JPH02187147A - Denitration catalyst with ceramic paper utilized therefor - Google Patents

Denitration catalyst with ceramic paper utilized therefor

Info

Publication number
JPH02187147A
JPH02187147A JP1007152A JP715289A JPH02187147A JP H02187147 A JPH02187147 A JP H02187147A JP 1007152 A JP1007152 A JP 1007152A JP 715289 A JP715289 A JP 715289A JP H02187147 A JPH02187147 A JP H02187147A
Authority
JP
Japan
Prior art keywords
catalyst
ceramic paper
sol
sio2
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1007152A
Other languages
Japanese (ja)
Other versions
JPH0722709B2 (en
Inventor
Masayoshi Ichiki
正義 市来
Toyohiko Yuki
幸 豊彦
Kiichi Matsuoka
松岡 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1007152A priority Critical patent/JPH0722709B2/en
Publication of JPH02187147A publication Critical patent/JPH02187147A/en
Publication of JPH0722709B2 publication Critical patent/JPH0722709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To thin the thickness of the title catalyst and to enhance strength thereof by impregnating ceramic paper with a mixture of titania sol and silica sol and thereafter drying and calcining this ceramic paper and then carrying vanadium oxide thereon and forming the denitration catalyst. CONSTITUTION:Silica/alumina-based or alumina-based ceramic fiber is manufactured to sheets and thereby ceramic paper is obtained. This ceramic paper is impregnated with a mixture of titania sol and silica sol and then dried and calcined. A denitration catalyst is formed by carrying vanadium oxide on the obtained ceramic paper with solid held thereon. As the mixing ratio of the mixture of titania sol and silica sol, the value of (SiO2/(TiO2+SiO2))X100 SiO2 mixing degree is regulated to <=80wt.% ordinarily 5-16wt.% preferably 7-13wt.%. The thickness of the obtained catalyst can be remarkably thinned and also mechanical strength is drastically enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、排ガス中の窒素酸化物(NOX)のアンモ
ニア(NH3)による選択的還元用脱硝触媒に関し、さ
らに詳しくは、いわゆるセラミックスペーパーを用いた
脱硝触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a denitrification catalyst for selective reduction of nitrogen oxides (NOX) in exhaust gas with ammonia (NH3). Regarding catalysts.

従来技術およびその問題点 従来よりNH3還元選択脱硝触媒として、アナターゼ型
のチタニア(T102)に■20゜のような金属酸化物
を担持させた触媒が優れた性能を示すことが知られてい
る。この触媒は、粉状の触媒成分に適当な無機系バイン
ダーと水を加え、混合物をよく練り、混線物を適当な粒
径の粒状触媒に造粒するか、または適当な寸法のモノリ
シス触媒(第2図参照)に押し出し成型することによっ
て製造せられる。NH3による選択還元脱硝法において
は、触媒床におけるガス流通抵抗や、ダストによる触媒
床の目詰りなどを考慮すると、粒状触媒よりモノリシス
型の触媒の方が有利であるとされている。
Prior art and its problems It has been known that a catalyst in which a metal oxide such as ■20° is supported on anatase type titania (T102) exhibits excellent performance as an NH3 reduction selective denitrification catalyst. This catalyst can be prepared by adding an appropriate inorganic binder and water to the powdered catalyst components, kneading the mixture well, and granulating the mixed material into a granular catalyst of an appropriate particle size, or by preparing a monolithic catalyst (a granular catalyst of an appropriate size). It is manufactured by extrusion molding (see Figure 2). In the selective reduction denitrification method using NH3, a monolithic catalyst is said to be more advantageous than a granular catalyst in consideration of gas flow resistance in the catalyst bed and clogging of the catalyst bed due to dust.

しかしながら、アナターゼ型のTiO2は熱的安定性に
欠け、たとえば500〜600℃といった比較的低温に
おいても焼結による比表面積の低下や、触媒不活性のル
チル型結晶への転移などが起る。そのため、押し出し成
型後の焼結を充分に行なうことができず、モノリシス触
媒の機械的強度は非常に低い。したがって第2図に示す
モノリシス触媒において、高流速ガスに使用する目開き
(1)が大きい触媒では、壁厚(2)は一般に1+u+
以上を必要とし、また目開き(1)が小さい低流速用触
媒でも壁厚(2)は0゜5■以下にするのは困難である
とされている。
However, anatase-type TiO2 lacks thermal stability, and even at relatively low temperatures, such as 500 to 600° C., the specific surface area decreases due to sintering and transition to catalytically inactive rutile-type crystals occurs. Therefore, sintering after extrusion cannot be performed sufficiently, and the mechanical strength of the monolithic catalyst is extremely low. Therefore, in the monolithic catalyst shown in FIG. 2, the wall thickness (2) is generally 1 + u +
It is said that it is difficult to make the wall thickness (2) less than 0.5 mm even for a catalyst for low flow rate which requires the above-mentioned opening (1) and has a small opening (1).

さらにこの触媒は、その取扱いに注意を要し、触媒充填
作業の効率化を妨げるという問題も持っている。
Furthermore, this catalyst requires careful handling and has the problem of impeding efficiency in the catalyst filling operation.

