JPS6350106B2 - - Google Patents

Info

Publication number
JPS6350106B2
JPS6350106B2 JP54023872A JP2387279A JPS6350106B2 JP S6350106 B2 JPS6350106 B2 JP S6350106B2 JP 54023872 A JP54023872 A JP 54023872A JP 2387279 A JP2387279 A JP 2387279A JP S6350106 B2 JPS6350106 B2 JP S6350106B2
Authority
JP
Japan
Prior art keywords
core
casting
treatment
alkaline
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54023872A
Other languages
Japanese (ja)
Other versions
JPS55114457A (en
Inventor
Seiji Watabiki
Noboru Terunuma
Toshiaki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2387279A priority Critical patent/JPS55114457A/en
Publication of JPS55114457A publication Critical patent/JPS55114457A/en
Publication of JPS6350106B2 publication Critical patent/JPS6350106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/002Removing cores by leaching, washing or dissolving

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は精密鋳造用耐火性中子を、通常の精密
鋳造法で溶融金属を流し込んで鋳ぐるみ、これを
化学的処理と振動処理を組合せて、溶出除去する
方法に関するものである。 一般に精密鋳造用耐火性中子は耐熱衝撃性、溶
融金属との難反応性、可溶出性等を有する耐熱材
料を基材に、成形の際の可塑剤及び結合剤等を混
合して、流込み、圧縮、押出し、射出成形法等で
成形される。耐熱材料としては溶融石英(SiO2
石英(SiO2)、アルミナ(Al2O3)、ジルコン
(ZrO2・SiO2)ムライト(3Al2O3・2SiO2)、マ
グネシア(MgO)等が使用される。一般には溶
融石英を主材として、これに他の耐熱材料を任意
の割合で混合した複組成のものが使用される。可
塑材としてはステアリン酸、熱可塑性樹脂、熱硬
化性樹脂等が使用される。結合剤としては、例え
ばコロイダルシリカ溶液等が使用される。中子の
除去方法としてはシヨツトブラスト、シエイクア
ウトマシン、ハイドロブラスト等の機械的処理に
よる除去方法、酸、アルカリ水溶液及び融液等を
使用する化学的処理による除去方法、処理液にア
ルカリ水溶液を使用したオートクレーブ処理によ
る除去方法等がある。 一般に精密鋳造用中子の形状は細長いかあるい
は曲線部分の多い複雑なものが多く、かつ中子は
完全に除去し、中子除去処理後の鋳物の表面及び
中空部の内面は粗であつてはいけない。この点、
機械的処理方法の対象とする中子は単純形状で、
かつ中子材は通常の砂型を使用したもので、これ
を崩壊して除去することを目的としたものであ
り、精鋳用中子除去方法には適さない。 化学的処理は処理液に、中子付鋳物を浸漬して
処理される場合が多い。弗酸による中子の溶出効
率は非常に大きいが、作業環境を悪くするので実
用化は困難である。また弗酸以外の酸は中子材と
の反応が不活発であるため、溶出効率は悪い。 一方アルカリ剤としてはナトリウム、カリウム
等のアルカリ金属の水酸化物あるいは炭酸酸塩、
硼砂(Na2O・2B2O3・10H2O)等が1種または
2種以上を混合して使用される。この場合、水溶
液処理と融液処理の二通りがある。アルカリ水溶
液を使用し、かつ常温、常圧で処理される場合
は、中子材とアルカリ水溶液の反応速度が遅いた
め、溶出効率は悪い。また温度―圧力の条件を変
えて処理する方法として、オートクレーブ処理が
ある。これはアルカリ水溶液の沸騰現象を利用
し、液の対流を促進し、溶出効率を高めた処理法
である。また水溶液の濃度が小さいため、鋳物の
アルカリ腐食も少ない。しかしオートクレーブ処
理は処理装置が高価で、かつランニングコストが
高いという欠点がある。 常圧で、前記アルカリ剤を溶融して処理する方
法では、処理温度が高いほど、中子の溶出除去速
度は増大するが、同時に鋳物がアルカリ腐食され
る。このため、通常はアルカリ剤の融点以上で、
かつ鋳物が著しく腐食されない温度以下の範囲で
処理される。この条件における中子材とアルカリ
融液の化学反応は迅速におこなわれるので、中子
界面では極めて短時間で、飽和する。しかしアル
カリ融液の対流が小さいため、前記飽和溶液と未
飽和アルカリ融液の拡散が十分でないため、中子
の溶解速度が小さく、溶出除去に長時間を要す
る。 一方撹拌等でアルカリ融液を循環させても、第
1表に示したように、中子の形状が細長いもの及
び長い細管でその内孔部が耐火物粒子等でつまつ
ている場合は新鮮な処理液を十分に中子と接触さ
せて、溶融速度を大きくすることは困難である。
The present invention relates to a method of casting a refractory core for precision casting by pouring molten metal into the core using a conventional precision casting method, and eluting and removing the core using a combination of chemical treatment and vibration treatment. In general, refractory cores for precision casting are made by mixing plasticizers, binders, etc. during molding with a heat-resistant material that has thermal shock resistance, low reactivity with molten metal, and leachability as a base material. Molded by molding, compression, extrusion, injection molding, etc. Fused silica (SiO 2 ) is a heat-resistant material.
