JPS5811253B2 - Method for producing catalyst or carrier - Google Patents

Method for producing catalyst or carrier

Info

Publication number
JPS5811253B2
JPS5811253B2 JP54053186A JP5318679A JPS5811253B2 JP S5811253 B2 JPS5811253 B2 JP S5811253B2 JP 54053186 A JP54053186 A JP 54053186A JP 5318679 A JP5318679 A JP 5318679A JP S5811253 B2 JPS5811253 B2 JP S5811253B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
paper
coating
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053186A
Other languages
Japanese (ja)
Other versions
JPS55145538A (en
Inventor
安倍一允
仲辻忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP54053186A priority Critical patent/JPS5811253B2/en
Priority to US06/072,599 priority patent/US4280926A/en
Priority to GB7931275A priority patent/GB2037342B/en
Priority to FR7922707A priority patent/FR2435967A1/en
Priority to DE2954517A priority patent/DE2954517C2/de
Priority to DE19792936927 priority patent/DE2936927A1/en
Publication of JPS55145538A publication Critical patent/JPS55145538A/en
Priority to US06/245,687 priority patent/US4416800A/en
Publication of JPS5811253B2 publication Critical patent/JPS5811253B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は安価にしてかつ高活性なモノリス担体もしくは
触媒の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a monolithic carrier or catalyst at low cost and with high activity.

ガス流れ方向に貫通孔を有する触媒(以下モノリス触媒
と称する)はガス流れによる圧力損失が極めて小さく、
高り、V、設定が可能であり、含有ダストに応じ貫通孔
径を選択することにより排ガス中のダストが触媒層に堆
積せずに貫通孔中を通過するためダスト含有排ガスの処
理に好適であるきいう特徴を有している。
Catalysts with through holes in the gas flow direction (hereinafter referred to as monolith catalysts) have extremely low pressure loss due to gas flow.
The height, V, and height can be set, and by selecting the diameter of the through-hole according to the dust content, the dust in the exhaust gas can pass through the through-hole without accumulating on the catalyst layer, making it suitable for processing dust-containing exhaust gas. It has the following characteristics.

このモノリス触媒の製造法は、■セラミック基村上に担
体および触媒物質を被覆する方法、■担体およびもしく
は触媒物質そのものを押出成形する方法などに類別され
るが、■の場合セラミック基材と担体および触媒物質と
の間の親和性が弱くしたがって付着力が弱くしかもセラ
ミック基材の吸水量が少なく被覆操作1回当りの被覆量
が少ないそのため厳重な工程管理の下で被覆操作を何度
も行う必要があり、得られた触媒のコストパーフオマン
スは極めて低いものとなる、また■の場合は使用する担
体もしくは触媒物質量が多く、触媒は高価なものとなり
、しかも重さの点でハンドリングの困難さから寸法に一
定の限界が生ぜざるを得ないという欠点を有していた。
The manufacturing method of this monolithic catalyst is classified into 1) a method of coating a ceramic substrate with a carrier and a catalyst material, and 2 a method of extruding the carrier and/or the catalytic material itself. The affinity with the catalytic material is weak, resulting in weak adhesion, and the amount of water absorbed by the ceramic substrate is low, resulting in a small amount of coating per coating operation.Therefore, coating operations must be repeated many times under strict process control. In the case of (2), the amount of carrier or catalyst material used is large, making the catalyst expensive and difficult to handle due to its weight. This has the disadvantage that certain limits must be imposed on the dimensions.

一方耐熱性材料として耐熱性繊維とりわけ可撓性に富み
かつ安価なアスベスト繊維のみを用い抄紙もしくは製板
した耐熱性材料を、コルゲート法あるいは平板を接着加
工する方法などにより形成したモノリス体は安価でしか
も見掛比重が小さく触媒化工程などにおけるハンドリン
クが容易であるという優れた点を有する一方、触媒化を
被覆法により行う場合上述のセラミック基材と同様の理
由によりこの触媒もコストパーフオマンスが低いという
欠点を有していた。
On the other hand, a monolith body made by making paper or board using only heat-resistant fibers, especially asbestos fibers, which are highly flexible and inexpensive, by corrugating or bonding flat plates is inexpensive. Moreover, while it has the advantage of having a small apparent specific gravity and is easy to handle in the catalytic process, this catalyst also has low cost performance when catalyzed by a coating method for the same reason as the ceramic base material mentioned above. It had the disadvantage of being low.