以上の欠点を克服するために、金網またはメタルラス状
の金属で補強された板状触媒も提案されている。しかし
ながら、これは板厚が11前後と厚く、かつ製造コスト
が高くつくものであるため、押し出し成型によるモノリ
シス触媒と比べ、その有利性は疑わしい。さらに、この
触媒では、機械的強度を向上させるために触媒を極力緻
密な酸化物として形成する必要があるので、触媒細孔内
でのN0xSNH3などのガス拡散性が損なわれ、その
結果V2O5/TiO2系触媒本来の性能が発揮されて
いないきらいがある。
In order to overcome the above-mentioned drawbacks, plate-shaped catalysts reinforced with metal in the form of wire mesh or metal lath have also been proposed. However, this has a thick plate thickness of about 11 mm and is expensive to manufacture, so its advantage over a monolithic catalyst formed by extrusion molding is questionable. Furthermore, in order to improve the mechanical strength of this catalyst, it is necessary to form the catalyst as an extremely dense oxide, which impairs the diffusivity of gases such as N0xSNH3 within the catalyst pores, resulting in V2O5/TiO2 There is a tendency that the original performance of the catalyst system is not being demonstrated.

本発明者らは、先に、上記諸問題を解決する目的で、ガ
ラス繊維集合体(プレフォーム体)にT i 02微粉
を分散保持させることを特徴とする脱硝触媒を提案した
(特開昭55−155744号公報および特公昭58−
1976号公報参照)。しかしながら、この触媒では高
活性は得られるものの、新たにつぎのような問題が生じ
た。すなわち、 (1)ガラス繊維集合体に剛性を付与するために金属支
持板を使用する必要があり、 (2〉触媒の板厚が1ffi[5〜2)と厚くなり、(
3)激しい機械的衝撃によって触媒粉がわずかずつ剥落
して飛散する。
In order to solve the above-mentioned problems, the present inventors previously proposed a denitrification catalyst characterized by dispersing and retaining TiO2 fine powder in a glass fiber aggregate (preform) (Japanese Patent Application Laid-open No. Publication No. 55-155744 and Special Publication No. 58-
(See Publication No. 1976). However, although high activity can be obtained with this catalyst, the following new problems have arisen. That is, (1) it is necessary to use a metal support plate to impart rigidity to the glass fiber aggregate, (2) the plate thickness of the catalyst is as thick as 1ffi [5 to 2], and (
3) Catalyst powder flakes off little by little due to severe mechanical impact and scatters.

そこでさらに、本発明者らは、従来技術の上記の如き諸
問題をことごとく克服することができる触媒として、セ
ラミックスペーパーを用いた新規構造の脱硝触媒を、本
件と同時に提案した。この触媒は、セラミックスペーパ
ーにチタニアゾルを含浸させて乾燥および焼成し、得ら
れたチタニア保持ペーパーにバナジウム酸化物を担持さ
せて成るものである。この触媒は薄くて軽く、機械的強
度が大きく、′またT i 02のバインダー効果で同
ペーパーが硬化され、触媒に剛性が与えられて曲げ強度
が増大され、その結果機械的衝撃による粉落ちが少なく
され、さらに繊維間空隙によって触媒内部の反応ガスの
拡散性を確保して優れた活性を示すものである。
Therefore, the present inventors also proposed a denitrification catalyst with a novel structure using ceramic paper as a catalyst that can overcome all of the above-mentioned problems of the prior art. This catalyst is made by impregnating ceramic paper with titania sol, drying and firing, and supporting vanadium oxide on the titania-retaining paper obtained. This catalyst is thin and light, and has high mechanical strength. Also, the binder effect of T i 02 hardens the paper, giving rigidity to the catalyst and increasing its bending strength, resulting in less powder falling due to mechanical impact. Furthermore, the interfiber voids ensure the diffusivity of the reaction gas inside the catalyst and exhibit excellent activity.

この触媒では、その製造過程で、前処理としてセラミッ
クペーパーを低酸素雰囲気で加熱し、さらに含浸後に焼
成を行なうため、有機質バインダーは全て焼失・分解す
る。したがって、同バインダーの焼失後の触媒の強度は
、もっばらT i 02のバインダー効果に頼っている
。しかし、ゾルの乾燥によって得られるTiO2は比較
的強度に劣り、かつ繊維への固着性も低いので、それほ
ど強力なバインダー効果は示さない。
In the manufacturing process of this catalyst, the ceramic paper is heated in a low-oxygen atmosphere as a pretreatment, and then fired after impregnation, so that all the organic binder is burned out and decomposed. Therefore, the strength of the catalyst after the binder is burnt off depends mostly on the binder effect of T i 02. However, TiO2 obtained by drying the sol has relatively low strength and low adhesion to fibers, so it does not exhibit a very strong binder effect.

焼成を500〜600℃の温度で行なえば、TiO2の
強度が増しバインダー効果も向上するが、アナターゼ型
のTiO2は熱的安定性に欠け、上記の如き比較的低温
の加熱によっても比表面積の低下や、ルチル型結晶への
転移による触媒の不活性が起る。 この発明の目的は、
上述したセラミックスペーパー利用触媒の優れた諸特性
をそのまま保持し、しかも触媒の強度をさらに高めると
ともに、より薄(てより軽い脱硝触媒を提供することに
ある。
If firing is performed at a temperature of 500 to 600°C, the strength of TiO2 will increase and the binder effect will improve, but anatase-type TiO2 lacks thermal stability and its specific surface area decreases even when heated at a relatively low temperature as described above. Inactivation of the catalyst occurs due to the transition to rutile-type crystals. The purpose of this invention is to
The object of the present invention is to provide a thinner (and lighter) denitrification catalyst that maintains the excellent properties of the ceramic paper-based catalyst described above, further increases the strength of the catalyst, and is thinner (and lighter).

