JPS6350305B2 - - Google Patents

Info

Publication number
JPS6350305B2
JPS6350305B2 JP58242949A JP24294983A JPS6350305B2 JP S6350305 B2 JPS6350305 B2 JP S6350305B2 JP 58242949 A JP58242949 A JP 58242949A JP 24294983 A JP24294983 A JP 24294983A JP S6350305 B2 JPS6350305 B2 JP S6350305B2
Authority
JP
Japan
Prior art keywords
sample
mol
samples
temperature
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58242949A
Other languages
Japanese (ja)
Other versions
JPS60137867A (en
Inventor
Nobuyuki Nishimura
Masami Fukui
Nobutate Yamaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP58242949A priority Critical patent/JPS60137867A/en
Publication of JPS60137867A publication Critical patent/JPS60137867A/en
Publication of JPS6350305B2 publication Critical patent/JPS6350305B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、回路基板用の絶縁材料となる磁器組
成物、特に多層回路基板用の絶縁材料として最適
な磁器組成物に関する。 電子回路の高集積化が要求される今日、回路基
板は、益々多層化、小型化、薄型化されて高密度
化が図られる傾向にある。こうした中で高い信頼
性を得るため、多層回路基板は、高い絶縁性と高
い抗折強度並びに熱膨張係数の可及的小さいもの
が望まれている。 これまで多層回路基板用の絶縁磁器材料として
は、絶縁性の良好なアルミナ磁器が主として使用
されているが、このアルミナ磁器、焼結温度が
1500〜1600℃と高温である。このため、予め磁器
シートの表面に配線用の導電材料を印刷し、これ
を磁器の焼結と同時に焼成するといつた方法が採
られる多層回路基板の製造においては、上記導電
材料として専らW,Mo,Pt等の高融点材料を使
用する必要があり、これが上記基板のコストを高
める要因となつている。 換言すると、多層回路基板について上記導電材
料の面からコストの低減を図るには、同材料とし
てNi等の金属材料を使用することが必要であり、
それには、非酸化雰囲気中において1300℃以下と
いう比較的低い温度で焼結可能な絶縁磁器材料が
要求される。 本発明は、従来の磁器材料における上記問題を
解決すべくなされたものであつて、非酸化雰囲気
において1300℃以下の温度で焼結させることがで
き、しかも多層回路基板用材料として必要とされ
る諸特性を供えた絶縁磁器組成物を提供すること
を目的としたものである。 本発明による磁器組成物は、MgOを1〜
61.5mol%、ZrO2を1〜45.5mol%、BaO,SrO,
CaO,ZnOの少なくとも1種からなる酸化物を5
〜45mol%,SiO2を31.3〜66.6mol%の比率で含
有させた混合物を焼結させたものである。 以下、本発明の実施例として配合の異なる複数
の磁器組成物から試料を作製し、それぞれについ
て実施した試験の結果等について説明する。 別表における試料1は、同表に記載の通り、
SiO2を55.1mol%,CaO2を11.4mol%,MgOを
25.2mol%,ZrO2を8.3mol%含有する磁器組成物
から作製された試料である。先ずこの作製方法に
ついて説明すると、最初にSiO2粉末を50.9g,
CaCO3粉末を17.6g,MgO粉末を15.7g,ZrO粉末
を15.8g宛秤量し、これらをアルミナボールと共
に約15時間ボールミリングすることにより、湿式
混合した。 次いでこの混合物を脱水乾燥した後、空気中に
おいて約850℃の温度で約2時間仮焼成を行つた。
その後アルミナボールと共に湿式撹拌して粉砕
し、仮焼材料を作製した。次ぎにバインダとして
同材料に対し20wt%のポリビニルアルコールを
加えて混合造粒し、これを1000Kg/cm2の圧力で板
状に加圧成形した。次ぎにこれを炉に入れ、空気
中において600℃まで毎時100℃の割合で昇温し、
ポリビニルアルコールを燃焼させた。しかる後炉
の中をN2が97.0vol%、H2が3.0vol%の還元雰囲
気に変えて、1200℃の温度を3時間維持して焼成
し、試料1を得た。このときの焼結温度FTを別
表に示した。なお、試料は、試験の目的に従い、
直径1.6cm、厚さ0.1cmの円板形のものと、長さ2
cm、幅1cm、厚さ0.2cmの角板形のものをそれぞ
れ作製した。 この試料1については、次の方法により試験を
行つた。先ず、電気的特性については、上記円板
形の試料を用い、この両主面にインジウム―ガリ
ウム合金を塗布して直径1.4cmの電極を設け、比
誘電率ε,Q(quality factor)及び抵抗率ρ(Ω
cm)を測定した。この内、抵抗率ρのみを別表に
示した。なお比誘電率εは、1MHzの周波数で測
定した電気容量により算出し、Qは、上記電気容
量と同時に測定した。また抵抗率ρは、100Vの
直流電圧の印加開始から30秒後の絶縁抵抗を測定
し、この結果から算出した。 物理的、機械的特性については、上記角板形の
試料を用い、熱膨張係数α(/℃)及び抗折強度
τ(Kg/cm2)を測定した。熱膨張係数αは、20〜
500℃の温度間における線膨張係数を測定し、抗
折強度τは、支点間距離l=0.7cmの条件で破壊
強度P(Kg)を測定し、τ=3Pl/2wt2(Kg/cm2
の式により求めた。但しwは試料の幅(cm)、t
は試料の厚さ(cm)である。 以下、試料2〜30についても、上記各磁器材料
がそれぞれ別表の各欄に示すような含有比率とな
るようそれら粉末を調合し、試料1と同じ方法及
び条件(但し焼成温度は各々異なる)で作製し
た。このときの各試料の焼成温度FTを別表の各
欄に示した。またこうして作られた各試料につい
て、試料1と同じ方法、条件で上記諸特性を測定
し、この内、各試料の抵抗率ρのみをそれぞれ別
表に示した。同表から明らかな通り、これら各試
料は何れも焼結温度FTが1300℃以下、抵抗率ρ
が1×1013Ωcm以上であつた。 これに対し、上記の含有比率の要件を満たさな
い磁器材料を使用し、上記試料と同じ方法及び条
件(但し焼成温度は各々異なる)で31〜38番まで
8つの試料を作製した。このときの焼成温度FT
を別表に示した。またこれらについても上記試料
と同じ方法、条件で諸特性を測定し、この内、各
試料の抵抗率ρのみを別表に示した。同表から明
らかな通り、これら試料は、焼結温度FTが1300
℃以下、抵抗率ρが1×1013以上という上記の条
件の何れかを満足していないか、または焼結がで
きなかつたものである。 こうした結果は、各磁器材料の有する作用が特
に前者のグループの試料において相乗的に発揮さ
れたことにより得られたものであるが、これら各
磁器材料の一般的作用とこれに対応する試験結果