本出願人は、先に上記目的を趣旨とした発明を特願53
−112558として出願した。
The present applicant previously filed a patent application No. 53 for an invention aimed at the above purpose.
-112558.

その要旨は、「叩解した耐熱性繊維間に触媒物質あるい
は触媒前駆体物質、担体物質あるいは担体前駆体物質、
担体物質あるいは担体前駆体物質を漉き込み、平板状あ
るいはペーパ状物を得た後、ガス流れ方向に多数の貫通
孔を有するように成形した、もしくは触媒層内において
ガス流れ方向に多数の貫通孔を有するように装填可能な
形状に成形したことを特徴とする担体もしくは触媒」で
ある。
The gist is that ``a catalyst substance or catalyst precursor substance, a carrier substance or a carrier precursor substance,
A carrier material or a carrier precursor material is strained to obtain a flat or paper-like material, and then it is shaped to have a large number of through holes in the gas flow direction, or a catalyst layer that has a large number of through holes in the gas flow direction. A carrier or catalyst characterized in that it is formed into a shape that can be loaded so as to have the following characteristics.

本発明者らは、更に検討を重ねた結果特願53−112
558にかかる触媒もしくは担体に比較し数段優れた活
性を有し、上記の欠点を有さずコストパーフオマンスの
高い担体の製造法を見出したのである。
As a result of further study, the present inventors discovered that
They have discovered a method for producing a carrier which has an activity several times superior to that of the catalyst or carrier according to No. 558, does not have the above-mentioned drawbacks, and is highly cost-effective.

すなわち (a)叩解したアスベスト繊維等耐熱性繊維間にチタニ
ア、アルミナなど担体物質あるいは水酸化チタン、水酸
化アルミナなど担体前、躯体物質およびもしくは5酸化
バナジウム、酸化鉄など触媒物質あるいはメタバナジン
酸アンモニウム、水酸化鉄など触媒前駆体物質を抄紙さ
れる耐熱性繊維に対し5〜80重量%漉き込み平板状あ
るいはペーパ状物を得た後、 (b)該平板状あるいはペーパ状物を抄紙された担体物
質あるいは担体前駆体物質およびもしくは触媒物質ある
いは触媒前駆体物質により被覆し、さらに該被覆体を、 (i)ガス流れ方向に多数の貫通孔を有するように もしくは (11)触媒反応装置内における装填によりガス流れ方
向に多数の貫通孔を有するように成形する あるいは (c)該平板状あるいはペーパ状物を (i)ガス流れ方向に多数の貫通孔を有するような形成
すなわちモノリス構造に もしくは (11)触媒反応装置内における装填によりガス流れ方
向に多数の貫通孔を有するような形状に成形し、さらに
該成形体を抄紙された担体物質あるいは担体前駆体物質
およびもしくは触媒物質あるいは触媒前駆体物質にて被
覆することにより触媒もしくは担体が製造される。
That is, (a) between heat-resistant fibers such as beaten asbestos fibers, a carrier material such as titania or alumina, or a support material such as titanium hydroxide or alumina hydroxide, a framework material and/or a catalytic material such as vanadium pentoxide or iron oxide, or ammonium metavanadate, After 5 to 80% by weight of a catalyst precursor material such as iron hydroxide is added to the heat-resistant fibers to be made into paper to obtain a flat or paper-like material, (b) a carrier from which the flat or paper-like material is made into paper; coated with a substance or carrier precursor material and/or a catalyst material or catalyst precursor material, and the coating is further coated (i) with a large number of through holes in the gas flow direction or (11) loaded in a catalytic reaction device. (c) forming the flat or paper-like object into a monolithic structure having a large number of through holes in the gas flow direction; ) Molding into a shape having a large number of through holes in the gas flow direction by loading in a catalytic reaction device, and further converting the molded body into a paper-made carrier material or carrier precursor material and/or catalyst material or catalyst precursor material. A catalyst or carrier is produced by coating the catalyst or carrier.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用しうる耐熱性繊維は叩解可能でかつ
耐熱性(200℃以上)を有するものであれば良く、有
機質、無機質いずれでも良い。
The heat-resistant fiber that can be used in the present invention may be any one that can be beaten and has heat resistance (200° C. or higher), and may be either organic or inorganic.