Quartz (SiO 2 ), alumina (Al 2 O 3 ), zircon (ZrO 2 .SiO 2 ), mullite (3Al 2 O 3 .2SiO 2 ), magnesia (MgO), etc. are used. Generally, a composite material is used, which is made of fused silica as the main material and mixed with other heat-resistant materials in arbitrary proportions. Stearic acid, thermoplastic resin, thermosetting resin, etc. are used as the plasticizer. As the binder, for example, a colloidal silica solution is used. Removal methods for the core include mechanical processing such as shot blasting, shake-out machine, and hydroblasting, chemical processing using acid, alkaline aqueous solution, melt, etc., and alkaline aqueous solution as the processing liquid. There are removal methods such as autoclave treatment using In general, the shape of precision casting cores is often long and narrow or complex with many curved parts, and the core is completely removed, and the surface of the casting and the inner surface of the hollow part after core removal treatment are rough. Do not. In this point,
The core targeted by the mechanical processing method has a simple shape;
In addition, the core material used is a normal sand mold, and the purpose is to disintegrate and remove it, so it is not suitable for the core removal method for precision casting. Chemical treatment is often carried out by immersing the cored casting in a treatment solution. Although the elution efficiency of the core with hydrofluoric acid is very high, it is difficult to put it into practical use because it worsens the working environment. Furthermore, since acids other than hydrofluoric acid react inactively with the core material, their elution efficiency is poor. On the other hand, alkaline agents include hydroxides or carbonates of alkali metals such as sodium and potassium;
Borax (Na 2 O, 2B 2 O 3 , 10H 2 O) and the like are used singly or in combination of two or more. In this case, there are two methods: aqueous solution treatment and melt treatment. When an alkaline aqueous solution is used and the treatment is carried out at normal temperature and pressure, the reaction rate between the core material and the alkaline aqueous solution is slow, resulting in poor elution efficiency. Autoclave processing is also a method of processing by changing temperature-pressure conditions. This is a treatment method that utilizes the boiling phenomenon of aqueous alkaline solutions to promote liquid convection and improve elution efficiency. Also, since the concentration of the aqueous solution is low, there is little alkali corrosion of castings. However, autoclave processing has disadvantages in that processing equipment is expensive and running costs are high. In the method of processing by melting the alkaline agent at normal pressure, the higher the processing temperature, the higher the rate of elution and removal of the core, but at the same time the casting is subject to alkali corrosion. For this reason, it is usually above the melting point of the alkaline agent.
The treatment is carried out at a temperature below which the casting will not be significantly corroded. Under these conditions, the chemical reaction between the core material and the alkali melt occurs rapidly, so that the core interface becomes saturated in an extremely short time. However, since the convection of the alkali melt is small, the saturated solution and the unsaturated alkali melt do not diffuse sufficiently, so the dissolution rate of the core is low and it takes a long time to elute and remove it. On the other hand, even if the alkaline melt is circulated by stirring, etc., as shown in Table 1, if the core is elongated or has a long thin tube and its inner pores are clogged with refractory particles, it will not be fresh. It is difficult to sufficiently contact the processing liquid with the core and increase the melting rate.

