * 1972-07-26 1974-03-29

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881789A (en) * 1972-01-18 1973-11-01
JPS4934489A (en) * 1972-07-26 1974-03-29

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242747A (en) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd Structure for carrying catalyst
JPH02164455A (en) * 1988-12-15 1990-06-25 Matsushita Electric Ind Co Ltd Exhaust gas purifying catalyst
JPH0332747A (en) * 1989-06-30 1991-02-13 Matsushita Electric Ind Co Ltd Catalytic body for purification of exhaust gas and production thereof
JPH03157140A (en) * 1989-11-15 1991-07-05 Matsushita Electric Ind Co Ltd Catalyst for purifying exhaust gas and its production
JPH0564745A (en) * 1991-01-21 1993-03-19 Seibu Giken:Kk Production of honeycomb-shaped gas adsorbing element and catalyst carrier
JPH06106070A (en) * 1993-03-26 1994-04-19 Nichias Corp Catalyst unit for gaseous phase reaction
US5790267A (en) * 1994-03-14 1998-08-04 Mita Industrial Co., Ltd. Communications method
JPH0871369A (en) * 1994-08-31 1996-03-19 Nichias Corp Ozone filter
WO2002053511A1 (en) 2000-12-28 2002-07-11 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
US7524546B2 (en) 2000-12-28 2009-04-28 3M Innovative Properties Company Thermal insulating material and pollution control device using the same
US7261864B2 (en) 2001-06-22 2007-08-28 3M Innovative Properties Company Catalyst carrier holding material and catalytic converter
JP2006007118A (en) * 2004-06-25 2006-01-12 K2R:Kk Waste gas purifying apparatus
US8226897B2 (en) 2007-03-30 2012-07-24 3M Innovative Properties Company Fiber mat containing an organosilicon compound and pollution control device using it
US8916103B2 (en) 2007-03-30 2014-12-23 3M Innovative Properties Company Fiber mat containing an organosilicon compound and pollution control device using it
JP2012517343A (en) * 2009-02-25 2012-08-02 エルジー・ハウシス・リミテッド Catalyst body and method for removing formaldehyde using the same
WO2012127777A1 (en) 2011-03-18 2012-09-27 ニチアス株式会社 Adhesive for inorganic fibers
US8821626B2 (en) 2011-03-18 2014-09-02 Nichias Corporation Adhesive for inorganic fiber
WO2015099114A1 (en) * 2013-12-27 2015-07-02 株式会社エフ・シ-・シ- Method for producing catalyst structure, and catalyst structure
JP2015123426A (en) * 2013-12-27 2015-07-06 株式会社エフ・シー・シー Method for manufacturing catalyst structure, and catalyst structure

Also Published As

Publication number Publication date
JPH0418896B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
JPS5915028B2 (en) Manufacturing method of catalyst carrier
JPS5910345A (en) Carrier of catalyst
US8388719B2 (en) Ceramic filter comprising clay and process for preparing thereof
US4280926A (en) Method for producing a catalyst and a carrier therefor
US4520124A (en) Method for producing a catalytic structure for the reduction of nitrogen oxides
KR101322050B1 (en) Catalystic structures and formaldehyde-eliminating method using the same
JPS6255600B2 (en)
US6524680B1 (en) Honeycomb structure
JPH06154622A (en) Laminated corrugate catalyst carrier
KR100247944B1 (en) Honeycomb supports of ceramic sheet used for catalytic convert and manufacturing method thereof
JPH0362672B2 (en)
JPH054355B2 (en)
JPH02261606A (en) Manufacture of ceramics
JPS5811253B2 (en) Method for producing catalyst or carrier
KR101242327B1 (en) A novel catalyst carrier and a supported-type catalyst prepared by using the same
JPS60161713A (en) Filter and its preparation
JP3386587B2 (en) Honeycomb element
JPS61230747A (en) Catalyst carrier for purifying exhaust gas
JPH0336574B2 (en)
JPH0811251A (en) Honeycomb element and manufacture thereof
JP2851634B2 (en) Method for producing catalyst for removing nitrogen oxides
JPH0459271B2 (en)
KR20060084124A (en) Method for preparing of corrugated ceramic paper and corrugated ceramic paper using the same
JPS6171841A (en) Preparation of flute shaped ceramics supported catalyst
JPH0331495B2 (en)