無機質繊維としては、市販のグラスファイバー、セラミ
ックファイバー、青石綿、クリソタイルファイバー、ア
モサイトファイバー、岩綿、カーボンファイバー、チタ
ン酸カリファイバー、シリカ質ファイバー、アンソフイ
ライトファイバー等を、有機質繊維市販としてはテフロ
ンファイバー等を挙げることができる。
Commercially available inorganic fibers include glass fiber, ceramic fiber, blue asbestos, chrysotile fiber, amosite fiber, rock wool, carbon fiber, titanate potash fiber, siliceous fiber, anthophyllite fiber, etc., and commercially available organic fibers include Teflon. Examples include fibers and the like.

なおこれらの選択は、使用湿度、経済性などを考えて行
なわれる。
Note that these selections are made taking into consideration usage humidity, economic efficiency, and the like.

例えば石綿類は500℃以下の使用に、セラミック繊維
は1000℃程度の使用に好適である。
For example, asbestos is suitable for use at temperatures below 500°C, and ceramic fibers are suitable for use at about 1000°C.

また好ましい繊維長は1〜20mm、好ましい繊維径は
0.1〜30μである。
Further, the preferable fiber length is 1 to 20 mm, and the preferable fiber diameter is 0.1 to 30 μ.

本発明の漉き込み時に用いる担体物質の性状は粉状が好
ましく、担体前駆体物質のそれは粉状、ゾル状、ゲル状
が好ましい。
The carrier material used during straining in the present invention is preferably in powder form, and the carrier precursor material is preferably in powder, sol, or gel form.

化合物としてはチクニア、アルミナ、シリカ、シリカ−
アルミナ、マグネシア、ジルコニア、ドリア等公知の担
体物質、水酸化チタン、水酸化アルミ、水酸化マグネシ
ウム等公知の担体前駆体物質を用いることができる。
Compounds include chikunia, alumina, silica, and silica.
Known carrier materials such as alumina, magnesia, zirconia, and doria, and known carrier precursor materials such as titanium hydroxide, aluminum hydroxide, and magnesium hydroxide can be used.

本発明の漉き込み時に用いる触媒物質の性状は担体物質
と同様粉状が好ましく、触媒前駆体物質のそれは粉状、
ゾル状、ゲル状が好ましい。
The nature of the catalyst material used during straining in the present invention is preferably powdery, similar to the carrier material, and that of the catalyst precursor material is powdery,
Sol and gel forms are preferred.

なお触媒物質の選択は触媒反応に応じ適宜選択すれば良
く、例えばNH3によるNOxの選択的還元脱硝反応の
場合、Cub、Fe2O3,V2O5,WO3゜MoO
3等を用いて漉き込みが行なわれる。
The catalyst material may be selected appropriately depending on the catalytic reaction. For example, in the case of selective reduction and denitration reaction of NOx by NH3, Cub, Fe2O3, V2O5, WO3゜MoO
The straining is carried out using a No. 3 grade.

本発明方法により得られた平板状あるいはペーパ状物中
における前述した担体物質等およびもしくは触媒物質等
の含有量は、漉き込まれるアスベスト等耐熱性繊維に対
して5〜80重量%が好ましい。
The content of the above-mentioned carrier material and/or catalyst material in the plate-like or paper-like material obtained by the method of the present invention is preferably 5 to 80% by weight based on the heat-resistant fibers such as asbestos to be strained.

なぜならその含有量が5%以下の場合、担体物質等の添
加による効果すなわち触媒活性あるいは担体の相持能力
の向上および担体物質等と平板状あるいはペーパとの間
の付着強度の向上が不充分であり、一方80%以上の場
合、抄紙等されたぺ−パ状あるいは平板状物の機械的強
度が不充分であり、ペーパ状物等のモノリス化が非常に
困難となるからである。
This is because if the content is less than 5%, the effect of adding the carrier material, ie, the improvement of the catalytic activity or the supporting ability of the carrier, and the improvement of the adhesion strength between the carrier material, etc. and the plate or paper are insufficient. On the other hand, if it is more than 80%, the mechanical strength of the paper-like or flat plate-like product produced by papermaking etc. will be insufficient, and it will be very difficult to form the paper-like product into a monolith.