【表】 本発明の目的は上記従来技術の諸欠点をなく
し、極めて容易かつ迅速に、精密鋳造用耐火性中
子を溶出除去可能にした中子除去方法を提供する
にある。 本発明は鋳物で鋳ぐるまれた中子を、中子の除
去液中に置いて鋳物に特定の振動数並びに振幅の
振動を与えることにより、中子を溶解除去するこ
とにある。 本発明の一例は通常の精密鋳造法で造型した鋳
型内に前以つて耐火性中子を置き、前記鋳型と中
子の中間に溶融金属を流し込んで、前記中子を鋳
ぐるみ、凝固後これを熱アルカリ液に浸漬し、更
にたとえばボールタイプの回転式振動機で、振動
数2900〜21000(VPM)(回/分)、全振幅0.3〜
1.5mmの振動波を直接に鋳物に付与して、熱アル
カリ液の相対的対流を促進し、極めて短時間で、
中子を溶出除去するものである。この振動方法は
鋳物を振動機に治具を介して設置し、アルカリ液
中で鋳物を偏心円運動によつて横方向と縦方向に
振動させることによつて行われる。 この方法によれば、金属で鋳ぐるまれた中子と
アルカリ融液の間に激しい相対運動が生じ、中子
に接した液中の停滞層の厚さが著しく小となり、
したがつて、反応生成物に富む液の排除とこれに
代る新鮮な液の供給が促進される。元来、耐火性
中子とアルカリ融液の界面反応はきわめて迅速で
あるが、これに対し、液の対流不足が律速段階に
なつているため、対流の促進は全反応の促進にき
わめて有効である。このことは中子が鋳物の中に
深く入り込み、液の循環が困難なときに、特にそ
うである。このような場合にも、鋳物の振動によ
り細い孔の中の液が相対的加速度を受けるために
その循環が促進され、中子除去は融液を単に撹拌
した場合に比べて、大幅に速くなる。振動数が
2900(回/分)未満、もしくは全振幅が0.3mm未満
では、液の対流はあまり促進されず、溶出効率は
小さい。また、振動数が21000(回/分)を超える
か、もしくは全振幅が1.5mmを超えると、液が飛
散するので好ましくない。また、中子に貫通孔を
設けておき、鋳物に振動を加えながら該貫通孔中
のアルカリ液を流動させることにより、一層効率
良く除去することができる。 実施例 外径2.6mmφ、内径0.9mmφのシリカチユーブ中
子を使用し、これを5本ステンレス鋼(SUS―
304)で鋳ぐるみ、直径25mmφ、長さ50及び114mm
の中子付円柱状試験片を作製した。これを500℃
の苛性ソーダ融液に浸漬し、更に前記円柱状試験
片を治具に固定し、治具を介して、エアバイブレ
ータを取付け、前述のボールタイプの回転式振動
機を用いて、偏心円運動によつて試験片を横方向
と縦方向に振動させ、振動数12000(VPM)、全振
幅0.6mmの振動波を付与して処理し、シリカチユ
ーブ中子の溶出除去速度を求めた。 第1図はシリカチユーブ中子の溶出除去率と処
理時間との関係を示したものである。A(中子長
さ:50mm)とB(中子長さ:114mm)が本発明の結
果であり、C(中子長さ:50mm)とD(中子長さ:
114mm)が、苛性ソーダ融液を撹拌して処理した
結果である。 本発明によれば、撹拌処理の結果に比べ、中子
を溶出除去するに要する時間は50mmの長さのもの
では1/10以下に、114mmのものでは1/13以下に短
縮できた。 上記の如く、化学的処理と振動処理を組合せて
精密鋳造用耐火性中子を除去すれば、次のような
効果が得られる。 (1) 極めて短時間で中子を溶出除去できる。 (2) 処理時間が短かいので、鋳物がアルカリ腐食
されることがない。 (3) オートクレーブ処理に比べ、処理装置が安
く、かつランニングコストも安い。
[Table] An object of the present invention is to provide a core removal method which eliminates the various drawbacks of the above-mentioned prior art and allows a refractory core for precision casting to be eluted and removed extremely easily and quickly. The present invention is to melt and remove a core that has been cast by placing it in a core removal solution and applying vibrations of a specific frequency and amplitude to the casting. In one example of the present invention, a refractory core is placed in advance in a mold made by a normal precision casting method, molten metal is poured between the mold and the core, the core is cast, and after solidification, the molten metal is poured into the mold. is immersed in a hot alkaline solution, and then, for example, with a ball-type rotary vibrator, the vibration frequency is 2900 to 21000 (VPM) (times/min), and the total amplitude is 0.3 to 0.3.
A 1.5mm vibration wave is applied directly to the casting to promote relative convection of the hot alkaline liquid, and in an extremely short time.
This is to elute and remove the core. This vibration method is carried out by placing the casting in a vibrator via a jig and vibrating the casting in an alkaline solution in horizontal and vertical directions by eccentric circular motion. According to this method, intense relative motion occurs between the metal core and the alkaline melt, and the thickness of the stagnant layer in the liquid in contact with the core becomes extremely small.
Therefore, the removal of liquid rich in reaction products and the supply of fresh liquid in its place are facilitated. Originally, the interfacial reaction between the refractory core and the alkaline melt is extremely rapid, but since the lack of convection of the liquid is the rate-limiting step, promoting convection is extremely effective in promoting the entire reaction. be. This is especially true when the core is deeply embedded in the casting and fluid circulation is difficult. Even in such cases, the liquid in the narrow holes receives relative acceleration due to the vibration of the casting, promoting its circulation, making core removal much faster than when the melt is simply stirred. . The frequency of vibration