等について述べると、次の通りである。 (1) SiO2の含有量が少ないと焼結温度が高くな
り、逆に多過ぎても焼結温度が高くなり、しか
も絶縁性が低下する。試料1〜30の中でこの含
有量が31.3mol%と最も少ないのは、試料17で
あるが、同試料が1300℃で焼結できたのに対
し、これより少ない20.0mol%の含有量を持つ
試料31では、焼結に1400℃の温度を要した。一
方、試料1〜30の中でこの含有量が60.8〜
66.6mol%と比較的多いのは、2,4,7,10
及び11といつた試料であるが、これらが何れも
1200℃以下の温度で焼結できたのに対し、これ
より多い75.0mol%の含有量を持つ試料32で
は、焼結に1450℃の温度を要した。しかも抵抗
率ρが前者は、5×1013Ωcm以上あつたのに対
し、後者は、1011Ωcmと低くかつた。 (2) CaO、SrO,BaO,ZrOからなる酸化物の含
有量が少ないと焼結温度が高くなり、またこれ
が多過ぎると焼結可能な温度の幅が狭くなり、
焼結が困難になる。試料1〜30の中で5.0mol
%とこれら酸化物が最も少ないのは、試料16〜
18であるが、これらが何れも1300℃以下の温度
で焼結できたのに対し、これよりさらに少ない
3.0mol%の含有量を持つ試料33では、焼結に
1450℃の温度を要した。また試料1〜30の中で
これら酸化物を41.8〜45.0mol%と比較的多く
含むのは、試料19〜21であるが、これらが1100
℃以下の温度で焼結できたのに対し、これより
のさらに多い45.0mol%という含有量を持つ試
料34では、焼結可能な温度の幅が狭く、工業化
に適さなかつた。 (3) MgOの含有量が少ないと焼結可能な温度の
幅が狭くなり、また多過ぎると焼成温度が高く
なり、しかも絶縁性が低下する。試料1〜30の
中で1.0mol%とMgOが最も少ないのは、試料
18,21及び25であるが、これら試料が何れも
1300℃以下の温度で焼結できたのに対し、これ
よりさらに少ない0.1mol%という含有量を持
つ試料35では、焼結可能な温度の幅が狭いた
め、工業化に適さなかつた。一方、試料1〜30
の中で61.5mol%とMgOを最も多く含むのは試
料17であるが、同試料を62.7mol%とこれ以上
のMgOを含む試料36と比較すると、前者が
1300℃で焼結することができたのに対し、後者
は焼結に1350℃の温度を要した。しかも、前者
の抵抗率ρが、1013Ωcmあつたのに対し、後者
の抵抗率ρは、1011Ωcmと低かつた。 (4) ZrO2の含有量が少ないと絶縁性が低下し、
逆にこれが多過ぎると焼結温度が高くなる。試
料1〜30の中で1.0mol%と最もこの含有量が
少ないのは、試料16,19であるが、これらの抵
抗率ρが何れも1013Ωcm以上あつたのに対し、
これよりさらに少ない0.1mol%という含有量
を持つ試料37の抵抗率ρは、1011Ωcmと低かつ
た。また試料1〜30の中でこの含有量が
45.5mol%と最も多い試料18と、さらにこれ以
上の47.0mol%という含有量を持つ試料38を比
較すると、前者が1300℃で焼結できたのに対
し、後者は焼結に1350℃の温度を要した。 なお、試料1〜30は何れも比誘電率εが9以
下、Qが500以上、熱膨張係数αが8.0×10-6
℃以下、抗折強度が1000Kg/cm2以上と、絶縁性
以外の特性においても多層回路基板として実用
的な数値を得ることができた。これらの詳細な
数値の掲載は省略する。 以上のように本発明による磁器組成物は、非酸
化雰囲気中において1300℃以下の温度で焼結させ
ることができる。従つて、回路配線用の導電材料
としてNI等の金属を使用して多層回路基板を製
造することができるようになり、配線用導電材料
の面からコストの低減を図ることができる。しか
もこうした条件による焼成によつても、多層回路
基板材料として必要とされる特性を得ることがで
き、特に、高い絶縁性が得られることから、配線
の高密度化に対応することができる。
The present invention relates to a ceramic composition that is an insulating material for circuit boards, and particularly to a ceramic composition that is optimal as an insulating material for multilayer circuit boards. In today's world where electronic circuits are required to be highly integrated, circuit boards tend to become more multi-layered, smaller, thinner, and more dense. In order to obtain high reliability under these circumstances, multilayer circuit boards are desired to have high insulation properties, high bending strength, and a coefficient of thermal expansion as small as possible. Until now, alumina porcelain with good insulation has been mainly used as an insulating porcelain material for multilayer circuit boards, but this alumina porcelain has a low sintering temperature.
The temperature is 1500-1600℃. For this reason, in the production of multilayer circuit boards, in which a conductive material for wiring is printed on the surface of a porcelain sheet in advance and then fired at the same time as the porcelain is sintered, W, Mo, etc. are used as the conductive material. , Pt, or other high melting point materials, which is a factor that increases the cost of the above-mentioned substrate. In other words, in order to reduce the cost of the multilayer circuit board from the viewpoint of the conductive material, it is necessary to use a metal material such as Ni as the conductive material.