また漉き込まれる担体物質等の粒径は歩留りの点から0
.01〜50μが好ましい。
In addition, the particle size of the carrier material etc. to be strained is 0 from the viewpoint of yield.
.. 01-50μ is preferable.

なお本発明に言う漉き込みとは編成された叩解耐熱性繊
維中に担体物質あるいは担体前駆体およびもしくは解媒
あるいは触媒前駆体を定着させる操作を相称するもので
あり、例として叩解耐熱性繊維と担体物質あるいは担体
前駆体物質およびもしくは触媒物質あるいは触媒前駆体
物質など、更に必要に応じてNBR,SBR、ポリアミ
ン、硫酸アルミなどの定着剤、紙力増強剤、パルプ等を
用いスラリー濃度が0.5〜10wt%である紙料を調
製した後長網、短網式環公知の抄紙機により抄紙するこ
と、あるいは叩解耐熱性繊維と担体物質あるいは担体前
駆体物質およびもしくは触媒物質あるいは触媒前駆体物
質など、更に必要に応じてアルミナゾル、シリカゾル、
チタニアゾル、等の公知のバインダー等を添加したスラ
リーを薄層化し乾燥することにより平板を製造すること
などを挙げることができる。
Note that the term ``sneaking'' in the present invention refers to the operation of fixing a carrier substance or a carrier precursor and/or a dissolving medium or a catalyst precursor into the knitted beaten heat-resistant fibers. A carrier material or a carrier precursor material and/or a catalyst material or a catalyst precursor material, etc., and if necessary, a fixing agent such as NBR, SBR, polyamine, aluminum sulfate, a paper strength agent, pulp, etc. are used to achieve a slurry concentration of 0. After preparing a paper stock having a concentration of 5 to 10 wt%, paper is made using a known fourdrinier or short-mesh ring paper machine, or a beaten heat-resistant fiber and a carrier material or a carrier precursor material and/or a catalyst material or a catalyst precursor material are prepared. etc., and alumina sol, silica sol, etc. as required.
For example, a flat plate may be produced by forming a slurry containing a known binder such as titania sol into a thin layer and drying the slurry.

上記方法により得られたペーパ状あるいは平板状物を成
形に先立ち、担体物質あるいは担体前駆体物質およびも
しくは触媒物質あるいは触媒前駆体物質を用いて被覆す
る。
Prior to molding, the paper or plate-like article obtained by the above method is coated with a carrier material or carrier precursor material and/or a catalyst material or catalyst precursor material.

その被覆は、公知方法によりなされるが、例えば担体物
質あるいは担体前駆体およびもしくは触媒物質あるいは
触媒前駆体、さらに必要に応じてチタニアゾル、アルミ
ナゾル、シリカゾル等バインダー、粘土等の被覆助剤な
どを用いてスラリーを調製し、該スラリ中に該ペーパ状
あるいは平板状物を浸漬し、過剰スラリーを除去し乾燥
必要に応じて焼成することなどによりなされる。
The coating is performed by a known method, for example, using a carrier material or a carrier precursor and/or a catalyst material or catalyst precursor, and if necessary, a binder such as titania sol, alumina sol, or silica sol, or a coating aid such as clay. This is accomplished by preparing a slurry, immersing the paper or plate-like material in the slurry, removing excess slurry, drying, and baking if necessary.

上記方法により被覆されたペーパ状物あるいは平板状物
好ましくはペーパ状物は公知のダンボール加工機械によ
りあるいは同機械によりフルート加工後積層することに
よるなどしてモノリス体に成形される。
The paper-like article or flat plate-like article, preferably the paper-like article coated by the above method, is formed into a monolith body by a known corrugated board processing machine or by laminating after fluting with the same machine.

また上記方法により被覆されたペーパ状物あるいは平板
状物好ましくは平板状物は、スペーサを用いバスケット
内装着することなどによりモノリス体に成形される。
Further, the paper-like article or the flat plate-like article, preferably the flat article, coated by the above method is formed into a monolith body by mounting it in a basket using a spacer.