When the frequency is less than 2900 times/min or the total amplitude is less than 0.3 mm, liquid convection is not promoted much and the elution efficiency is low. Furthermore, if the frequency exceeds 21,000 (times/min) or the total amplitude exceeds 1.5 mm, it is not preferable because the liquid will scatter. Further, by providing a through hole in the core and causing the alkaline solution in the through hole to flow while applying vibration to the casting, it is possible to remove the alkaline solution more efficiently. Example Using a silica tube core with an outer diameter of 2.6 mmφ and an inner diameter of 0.9 mmφ, 5 pieces of stainless steel (SUS-
304), diameter 25mmφ, length 50 and 114mm
A cylindrical test piece with a core was prepared. This is heated to 500℃
Further, the cylindrical test piece was fixed in a jig, an air vibrator was attached through the jig, and the above-mentioned ball-type rotary vibrator was used to perform eccentric circular motion. The test piece was then vibrated in the horizontal and vertical directions, and a vibration wave with a frequency of 12,000 (VPM) and a total amplitude of 0.6 mm was applied to the test piece to determine the elution removal rate of the silica tube core. FIG. 1 shows the relationship between the elution removal rate of the silica tube core and the treatment time. A (core length: 50 mm) and B (core length: 114 mm) are the results of the present invention, C (core length: 50 mm) and D (core length:
114 mm) is the result of stirring and processing the caustic soda melt. According to the present invention, compared to the results of stirring treatment, the time required to elute and remove the core was reduced to 1/10 or less for a 50 mm length, and to 1/13 or less for a 114 mm length. As described above, if a refractory core for precision casting is removed by a combination of chemical treatment and vibration treatment, the following effects can be obtained. (1) The core can be eluted and removed in an extremely short time. (2) Since the treatment time is short, the casting will not be corroded by alkali. (3) Compared to autoclave processing, processing equipment is cheaper and running costs are also lower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、中子の溶出除去率と処理時間との関
係を示すグラフである。 A,B……本発明の実施例、C,D……比較
例。
FIG. 1 is a graph showing the relationship between core elution removal rate and processing time. A, B...Example of the present invention, C, D...Comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳物内に鋳ぐまれた中子を、該中子を溶解す
る液体中で溶解除去する中子除去方法において、
前記鋳物に振動数2900回/分〜21000回/分、全
振幅0.3〜1.5mmの振動を加えることを特徴とする
中子除去方法。
1. A core removal method in which a core cast in a casting is removed by dissolving it in a liquid that dissolves the core,
A core removal method characterized by applying vibrations to the casting at a frequency of 2900 times/min to 21000 times/min and a total amplitude of 0.3 to 1.5 mm.
JP2387279A 1979-02-27 1979-02-27 Core removing method Granted JPS55114457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2387279A JPS55114457A (en) 1979-02-27 1979-02-27 Core removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2387279A JPS55114457A (en) 1979-02-27 1979-02-27 Core removing method