問題点の解決手段 この発明による脱硝触媒は、上記目的の達成のために、
シリカ・アルミナ系またはアルミナ系のセラミックスフ
ァイバーの抄紙によって製造されるセラミックスペーパ
ーに、チタニアゾルとシリカゾルの混合物を含浸させて
乾燥および焼成し、得られた固形物保持ペーパーにバナ
ジウム酸化物を担持させて成ることを特徴とする。
Means for Solving the Problems In order to achieve the above objectives, the denitrification catalyst according to the present invention has the following features:
Ceramic paper produced by silica-alumina or alumina ceramic fiber papermaking is impregnated with a mixture of titania sol and silica sol, dried and fired, and the resulting solid-retaining paper supports vanadium oxide. It is characterized by

(1)  この発明の脱硝触媒においては、セラミック
スペーパーへの含浸用ゾルとして、チタニアゾルとシリ
カゾルの混合物を使用する。
(1) In the denitration catalyst of the present invention, a mixture of titania sol and silica sol is used as the sol for impregnating ceramic paper.

セラミックスペーパーにチタニアゾルとシリカゾルの混
合物を含浸させて乾燥および焼成し、得られた固形物保
持ペーパーにバナジウム酸化物を担持させて成る触媒は
、含浸用ゾルとしてチタニアゾルのみを使用して得た触
媒に比べ、後述する実施例の耐振動試験で示すように耐
振動性の点で格段に優れているとともに、後述する実施
例の曲げ強度試験で示すように耐振動性の点で遜色がな
い。これは、セラミックスペーパー内でゾルが乾燥固化
するときに、混入されたシリカゾルが同ペーパーの表面
に固形物を比較的均一に形成せしめ、同表面に過大な粒
径の固形物が局在化するのを防ぐ効果を果たしているこ
とによるものと考えられる。
A catalyst obtained by impregnating ceramic paper with a mixture of titania sol and silica sol, drying and firing, and supporting vanadium oxide on the obtained solid-retaining paper is different from a catalyst obtained by using only titania sol as the impregnating sol. In comparison, it is significantly superior in terms of vibration resistance, as shown in the vibration resistance test of Examples to be described later, and is comparable in terms of vibration resistance, as shown in the bending strength test of Examples to be described later. This is because when the sol dries and solidifies within the ceramic paper, the mixed silica sol forms solids relatively uniformly on the surface of the paper, and solids with excessive particle sizes become localized on the surface. This is thought to be due to the fact that it has the effect of preventing

触媒の脱硝活性は、後述する実施例の活性試験結果から
明らかなように、5LO2の混入によって低下する傾向
にあるが、5102混入率=[SiO2混入率[SiO
2/(Ti02+SiO2混入率[SiO2)]X1O
Oが80重量%以下であれば、SiO2混入率[SiO
2の混入による影響はほとんどない。チタニアゾルとシ
リカゾルの混合比は、SiO2混入率[SiO2混入率
が通常は5〜16重量%、好ましくは7〜13重量%に
なるように設定される。
The denitrification activity of the catalyst tends to decrease with the inclusion of 5LO2, as is clear from the activity test results of Examples described later.
2/(Ti02+SiO2 mixing rate [SiO2)]X1O
If O is 80% by weight or less, the SiO2 contamination rate [SiO
There is almost no effect due to the contamination of 2. The mixing ratio of titania sol and silica sol is set so that the SiO2 mixing ratio [SiO2 mixing ratio is usually 5 to 16% by weight, preferably 7 to 13% by weight.

(2)  繊維プレフォーム体に触媒粉が分散保持せら
れる。
(2) Catalyst powder is dispersed and held in the fiber preform.

触媒活性を損なわず焼結作用によりv205/TiO2
系の板状触媒および/またはモノリシス触媒の強度を向
上させることは、原理的に無理があるので、何らかの繊
維質物質による補強を考える必要がある。この場合、触
媒粉と繊維を混練し、押し出し成型によりモノリシス触
媒を製作する方法(混線法)と、繊維集合物すなわち繊
維プレフォーム体に触媒粉を分散保持させる方法(繊維
プレフォーム法)が考えられる。 板状触媒では、板面
積当りの触媒量を増大するには混線法が優れているが、
混練法では触媒内部の反応ガスの拡散性が低く、触媒本
来の性能が発揮されない。また、繊維を混練したペース
トの押し出し成型性の関係で、板厚を0゜50!ffl
以下にするのは困難である。
v205/TiO2 due to sintering action without impairing catalytic activity
Since it is impossible in principle to improve the strength of the plate-shaped catalyst and/or monolithic catalyst in the system, it is necessary to consider reinforcement with some kind of fibrous material. In this case, two methods are considered: a method of kneading catalyst powder and fibers and producing a monolithic catalyst by extrusion molding (mixing wire method), and a method of dispersing and retaining catalyst powder in a fiber aggregate, that is, a fiber preform (fiber preform method). It will be done. For plate-shaped catalysts, the crosstalk method is excellent for increasing the amount of catalyst per plate area, but
In the kneading method, the diffusivity of the reaction gas inside the catalyst is low, and the catalyst's original performance cannot be demonstrated. Also, due to the extrusion moldability of the paste made by kneading the fibers, the board thickness was set to 0°50! ffl
It is difficult to do the following:

繊維プレフォーム法の場合、例えば反応温度が200℃
以上であれば、触媒粉は100g/m2以下でよく、ま
た、板厚は繊維プレフォーム体の厚さで定まり、0.1
5mm以上であれば自在に設定できる。したがって、繊
維プレフォーム法による触媒が有利である。
In the case of the fiber preform method, for example, the reaction temperature is 200°C.
If it is above, the catalyst powder may be 100 g/m2 or less, and the plate thickness is determined by the thickness of the fiber preform, and is 0.1
It can be freely set as long as it is 5 mm or more. Therefore, catalysts using the fiber preform method are advantageous.