また上記方法により得られたペーパ状あるいは平板状物
を、触媒物質等の被覆に先立ち、上述した方法によりモ
ノリス体となした後、上述した方法により触媒物質等の
被覆を行ってもよい。
Further, the paper-like or plate-like material obtained by the above method may be formed into a monolith body by the above-mentioned method before being coated with the catalyst material, etc., and then coated with the catalyst material etc. by the above-mentioned method.

なお、本発明方法により得られた触媒は、ダスト含有排
ガスの処理例えばNH3によるNOxの窒素酸化物の除
去、また高り、V、の排ガスの処理例えば自動車廃ガス
中のNOxおよびH,C,の処理に好適である。
The catalyst obtained by the method of the present invention can be used for the treatment of dust-containing exhaust gas, for example, the removal of nitrogen oxides from NOx with NH3, and for the treatment of high-carbon exhaust gas, such as NOx and H, C, in automobile exhaust gas. It is suitable for processing.

以下本発明を実施例により具体的に説明する。The present invention will be specifically explained below using examples.

実施例 1 アスベスト繊維(平均繊維長2mm)250gを151
の水中で充分叩解した後、これに平均粒子径0.5μの
アナターゼ型酸化チタン粉末500gを添加し充分混合
する。
Example 1 250g of asbestos fiber (average fiber length 2mm)
After thorough beating in water, 500 g of anatase-type titanium oxide powder having an average particle size of 0.5 μm was added thereto and thoroughly mixed.

さらに高分子カチオン系多電解質(Lu、fax 29
5)を7g添加し、硫酸を加えpHを5に調節した。
Furthermore, polymer cationic polyelectrolyte (Lu, fax 29
5) was added thereto, and the pH was adjusted to 5 by adding sulfuric acid.

さらに日本ゼオン製ニツボール1571(NBR)を1
0I添加し、酸化チタン粉末をアスベスト繊維中に定着
させ、手漉機により紙製した後、乾燥し紙厚Q、3mm
、坪量290g/m2のペーパ状物を得た。
In addition, 1 Nitzball 1571 (NBR) manufactured by Nippon Zeon
After adding 0I and fixing the titanium oxide powder into asbestos fibers, making paper using a hand-sheeting machine, it was dried to a paper thickness of Q, 3 mm.
A paper-like material having a basis weight of 290 g/m2 was obtained.

得られた紙をコルゲータにより型付けし、1部をシリカ
ゾル系接着剤を用いて手作業により積層接着し、さらに
200℃3時間焼成し、貫通孔の相描直径が4mmであ
るモノリス体84m1を得た。
The obtained paper was molded using a corrugator, and one part was laminated and bonded manually using a silica sol adhesive, and further baked at 200°C for 3 hours to obtain a monolith body of 84 ml with a through hole having a diameter of 4 mm. Ta.

一方スラリーの調製は、5酸化バナジウム粉末5g、ア
ナターゼ型、酸化チタン45gおよび水250m1を、
ステンレス製ビー力に投入し、さらにガラスピーズを5
0m1投入した後、1時間攪拌することにより行なった
On the other hand, the slurry was prepared by adding 5 g of vanadium pentoxide powder, 45 g of anatase type titanium oxide, and 250 ml of water.
Add 5 glass beads to the stainless steel bead.
This was done by adding 0ml of the mixture and stirring for 1 hour.

このスラリー中にモノリス体86m1を浸漬し過剰スラ
リーを除去した後乾燥する。
86 ml of monolith bodies are immersed in this slurry, excess slurry is removed, and then dried.

この操作を2回繰り返すことにより、被覆量は4.2g
となった。
By repeating this operation twice, the amount of coating is 4.2g.
It became.

この実施例1により得られた触媒を触媒Aとする。The catalyst obtained in this Example 1 is referred to as Catalyst A.

実施例 2 実施例1で用いたアスベスト繊維1.5kgを304の
水中で充分叩解した後、これにアナターゼ型酸化チタン
粉末500gを添加し充分混合する。
Example 2 After 1.5 kg of asbestos fiber used in Example 1 was sufficiently beaten in 304 ml of water, 500 g of anatase type titanium oxide powder was added thereto and thoroughly mixed.

さらに高分子カチオン系多電解質(Lufax295)
を21g添加し硫酸を加えpHを5に調節した。
Furthermore, polymer cationic polyelectrolyte (Lufax295)
21g of was added, and the pH was adjusted to 5 by adding sulfuric acid.