This requires an insulating porcelain material that can be sintered at relatively low temperatures below 1300°C in a non-oxidizing atmosphere. The present invention was made to solve the above-mentioned problems with conventional porcelain materials, and can be sintered at temperatures below 1300°C in a non-oxidizing atmosphere, and is required as a material for multilayer circuit boards. The object is to provide an insulating porcelain composition with various properties. The porcelain composition according to the present invention contains MgO from 1 to
61.5 mol%, ZrO 2 1-45.5 mol%, BaO, SrO,
5 oxides consisting of at least one of CaO and ZnO
~45 mol% and a mixture containing SiO 2 at a ratio of 31.3 to 66.6 mol% was sintered. Hereinafter, as an example of the present invention, samples were prepared from a plurality of ceramic compositions having different formulations, and the results of tests conducted on each sample will be described. Sample 1 in the attached table is as described in the same table,
55.1 mol% SiO 2 , 11.4 mol% CaO 2 , MgO
This sample was made from a ceramic composition containing 25.2 mol% and 8.3 mol% of ZrO2 . First, to explain this manufacturing method, first, 50.9g of SiO 2 powder,
17.6 g of CaCO 3 powder, 15.7 g of MgO powder, and 15.8 g of ZrO powder were weighed, and these were wet mixed by ball milling together with alumina balls for about 15 hours. Next, this mixture was dehydrated and dried, and then pre-calcined in air at a temperature of about 850° C. for about 2 hours.
Thereafter, the mixture was wet-stirred with alumina balls and pulverized to produce a calcined material. Next, 20 wt % polyvinyl alcohol was added to the same material as a binder, mixed and granulated, and this was pressure-molded into a plate shape at a pressure of 1000 kg/cm 2 . Next, this was placed in a furnace and heated at a rate of 100°C per hour to 600°C in air.
Burned polyvinyl alcohol. Thereafter, the inside of the furnace was changed to a reducing atmosphere containing 97.0 vol% N 2 and 3.0 vol% H 2 , and the temperature was maintained at 1200° C. for 3 hours to obtain Sample 1. The sintering temperature FT at this time is shown in the attached table. In addition, according to the purpose of the test, the sample
A disc-shaped one with a diameter of 1.6 cm and a thickness of 0.1 cm, and a length of 2
A rectangular plate with a width of 1 cm, a width of 1 cm, and a thickness of 0.2 cm was manufactured. This sample 1 was tested by the following method. First, regarding the electrical characteristics, we used the disk-shaped sample mentioned above, applied indium-gallium alloy to both main surfaces, provided electrodes with a diameter of 1.4 cm, and measured the dielectric constant ε, Q (quality factor) and resistance. Rate ρ(Ω
cm) was measured. Of these, only the resistivity ρ is shown in the separate table. Note that the dielectric constant ε was calculated from the capacitance measured at a frequency of 1 MHz, and Q was measured at the same time as the capacitance described above. Further, the resistivity ρ was calculated from the results of measuring the insulation resistance 30 seconds after the start of applying a DC voltage of 100V. Regarding the physical and mechanical properties, the thermal expansion coefficient α (/°C) and the bending strength τ (Kg/cm 2 ) were measured using the above-mentioned rectangular plate-shaped sample. Thermal expansion coefficient α is 20~