(3)  繊維プレフォーム体としてはセラミックスペ
ーパーが使用される。
(3) Ceramic paper is used as the fiber preform.

極力薄くかつ高密度に繊維が集積しておりかつ繊維自身
の剛性がある程度期待できる繊維プレフォーム体として
は、ガラス繊維ペーパーとセラミックスペーパーがある
Glass fiber paper and ceramic paper are examples of fiber preform bodies in which fibers are accumulated as thinly as possible at a high density, and the fibers themselves can be expected to have a certain degree of rigidity.

ガラス繊維ペーパーは、一般にこれに対する無機質バイ
ンダーのバインダー効果が低く、ペーパーとしての強度
がセラミックスペーパーの強度と比べ低いので、セラミ
ックスペーパーの使用が望ましい。
Glass fiber paper generally has a low binder effect of an inorganic binder and its strength as a paper is lower than that of ceramic paper, so it is desirable to use ceramic paper.

無機質繊維をペーパーとして成型するには、繊維にバイ
ンダーを加える必要がある。バインダーとしては、有機
質バインダーは触媒の使用条件下で分解および/または
燃焼しその効果を失うので、原則的には無機質バインダ
ーを使用するのが好ましい。
In order to mold inorganic fibers into paper, it is necessary to add a binder to the fibers. As a binder, it is generally preferable to use an inorganic binder, since organic binders decompose and/or burn under the conditions in which the catalyst is used and lose their effectiveness.

(4)  TiO2粉またはこれを含む触媒粉を無機質
繊維ペーパーに保持させるには、ゾル含浸法が適用され
る。
(4) A sol impregnation method is applied to hold TiO2 powder or catalyst powder containing the same in inorganic fiber paper.

無機質繊維ペーパーに触媒粉を保持させる方法としては
、TiO2コロイドゾルを含浸させる方法(ゾル含浸法
)と、抄紙段階においてT i 02粉またはこれにv
206を担持させた触媒粉を漉き込む方法(触媒粉漉き
込み法)とが考えられる。ゾル含浸法でT i 02を
保持させた場合、セラミックス繊維は、TlO2との接
触性がガラス繊維とTiO2との接着性と比べ良好であ
り、ガラス繊維ペーパー使用の場合と比べ触媒の粉落ち
量が少ない特徴を示す。
Methods for retaining catalyst powder in inorganic fiber paper include a method of impregnating TiO2 colloidal sol (sol impregnation method), and a method of impregnating TiO2 colloidal sol with TiO2 powder or V
A method of straining catalyst powder carrying 206 (catalyst powder straining method) is considered. When TiO2 is retained by the sol impregnation method, ceramic fibers have better contact with TlO2 than the adhesion between glass fibers and TiO2, and the amount of catalyst powder falling off is lower than when glass fiber paper is used. Shows characteristics with less.

セラミックスペーパーを使用する場合、ゾル含浸法によ
りT i O2を保持させると、保持されたT i 0
2はバインダーとしての効果を示し、板状触媒としての
剛性とくに曲げ強度が向上するので、触媒粉漬込み法と
比べ有利である。
When using ceramic paper, if T i O2 is retained by the sol impregnation method, the retained T i O
No. 2 exhibits an effect as a binder and improves the rigidity, especially the bending strength, of a plate-shaped catalyst, so it is advantageous compared to the catalyst powder immersion method.

このようにして製造された触媒は、触媒内部の反応成分
の拡散性が高く、触媒粉が本来の性能を発揮できるので
、押し出し成型法による従来のモノリシス触媒と比べ活
性が高い。また、触媒厚さを0.1■程度にまで薄肉化
できる。
The catalyst produced in this way has high activity due to the high diffusivity of the reaction components inside the catalyst and the ability of the catalyst powder to exhibit its original performance, compared to conventional monolithic catalysts produced by extrusion molding. Further, the thickness of the catalyst can be reduced to about 0.1 cm.

したがって、この触媒は、体積当りの触媒表面禎を一定
とした場合、従来のV2O6/TiO2系モノリシス触
媒と比べ、空隙率が高く、したがってガス流通抵抗が低
いという特徴を示す。
Therefore, when the catalyst surface density per volume is constant, this catalyst exhibits characteristics of higher porosity and lower gas flow resistance than conventional V2O6/TiO2-based monolithic catalysts.

(5)  予めセラミックスベーパーを低酸素雰囲気で
加熱処理するのが好ましい。
(5) It is preferable to heat-treat the ceramic vapor in a low oxygen atmosphere in advance.