さらに日本ゼオン製ニツポール1571(NBR)を1
0g添加し、酸化チタン粉末をアスベスト繊維中に定着
させ、手漉機により紙製した後乾燥し、紙厚1mm坪量
660g/m2の平板状物を得た。
In addition, 1 Nippon Zeon Nitzpol 1571 (NBR)
The titanium oxide powder was fixed in asbestos fibers, and after being made into paper using a hand-sheeting machine, it was dried to obtain a flat sheet with a paper thickness of 1 mm and a basis weight of 660 g/m2.

この平板状物を第1図に示すバスケット内に装着した。This flat plate-like object was placed in the basket shown in FIG.

(なおこのバスケット容積は84m1であり貫通孔相当
直径は8mmである。
(The volume of this basket is 84 m1, and the equivalent diameter of the through hole is 8 mm.

)得られたモノリス体を実施例1と同様の方法により調
製したスラリー中に浸漬し、過剰のスラリーを除去した
後乾燥した。
) The obtained monolith body was immersed in a slurry prepared in the same manner as in Example 1, excess slurry was removed, and then dried.

同様の操作を2回繰り返した、被覆量は4.8yであっ
た。
The same operation was repeated twice, and the coating amount was 4.8y.

この実施例2により得られた触媒を触媒Bとする。The catalyst obtained in Example 2 is referred to as Catalyst B.

参考例−1 市販されているアスベストペーパー(紙厚0.3朋、坪
量150g/m2)を実施例1と同様の方法により積層
し、実施例1と同一の貫通孔径を有するモノリス体86
m1を得た。
Reference Example-1 Commercially available asbestos paper (paper thickness 0.3 mm, basis weight 150 g/m2) was laminated in the same manner as in Example 1 to produce a monolith body 86 having the same through-hole diameter as in Example 1.
m1 was obtained.

このモノリス体を実施例1と同様の方法により調製した
スラリー中に浸漬し、過剰のスラリーを除去した後乾燥
した。
This monolith body was immersed in a slurry prepared in the same manner as in Example 1, excess slurry was removed, and then dried.

同様の操作を4回繰返し実施例1とほぼ同一の量4.1
gの被膜を行った。
Repeat the same operation 4 times to obtain almost the same amount as in Example 1 4.1
A coating of g was performed.

なおこの被膜を実施例1による被膜と比較した場合その
付着強度には歴然とした差があった。
Note that when this coating was compared with the coating according to Example 1, there was a clear difference in adhesion strength.

この参考例1により得られた触媒を触媒Cとする。The catalyst obtained in Reference Example 1 is referred to as Catalyst C.

参考例−2 実施例1で用いたアスベスト繊維1.5kgを301の
水中で充分叩解した後、これにアナターゼ型Ti024
50gおよび5酸化バナジウム粉末50Iを添加し充分
混合する。
Reference Example-2 After 1.5 kg of asbestos fiber used in Example 1 was thoroughly beaten in 301 water, anatase type Ti024 was added to it.
Add 50 g and 50 I of vanadium pentoxide powder and mix thoroughly.

以下実施例2と同様にして触媒りを得た。Thereafter, a catalyst was obtained in the same manner as in Example 2.

参考例−3 市販されているコージェライト製ハニカム(貫通孔相当
直径4mm)を実施例1と同様の方法により調製したス
ラリー中に浸漬し、過剰のスラリーを除去した後乾燥し
た。
Reference Example 3 A commercially available cordierite honeycomb (through-hole equivalent diameter: 4 mm) was immersed in a slurry prepared in the same manner as in Example 1, and after removing excess slurry, it was dried.

同様の操作を3回繰返した。The same operation was repeated three times.

被覆量は4.9gであった。得られた触媒を触媒Eとす
る。
The amount of coating was 4.9g. The obtained catalyst is designated as catalyst E.