The coefficient of linear expansion at a temperature of 500°C was measured, and the bending strength τ was determined by measuring the breaking strength P (Kg) under the condition that the distance between the supporting points l = 0.7cm, and τ = 3Pl/2wt 2 (Kg/cm 2 )
It was calculated using the formula. However, w is the width of the sample (cm), t
is the thickness of the sample (cm). Hereinafter, for Samples 2 to 30, the powders were mixed so that each of the above porcelain materials had the content ratio shown in each column of the attached table, and the same method and conditions as Sample 1 were used (however, the firing temperature was different for each). Created. The firing temperature FT of each sample at this time is shown in each column of the attached table. The above-mentioned characteristics of each of the samples thus prepared were measured using the same method and conditions as Sample 1, and only the resistivity ρ of each sample is shown in the separate table. As is clear from the table, all of these samples have a sintering temperature FT of 1300℃ or less and a resistivity ρ.
was 1×10 13 Ωcm or more. On the other hand, eight samples No. 31 to No. 38 were prepared using porcelain materials that did not meet the above-mentioned content ratio requirements using the same method and conditions as the above-mentioned samples (however, the firing temperatures were different for each sample). Firing temperature FT at this time
are shown in the attached table. Various properties of these samples were also measured using the same methods and conditions as those for the above samples, and only the resistivity ρ of each sample is shown in the separate table. As is clear from the table, these samples have a sintering temperature FT of 1300
℃ or less, and the resistivity ρ is 1×10 13 or more, which either do not satisfy any of the above conditions, or the material cannot be sintered. These results were obtained because the effects of each porcelain material were exhibited synergistically, especially in the former group of samples, but the general effects of each of these porcelain materials and the corresponding test results, etc. The details are as follows. (1) If the content of SiO 2 is too low, the sintering temperature will be high; if the content is too high, the sintering temperature will be high, and the insulation properties will be lowered. Among samples 1 to 30, sample 17 has the lowest content of 31.3 mol%, but while the same sample could be sintered at 1300°C, it was possible to sinter at a lower content of 20.0 mol%. Sample 31, which had the same temperature, required a temperature of 1400°C for sintering. On the other hand, among samples 1 to 30, this content is 60.8~
The relatively large amount of 66.6mol% is 2, 4, 7, 10
and 11, but both of these are
While it was possible to sinter at a temperature below 1200°C, sample 32 with a higher content of 75.0 mol% required a temperature of 1450°C for sintering. Moreover, the resistivity ρ of the former was 5×10 13 Ωcm or more, whereas the resistivity ρ of the latter was as low as 10 11 Ωcm. (2) If the content of oxides consisting of CaO, SrO, BaO, and ZrO is small, the sintering temperature will be high, and if it is too large, the range of temperatures that can be sintered will be narrowed.