触媒の剛性を高めるには、セラミックスペーパーとして
高密度のものを使用する必要がある。
In order to increase the rigidity of the catalyst, it is necessary to use a high-density ceramic paper.

高密度のセラミックスペーパーは一般に有機バインダー
と無機質バインダーを併用して抄紙されている。このよ
うなペーパーにゾル含浸法を施す場合、T i 02お
よびSiO2混入率[SiO2と繊維との同行性を改善
する目的で、ゾルの含浸の前に、低酸素雰囲気でペーパ
ーを加熱し、繊維表面の有機質バインダーを炭化除去し
ておくのが好ましい。この場合、酸素が5%以上存在す
ると有機質バインダーが完全に除去され、ペーパーとし
ての強度がはなはだしく低下する。また酸素が全く存在
しないと、繊維表面に炭素が多量に残留し、密着性が改
善できない。したがって、酸素濃度1〜5%でセラミッ
クスペーパーを加熱することが望ましい。加熱条件は3
00〜500℃で0.5〜4時間、好ましくは350〜
400℃で2〜3時間である。
High-density ceramic paper is generally made using a combination of an organic binder and an inorganic binder. When applying the sol impregnation method to such paper, the mixing rate of T i 02 and SiO2 [in order to improve the compatibility between SiO2 and the fibers, the paper is heated in a low oxygen atmosphere before impregnating with the sol, and the fibers are It is preferable to carbonize and remove the organic binder on the surface. In this case, if 5% or more of oxygen is present, the organic binder is completely removed and the strength of the paper is significantly reduced. Furthermore, if no oxygen is present, a large amount of carbon remains on the fiber surface, making it impossible to improve adhesion. Therefore, it is desirable to heat the ceramic paper at an oxygen concentration of 1 to 5%. Heating conditions are 3
00~500℃ for 0.5~4 hours, preferably 350~
The temperature is 400°C for 2 to 3 hours.

T i 02としては、硫酸チタン、四塩化チタン、テ
トラプロピルチタネート等のチタン塩の加水分解により
形成したアナターゼ型T i 02が好ましい。こうし
て形成したT i 02は1000Å以上の大きな細孔
を多く有しているため、粉体内での反応ガスの拡散速度
が大きい。
As T i 02, anatase type T i 02 formed by hydrolysis of titanium salts such as titanium sulfate, titanium tetrachloride, and tetrapropyl titanate is preferable. Since the T i 02 thus formed has many large pores of 1000 Å or more, the diffusion rate of the reaction gas within the powder is high.

チタン分はセラミックスベーパー表面1m2当りTiO
2として20〜300g、好ましくは30〜200g含
ませられている。
Titanium content is TiO per 1 m2 of ceramic vapor surface.
2 is contained in an amount of 20 to 300 g, preferably 30 to 200 g.

シリカゾルとしては市販のものが使用できる。Commercially available silica sol can be used.

バナジウム酸化物は、たとえば、セラミックスペーパー
にメタバナジン酸アンモン溶液を含浸させ、乾燥および
焼成することによってセラミックスペーパーに担持され
る。バナジウム酸化物の前駆物質は上記のものに限定さ
れない。
Vanadium oxide is supported on ceramic paper, for example, by impregnating ceramic paper with an ammonium metavanadate solution, drying and firing. The vanadium oxide precursor is not limited to those mentioned above.

発明の効果 この発明による脱硝触媒は、セラミックスペーパーへの
チタニアゾルとシリカゾルの混合物の含浸によって同ペ
ーパーにTiO2とSiO2を保持させ、得られた固形
物保持ベーパーにバナジウム酸化物を担持させて成るも
のであるので、セラミックスペーパーの使用によって触
媒の厚みを著しく薄くすることができるとともに、機械
的強度を大巾に増大させることができる。また、チタニ
アゾルとシリカゾルの混合物の使用によってセラミック
スペーパーの繊維にTiO2を強固に固芒させることが
できる。したがって、TiO2のバインダー効果で同ベ
ーパーを硬化させ、触媒に剛性を与えて曲げ強度を増大
させることができる。その結果、機械的衝撃による粉落
ちを極力少なくすることができる。さらにセラミックス
ペーパーを構成する繊維の繊維間空隙によって、触媒内
部の反応ガスの拡散性を確保し、本書冒頭で述べた従来
のV2O5/TiO2系脱硝触媒に比べ、高い活性を示
すことかできる。
Effects of the Invention The denitrification catalyst according to the present invention is made by impregnating ceramic paper with a mixture of titania sol and silica sol to retain TiO2 and SiO2, and allowing the resulting solid-retaining vapor to support vanadium oxide. Therefore, by using ceramic paper, the thickness of the catalyst can be significantly reduced, and the mechanical strength can be greatly increased. Further, by using a mixture of titania sol and silica sol, TiO2 can be firmly attached to the fibers of ceramic paper. Therefore, the binder effect of TiO2 can harden the vapor, impart rigidity to the catalyst, and increase bending strength. As a result, powder falling due to mechanical impact can be minimized. Furthermore, the interfiber voids in the fibers constituting the ceramic paper ensure the diffusivity of the reaction gas inside the catalyst, allowing it to exhibit higher activity than the conventional V2O5/TiO2-based denitrification catalyst mentioned at the beginning of this book.

実  施  例 つぎに、この発明の実施例を比較例とともに示す。Example Next, examples of the present invention will be shown together with comparative examples.