実施例 3 触媒A、B、Cにより得た触媒84m1を内径50朋の
パイノックスガラス管(外部を保温する)内に装填し、
NN0200pp、NNO2NNO200pp10%、
CO212%、SO21001000pp残分の混合ガ
スを空間速度10,000Hr−1(室温換算)にて接
触せしめ、NOx除去率を求めた。
Example 3 84 ml of catalysts obtained from catalysts A, B, and C were loaded into a Pinox glass tube (with external heat insulation) having an inner diameter of 50 mm.
NN0200pp, NNO2NNO200pp10%,
A mixed gas of 12% CO2 and 1000pp residual SO2 was contacted at a space velocity of 10,000 Hr-1 (room temperature equivalent) to determine the NOx removal rate.

ただしNOx除去率は次の式により計算した。However, the NOx removal rate was calculated using the following formula.

結果は第1表に示す通りである0 実施例 4 実施例1による触媒と参考例による触媒を用いて、下記
要領で塗膜付着強度、塗膜硬度試験を行った0 塗膜付着強度 ニチバン株式会社製セロテープ[エルパック(LP−2
4)Jを合計5ocm2の触媒塗膜に付着させ、該セロ
テープを引きはがし、セロハンテープに付着した量を測
定した。
The results are shown in Table 10 Example 4 Using the catalyst according to Example 1 and the catalyst according to Reference Example, coating film adhesion strength and coating film hardness tests were conducted in the following manner.0 Paint film adhesion strength Nichiban Co., Ltd. Company-made sellotape [L-Pack (LP-2)
4) J was adhered to a total of 5 occm2 of the catalyst coating film, the cellophane tape was peeled off, and the amount adhered to the cellophane tape was measured.

塗膜硬度試験 上島製作所製U−F引掻式皮膜硬度計の引掻部に加重を
かけ引掻傷の生ずる加重により硬度を測定した。
Coating film hardness test The hardness was measured by applying a load to the scratched part of a U-F scratch type film hardness tester manufactured by Uejima Manufacturing Co., Ltd. and measuring the hardness by applying the load that caused the scratch.

結果は第2表に示した。The results are shown in Table 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は板状触媒を固定するバスケットである0 Figure 1 shows the basket that fixes the plate-shaped catalyst.

Claims (1)

【特許請求の範囲】 1 (a)叩解した耐熱性繊維間に担体物質あるいは担
体前駆体物質およびもしくは触媒物質あるいは触媒前駆
体物質を耐熱性繊維に対し5〜80重量%漉き込み平板
状あるいはペーパ状物を得た後、 (b)該平板状あるいはペーパ状物を漉き込まれた担体
物質あるいは担体前駆体物質およびもしくは触媒物質あ
るいは触媒前駆体物質により被覆し、さらに該被覆体を (i)ガス流れ方向に多数の貫通孔を有するように もしくは (il)触媒反応装置内における装填によりガス流れ方
向に多数の貫通孔を有するように 成形する、 あるいは (c)該平板状あるいはペーパ状物を (i)ガス流れ方向に多数の貫通孔を有するような形状
に もしくは (ii)触媒反応装置内における装填によりガス流れ方
向に多数の貫通孔を有するような形状に成形し、さらに
該成形体を漉き込まれた担体物質あるいは担体前駆体物
質およびもしくは触媒物質あるいは触媒前駆体物質にて
被覆することを特徴とする触媒もしくは担体の製造方法
[Claims] 1 (a) A carrier substance or a carrier precursor substance and/or a catalyst substance or a catalyst precursor substance is squeezed between beaten heat-resistant fibers in an amount of 5 to 80% by weight based on the heat-resistant fibers to form a flat plate or paper. (b) coating the plate-like or paper-like material with the strained carrier material or carrier precursor material and/or catalyst material or catalyst precursor material; or (i) shaping the plate-like or paper-like material to have a large number of through-holes in the gas flow direction by loading it in a catalytic reaction device; (i) molded into a shape having a large number of through holes in the gas flow direction; or (ii) molded into a shape having a large number of through holes in the gas flow direction by loading in a catalytic reaction device; 1. A method for producing a catalyst or carrier, which comprises coating with a strained carrier material or carrier precursor material and/or a catalyst material or catalyst precursor material.
JP54053186A 1978-09-12 1979-04-27 Method for producing catalyst or carrier Expired JPS5811253B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP54053186A JPS5811253B2 (en) 1979-04-27 1979-04-27 Method for producing catalyst or carrier
US06/072,599 US4280926A (en) 1978-09-12 1979-09-05 Method for producing a catalyst and a carrier therefor
GB7931275A GB2037342B (en) 1978-09-12 1979-09-10 Metho for producing a catalyst and a carrier therefor
FR7922707A FR2435967A1 (en) 1978-09-12 1979-09-11 PROCESS FOR PRODUCING A CATALYST AND A SUPPORT THEREOF
DE2954517A DE2954517C2 (en) 1978-09-12 1979-09-12
DE19792936927 DE2936927A1 (en) 1978-09-12 1979-09-12 METHOD FOR PRODUCING A CATALYST AND A CATALYST CARRIER
US06/245,687 US4416800A (en) 1978-09-12 1981-03-19 Method for producing a catalyst and a carrier therefor including heat-resistant fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54053186A JPS5811253B2 (en) 1979-04-27 1979-04-27 Method for producing catalyst or carrier