Sintering becomes difficult. 5.0mol in samples 1 to 30
Samples 16 to 16 have the lowest percentage of these oxides.
18, but while all of these could be sintered at temperatures below 1300℃,
In sample 33 with a content of 3.0 mol%, sintering
A temperature of 1450℃ was required. Also, among samples 1 to 30, samples 19 to 21 contain relatively large amounts of these oxides at 41.8 to 45.0 mol%;
While it was possible to sinter at a temperature below °C, sample 34, which had an even higher content of 45.0 mol%, had a narrow range of sinterable temperatures and was not suitable for industrialization. (3) If the MgO content is too low, the range of temperatures that can be sintered will be narrowed, and if it is too high, the firing temperature will become high and the insulation properties will decrease. Among samples 1 to 30, sample has the least MgO at 1.0 mol%.
18, 21 and 25, but none of these samples
While it was possible to sinter at temperatures below 1300°C, sample 35, which had an even lower content of 0.1 mol%, was not suitable for industrialization because the range of temperatures at which it could be sintered was narrow. On the other hand, samples 1 to 30
Sample 17 contains the highest amount of MgO at 61.5 mol%, but when comparing the same sample with sample 36, which contains more MgO at 62.7 mol%, the former is
It was possible to sinter at 1300°C, whereas the latter required a temperature of 1350°C for sintering. Furthermore, while the resistivity ρ of the former was 10 13 Ωcm, the resistivity ρ of the latter was as low as 10 11 Ωcm. (4) When the content of ZrO 2 is low, the insulation property decreases,
On the other hand, if this amount is too large, the sintering temperature will become high. Among samples 1 to 30, samples 16 and 19 have the lowest content of 1.0 mol%, but while the resistivity ρ of these samples was more than 10 13 Ωcm,
The resistivity ρ of sample 37, which had an even lower content of 0.1 mol%, was as low as 10 11 Ωcm. Also, this content in samples 1 to 30
Comparing sample 18, which has the highest content at 45.5 mol%, and sample 38, which has an even higher content of 47.0 mol%, the former can be sintered at 1300°C, while the latter requires a temperature of 1350°C. It cost. In addition, samples 1 to 30 all have a relative dielectric constant ε of 9 or less, a Q of 500 or more, and a thermal expansion coefficient α of 8.0×10 -6 /
℃ or less, the bending strength was 1000 Kg/cm 2 or more, and we were able to obtain practical values for properties other than insulation as a multilayer circuit board. The publication of these detailed figures will be omitted. As described above, the ceramic composition according to the present invention can be sintered at a temperature of 1300° C. or lower in a non-oxidizing atmosphere. Therefore, it becomes possible to manufacture a multilayer circuit board using a metal such as NI as a conductive material for circuit wiring, and it is possible to reduce costs in terms of conductive material for wiring. Moreover, even by firing under these conditions, the properties required as a multilayer circuit board material can be obtained, and in particular, high insulation properties can be obtained, making it possible to cope with higher wiring densities.