実施例 a、触媒の調製 表1に示す仕様の3種類のセラミックスペーパー(A)
 (13) (C)を、3%の酸素と残N2との混合ガ
スで400℃2時間焼成1.た。ついで表2に示す各種
混合比のチタニアゾル(T i 02分−333重丸、
pH−3〜4)とシリカゾル(Si02分−20重量%
、pH−6〜7)との混合物に、セラミックスペーパー
をそれぞれ浸漬し、120℃で乾燥し、300℃で3時
間焼成した。こうしてセラミックスペーパーニTiO2
とSiO2混入率[SiO2の固形物を保持させた。固
形物の保持量は混合液を純水で希釈することによって調
整した。
Example a, catalyst preparation Three types of ceramic papers (A) with specifications shown in Table 1
(13) Calcining (C) at 400°C for 2 hours in a mixed gas of 3% oxygen and residual N2 1. Ta. Next, titania sol (T i 02 min-333 Juumaru,
pH-3~4) and silica sol (Si02min-20% by weight)
, pH-6 to 7), dried at 120°C, and fired at 300°C for 3 hours. In this way, ceramic paper nitride TiO2
and SiO2 mixing rate [SiO2 solids were retained. The amount of solid matter retained was adjusted by diluting the mixed solution with pure water.

つぎにTlO2とSiO2混入率[SiO2を保持した
セラミックスペーパーをメタバナジン酸アンモンの室温
飽和溶液中にそれぞれ8時間浸漬し、120℃で乾燥し
、300℃で3時間焼成した。こうして表2に示す98
類ノV20S / T i 02 系触媒を得た。
Next, the ceramic paper holding the TlO2 and SiO2 mixing ratio [SiO2] was immersed in a saturated solution of ammonium metavanadate at room temperature for 8 hours, dried at 120°C, and fired at 300°C for 3 hours. Thus, 98 shown in Table 2
A similar V20S/T i 02 type catalyst was obtained.

b、it振動性 上記の如く調製した各触媒について、第1図に示す耐振
動試験機を用いて振動による触媒の粉落ち量を測定した
。同試験機は箱体(3)と、この上に水平に配置された
厚さ0.81のステンレス鋼製の振動板(4)と、この
上面に設けられた60Hzの加振機(5)とより構成さ
れており、供試触媒(6)は振動板(4)の下面に両面
接着テープで固着されている。
b. Vibration properties For each of the catalysts prepared as described above, the amount of catalyst powder falling off due to vibration was measured using the vibration resistance tester shown in FIG. The testing machine consists of a box body (3), a stainless steel diaphragm (4) with a thickness of 0.81 placed horizontally on the box body (3), and a 60Hz vibration exciter (5) installed on the top surface of the box body (3). The test catalyst (6) is fixed to the lower surface of the diaphragm (4) with double-sided adhesive tape.

積算粉落ち量のΔ11定結果を表2に示す。同表から明
らかなように、含浸用ゾルとしてチタニアゾルとシリカ
ゾルの混合物を使用して得た触媒は、チタニアゾルのみ
を使用して得た触媒に比べ、激しい振動に対しても粉落
ち量が著しく少なく、耐振動性の点で格段に優れている
Table 2 shows the Δ11 constant results of the cumulative amount of powder falling. As is clear from the same table, the catalyst obtained using a mixture of titania sol and silica sol as the impregnating sol shows significantly less powder falling off even when subjected to severe vibration, compared to the catalyst obtained using only titania sol. , which is extremely superior in terms of vibration resistance.

(以下余白) 表1 表2 C1曲げ強度 上記表1のセラミックスペーパー (A)(B)を用い
かつ上述した方法に従って、T i 02保持量の異な
る多種類の触媒と、SiO2混入率[SiO2混人率1
0重量%で固形物保持量の異なる多種類の触媒とをそれ
ぞれ調製した。これら触媒について支点間距離20mm
で3点曲げ試験を行ない、次式に従って曲げ強度を計測
した。
(Leaving space below) Table 1 Table 2 C1 Bending strength Using the ceramic papers (A) and (B) in Table 1 above and following the method described above, various catalysts with different retention amounts of T i 02 and SiO2 mixing ratio [SiO2 mixing Person rate 1
Various types of catalysts with different solid content retention amounts were prepared at 0% by weight. For these catalysts, the distance between fulcrums is 20 mm.
A three-point bending test was conducted, and the bending strength was measured according to the following formula.

曲げ強度(kgl/m++m) −[3X破断荷重Ck
gf )×支点間距離(IIIll)] /[2X試験片幅(nm)X試験片厚さ(■)]固形物
保持量と曲げ強度の関係を第3図のグラフに示す。同グ
ラフから明らかなように、含浸用ゾルとしてチタニアゾ
ルとシリカゾルの混合物を使用して得た触媒は、チタニ
アゾルのみを使用して得た触媒に比べ、耐振動性の点で
全く遜色がない。
Bending strength (kgl/m++m) - [3X breaking load Ck
gf )×distance between fulcrums (IIIll)]/[2×test piece width (nm)×test piece thickness (■)] The relationship between solids retention and bending strength is shown in the graph of FIG. As is clear from the same graph, the catalyst obtained using a mixture of titania sol and silica sol as the impregnating sol is comparable in terms of vibration resistance to the catalyst obtained using only titania sol.

d、SiO2混入率[SiO2の混入率と触媒活性上記
表1のセラミックスペーパー(B)を用いかつ上述した
方法に従って、SiO2混入率[SiO2混入率および
固形物保持量の異なる多種類の触媒とをそれぞれ調製し
た。これら触媒について、内径1インチのステンレス製
流通型反応管を用いてそれぞれ活性試験を行なった。
d. SiO2 mixing rate [SiO2 mixing rate and catalytic activity Using the ceramic paper (B) in Table 1 above and according to the method described above, SiO2 mixing rate [SiO2 mixing rate and various types of catalysts with different solid content retention] were determined. Each was prepared. Activity tests were conducted on each of these catalysts using a stainless steel flow-through reaction tube with an inner diameter of 1 inch.