Publications (2)

Publication Number Publication Date
JPS55145538A JPS55145538A (en) 1980-11-13
JPS5811253B2 true JPS5811253B2 (en) 1983-03-02

Family

ID=12935837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54053186A Expired JPS5811253B2 (en) 1978-09-12 1979-04-27 Method for producing catalyst or carrier

Country Status (1)

Country Link
JP (1) JPS5811253B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022398A (en) * 1983-07-18 1985-02-04 三菱アルミニウム株式会社 Heat sink unit for electric element
WO2007026643A1 (en) 2005-08-29 2007-03-08 Babcock-Hitachi Kabushiki Kaisha Base for catalyst, catalyst and methods for producing those

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261547A (en) * 1984-06-11 1985-12-24 Shiki Roll Kk Catalyst filter and its manufacture
JPS6111153A (en) * 1984-06-26 1986-01-18 Matsushita Electric Ind Co Ltd Structural body for depositing catalyst
JPH02164455A (en) * 1988-12-15 1990-06-25 Matsushita Electric Ind Co Ltd Exhaust gas purifying catalyst
JP2760439B2 (en) * 1989-06-30 1998-05-28 松下電器産業株式会社 Exhaust gas purification catalyst body and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022398A (en) * 1983-07-18 1985-02-04 三菱アルミニウム株式会社 Heat sink unit for electric element
WO2007026643A1 (en) 2005-08-29 2007-03-08 Babcock-Hitachi Kabushiki Kaisha Base for catalyst, catalyst and methods for producing those

Also Published As

Publication number Publication date
JPS55145538A (en) 1980-11-13

Similar Documents

Publication Publication Date Title
US4280926A (en) Method for producing a catalyst and a carrier therefor
US10449493B2 (en) Processing apparatus equipped with catalyst-supporting honeycomb structure, and method for manufacturing same
EP3426395A1 (en) Preparation method of a non-woven fibrous material-based honeycomb catalyst
CN109661262A (en) Catalytic filter media and preparation method thereof with high surface area material
US6524680B1 (en) Honeycomb structure
CA1180165A (en) Plate catalyst body for denitration
JPH0418896B2 (en)
JP6912476B2 (en) Methods for Preparing Monolithic Catalysts for Selective Catalytic Reduction of Nitrogen Oxides
JPH02174937A (en) Molecular sieve on carrier- palladium-platinum catalyst
JPS5811253B2 (en) Method for producing catalyst or carrier
GB2026467A (en) Monolithic support for catalysts
CN101678347B (en) Honeycomb structure and exhaust gas purification apparatus
JP5022697B2 (en) Method for producing denitration catalyst
IE860130L (en) Carrier machine
JPH08299809A (en) Production of honeycomb catalyst
JPH02187147A (en) Denitration catalyst with ceramic paper utilized therefor
JPH084105Y2 (en) Ozone decomposition catalyst
JPH0427440A (en) Planar catalyst and manufacture thereof
JPS6052856B2 (en) Method for removing nitrogen oxides contained in exhaust gas from fixed combustion equipment
JPH062228B2 (en) Exhaust gas purification catalyst support
JPS6171841A (en) Preparation of flute shaped ceramics supported catalyst
JPS62136246A (en) Preparation of honeycomb structural body
JPH02164455A (en) Exhaust gas purifying catalyst
JPS6234586Y2 (en)
CN116036729A (en) Dedusting and denitration integrated ceramic filter material and preparation method and application thereof