【表】【table】

【表】 * 焼結温度の幅が狭すぎるため焼結不能
[Table] * Sintering is not possible because the sintering temperature range is too narrow.

Claims (1)

【特許請求の範囲】[Claims] 1 MgOを1〜61.5mol%,ZrO2を1〜45.5mol
%,BaO,SrO,CaO,ZnOの少なくとも1種か
らなる酸化物を5〜45mol%,SiO2を31.3〜
66.6mol%の比率で含有させた混合物を焼結させ
てなることを特徴とする絶縁磁器組成物。
1 MgO 1-61.5 mol%, ZrO 2 1-45.5 mol
%, 5 to 45 mol% of an oxide consisting of at least one of BaO, SrO, CaO, and ZnO, and 31.3 to 45 mol% of SiO 2
An insulating porcelain composition characterized by being made by sintering a mixture containing 66.6 mol%.
JP58242949A 1983-12-22 1983-12-22 Insulative ceramic composition Granted JPS60137867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242949A JPS60137867A (en) 1983-12-22 1983-12-22 Insulative ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242949A JPS60137867A (en) 1983-12-22 1983-12-22 Insulative ceramic composition

Publications (2)

Publication Number Publication Date
JPS60137867A JPS60137867A (en) 1985-07-22
JPS6350305B2 true JPS6350305B2 (en) 1988-10-07

Family

ID=17096616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242949A Granted JPS60137867A (en) 1983-12-22 1983-12-22 Insulative ceramic composition

Country Status (1)

Country Link
JP (1) JPS60137867A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753892B2 (en) * 1990-09-29 1998-05-20 京セラ株式会社 Composite circuit board with built-in capacitor

Also Published As

Publication number Publication date
JPS60137867A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
US4809130A (en) Low temperature sintered ceramic capacitor having a high resistivity and bending strength, and method of manufacture
JPH0559523B2 (en)
US4783431A (en) Insulative ceramic composition
JPS6350305B2 (en)
JPS6350307B2 (en)
JPS6350306B2 (en)
JPS6117086B2 (en)
JPH0798679B2 (en) Low temperature sintered porcelain composition
JPS6011259A (en) Ceramic composition
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JP2614050B2 (en) Insulator porcelain composition
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JPH0585496B2 (en)
JPH05178659A (en) Porcelain composition for insulator
KR100509633B1 (en) Dielectric ceramic composition with reinforced insulation glass frit and reinforced insulation glass frit
JPH024549B2 (en)
EP0228668A2 (en) Low temperature sintered ceramic capacitor with a temperature compensating capability, and method of manufacture
JPH0738214A (en) Glass ceramic board and manufacturing method
JPH0585498B2 (en)
JPH0686327B2 (en) Ceramic substrate composition
JPWO2004103931A1 (en) Porcelain composition
JP2514358B2 (en) Porcelain capacitor
JPS60226454A (en) Insulative ceramic composition
JP2004010437A (en) Porcelain composition with low dielectric constant for high frequency part