すなわち触媒を上記反応管に充填して固定し、ついで反
応温度を所定値に制御して、容量で、入口NNOx−5
0pp 、酸素−15%、水蒸気−10%の組成の試験
用調製排ガスの反応管に流した。面積速度(A −V)
すなわち触媒の幾何表面積(m2)当りの通ガス流量(
8m3/時)を43m/時トシ、* f: N H3比
(入口N H3a度ppm /出口NH31度ppm 
)を1.2とし、入口NH3濃度は60 ppmとした
That is, the catalyst is filled and fixed in the reaction tube, and then the reaction temperature is controlled to a predetermined value, and the inlet NNOx-5 is
A prepared exhaust gas for testing having a composition of 0pp, -15% oxygen, and -10% water vapor was flowed into the reaction tube. Area velocity (A-V)
In other words, the gas flow rate per geometric surface area (m2) of the catalyst (
8m3/hour) to 43m/hour, * f: NH3 ratio (inlet NH3a degrees ppm / outlet NH31 degrees ppm
) was set to 1.2, and the inlet NH3 concentration was set to 60 ppm.

各触媒について、温度150℃、200℃および300
℃における脱硝率−[(入ロNOx濃度ppm=出ロN
Ox濃度1)I)11 ) /入口NOx濃度pl)m
]X100を求めた。得られた脱硝率を表3に示す。ま
た、SiO2の混入率と触媒活性の関係を第4図のグラ
フに示し、SiO2混入率[SiO2混入率[S io
2/ (Ti02 +S 102)コ×100と触媒活
性の関係を第5図のグラフに示す。
For each catalyst, the temperature was 150°C, 200°C and 300°C.
Denitrification rate at °C - [(Input NOx concentration ppm = Output N
Ox concentration 1) I) 11) / Inlet NOx concentration pl) m
]X100 was calculated. Table 3 shows the obtained denitrification rates. In addition, the relationship between the SiO2 mixing rate and the catalyst activity is shown in the graph of Fig. 4.
The relationship between 2/(Ti02 +S 102) x 100 and catalyst activity is shown in the graph of FIG.

(以下余白) 表 上記表およびグラフから明らかなように、触媒の脱硝活
性は、SiO2混入率[SiO2の混入によって低下す
る傾向があるが、SiO2混入率[SiO2混入率が8
0重置火以下であれば、SiO2混入率[SiO2の混
入による影響はほとんどない。
(Margins below) Table As is clear from the above table and graph, the denitrification activity of the catalyst tends to decrease depending on the SiO2 contamination rate [SiO2 contamination rate];
If the temperature is less than 0, the SiO2 contamination rate [SiO2 contamination has almost no effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐振動試験機の垂直断面図、第2図は従来のモ
ノリシス型触媒の部分斜視図、第3図は固形物保持量と
曲げ強度の関係を示すグラフ、第4図はSiO2混入率
[SiO2混入率と脱硝率の関係を示すグラフ、第5図
は固形物保持量と脱硝率の関係を示すグラフである。 以上 特許出願人  日立造船株式会社 第1図 第2図 第4図 固わ物但杓”fL (9/m2) 第3図 固訃外禅持量(Cl/m2) 第5図
Figure 1 is a vertical cross-sectional view of a vibration resistance tester, Figure 2 is a partial perspective view of a conventional monolithic catalyst, Figure 3 is a graph showing the relationship between solids retention and bending strength, and Figure 4 is a graph showing the relationship between SiO2 mixture. Figure 5 is a graph showing the relationship between the amount of retained solids and the denitrification rate. Applicant for the above patents: Hitachi Zosen Corporation Figure 1 Figure 2 Figure 4 Figure 4 "fL (9/m2) Figure 3 Cl/m2 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)シリカ・アルミナ系またはアルミナ系のセラミッ
クスファイバーの抄紙によって製造されるセラミックス
ペーパーに、チタニアゾルとシリカゾルの混合物を含浸
させて乾燥および焼成し、得られた固形物保持ペーパー
にバナジウム酸化物を担持させて成ることを特徴とする
、セラミックスペーパーを用いた脱硝触媒。
(1) Ceramic paper produced by silica-alumina-based or alumina-based ceramic fiber papermaking is impregnated with a mixture of titania sol and silica sol, dried and fired, and the resulting solid-retaining paper supports vanadium oxide. A denitrification catalyst using ceramic paper, which is characterized by the following:
(2)チタニアゾルとシリカゾルの混合比を、SiO_
2混入率[SiO_2/(TiO_2+SiO_2)]
×100が80%重量以下、通常は5〜16重量%、好
ましくは7〜13重量%になるように設定することを特
徴とする、請求項1記載の脱硝触媒。
(2) Change the mixing ratio of titania sol and silica sol to SiO_
2 mixing rate [SiO_2/(TiO_2+SiO_2)]
The denitration catalyst according to claim 1, characterized in that x100 is set to 80% by weight or less, usually 5 to 16% by weight, preferably 7 to 13% by weight.
JP1007152A 1989-01-14 1989-01-14 Method for producing denitration catalyst using ceramics paper Expired - Lifetime JPH0722709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007152A JPH0722709B2 (en) 1989-01-14 1989-01-14 Method for producing denitration catalyst using ceramics paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007152A JPH0722709B2 (en) 1989-01-14 1989-01-14 Method for producing denitration catalyst using ceramics paper