Publications (2)

Publication Number Publication Date
JPS55114457A JPS55114457A (en) 1980-09-03
JPS6350106B2 true JPS6350106B2 (en) 1988-10-06

Family

ID=12122529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2387279A Granted JPS55114457A (en) 1979-02-27 1979-02-27 Core removing method

Country Status (1)

Country Link
JP (1) JPS55114457A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530321Y2 (en) * 1989-05-18 1993-08-03

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205025A (en) * 1981-04-29 1982-12-16 Pk Biyuuroo Erekutorogidorabur Electric fluid type blast method and device for casting
US20160175923A1 (en) * 2012-04-09 2016-06-23 General Electric Company Composite core for casting processes, and processes of making and using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526338A (en) * 1975-06-30 1977-01-18 Kohlswa Jernverks Ab Removing and reclaiming method silicate moulding materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526338A (en) * 1975-06-30 1977-01-18 Kohlswa Jernverks Ab Removing and reclaiming method silicate moulding materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530321Y2 (en) * 1989-05-18 1993-08-03

Also Published As

Publication number Publication date
JPS55114457A (en) 1980-09-03

Similar Documents

Publication Publication Date Title
US3512571A (en) Cryogenic formation of refractory molds and other foundry articles
JP2004512957A (en) Metal casting mold
US3186041A (en) Ceramic shell mold and method of forming same
US2948935A (en) Process of making refractory shell for casting metal
US20200330199A1 (en) Dental divestment method and muffle
JPS6350106B2 (en)
JP3719387B2 (en) Mold release agent for centrifugal casting mold
US2682092A (en) Method of forming refractory molds for metal casting
CN111940694A (en) Method for manufacturing water-soluble salt core for high-pressure casting
US3029485A (en) Method of making hollow castings
US2759232A (en) Process of removing wax, plastic, and like pattern materials from thin shell molds
JPS6317020B2 (en)
JP3574303B2 (en) Manufacturing method and slurry coating device for precision casting mold
JP2002096157A (en) Method of casting minute total isometric system structure
JPS63256239A (en) Method for disintegrating ceramic shell mold
RU2630399C2 (en) Method for manufacturing cast rods from liquid glass mixtures in heated "thermo-shock-co2-process" equipment
JPH08332547A (en) Casting method and mold and its production
JPS63295037A (en) Molding method for mold for casting
JPS5997740A (en) Casting mold
JPS5874270A (en) Cutting method for runner in lost wax casting method
GB826340A (en) Casting metal
JP2000117415A (en) Method for removing molding material and manufacture of network structure of metallic body
SU716701A1 (en) Method of making hollow casting
JPH0813400B2 (en) Precision casting method for castings having a narrow hollow portion
JP3136708B2 (en) Mold dismantling method