Publications (2)

Publication Number Publication Date
JPH02187147A true JPH02187147A (en) 1990-07-23
JPH0722709B2 JPH0722709B2 (en) 1995-03-15

Family

ID=11658097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007152A Expired - Lifetime JPH0722709B2 (en) 1989-01-14 1989-01-14 Method for producing denitration catalyst using ceramics paper

Country Status (1)

Country Link
JP (1) JPH0722709B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108538A (en) * 1990-08-27 1992-04-09 Hitachi Zosen Corp Denitrification catalyst
EP1099834A2 (en) 1999-11-12 2001-05-16 Nichias Corporation Honeycomb structure
CN100340718C (en) * 2005-09-22 2007-10-03 西安交通大学 Method for preparing ceramic paper
JP2008155132A (en) * 2006-12-25 2008-07-10 Hitachi Zosen Corp Manufacturing method of denitration catalyst
JP2015093224A (en) * 2013-11-11 2015-05-18 群馬県 Active metal catalyst supported on fiber sheet substrate, and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072311B1 (en) 1999-07-29 2004-09-22 Sumitomo Chemical Company, Limited Heat resistant catalyst sheet and process for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344431A (en) * 1976-10-06 1978-04-21 Mitsui Mining & Smelting Co Machine for casting anode plate
JPS56139139A (en) * 1980-04-02 1981-10-30 Sakai Chem Ind Co Ltd Carrier or catalyst
JPS6075336A (en) * 1983-10-01 1985-04-27 Sakai Chem Ind Co Ltd Preparation of catalyst structure for reducing nitrogen oxides
JPS60190235A (en) * 1984-03-12 1985-09-27 Matsushita Electric Ind Co Ltd Catalyst for burning fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344431A (en) * 1976-10-06 1978-04-21 Mitsui Mining & Smelting Co Machine for casting anode plate
JPS56139139A (en) * 1980-04-02 1981-10-30 Sakai Chem Ind Co Ltd Carrier or catalyst
JPS6075336A (en) * 1983-10-01 1985-04-27 Sakai Chem Ind Co Ltd Preparation of catalyst structure for reducing nitrogen oxides
JPS60190235A (en) * 1984-03-12 1985-09-27 Matsushita Electric Ind Co Ltd Catalyst for burning fuel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108538A (en) * 1990-08-27 1992-04-09 Hitachi Zosen Corp Denitrification catalyst
EP1099834A2 (en) 1999-11-12 2001-05-16 Nichias Corporation Honeycomb structure
US6524680B1 (en) 1999-11-12 2003-02-25 Nichias Corporation Honeycomb structure
CN100340718C (en) * 2005-09-22 2007-10-03 西安交通大学 Method for preparing ceramic paper
JP2008155132A (en) * 2006-12-25 2008-07-10 Hitachi Zosen Corp Manufacturing method of denitration catalyst
JP2015093224A (en) * 2013-11-11 2015-05-18 群馬県 Active metal catalyst supported on fiber sheet substrate, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0722709B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US7740819B2 (en) Process for purification of exhaust gases and catalyst used for purification of exhaust gases in this process
US4749671A (en) Exhaust gas cleaning catalyst and process for production thereof
RU2393014C2 (en) Crust catalyst specifically designed for oxidising methanol to formaldehyde and method of preparing said catalyst
JP5103386B2 (en) Improved high selective oxidation catalyst containing platinum, copper and iron
RU2664905C2 (en) Methods of selective catalytic recovery with use of doped ceria (iv) oxides
JP2016504183A (en) Ammonia oxidation catalyst
KR20090108109A (en) Gas catalysts comprising porous wall honeycombs
EP1793929A1 (en) Catalytically active porous element
US8388898B2 (en) Ceramic filter element
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
CN102076628A (en) Method for making porous acicular mullite bodies
JP2020500098A (en) Catalyst article
KR20220010744A (en) Ammonia Oxidation Catalyst for Diesel Applications
JP2020500097A (en) Catalyst article
US5580533A (en) Catalyst and process for purifying diesel exhaust gases
JPH02187147A (en) Denitration catalyst with ceramic paper utilized therefor
US20050159304A1 (en) High temperature denitrification catalyst and method for preparation thereof
JPS63143941A (en) Catalyst for nitrogen oxide removal
CA1066685A (en) Catalysts and methods of decomposing nitrogen oxides
JP5022697B2 (en) Method for producing denitration catalyst
Zwinkels et al. Preparation of combustion catalysts by wash coating alumina whiskers-covered metal monoliths using a sol-gel method
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JPH02187146A (en) Denitration catalyst with ceramic paper utilized therefor
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP2009172522A (en) Catalyst and its manufacturing method