JPS6350105B2 - - Google Patents

Info

Publication number
JPS6350105B2
JPS6350105B2 JP55141805A JP14180580A JPS6350105B2 JP S6350105 B2 JPS6350105 B2 JP S6350105B2 JP 55141805 A JP55141805 A JP 55141805A JP 14180580 A JP14180580 A JP 14180580A JP S6350105 B2 JPS6350105 B2 JP S6350105B2
Authority
JP
Japan
Prior art keywords
wire
crucible
chamber
alloying element
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55141805A
Other languages
Japanese (ja)
Other versions
JPS5768263A (en
Inventor
Teruyuki Takayama
Masaaki Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP14180580A priority Critical patent/JPS5768263A/en
Publication of JPS5768263A publication Critical patent/JPS5768263A/en
Publication of JPS6350105B2 publication Critical patent/JPS6350105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/008Continuous casting of metals, i.e. casting in indefinite lengths of clad ingots, i.e. the molten metal being cast against a continuous strip forming part of the cast product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 この発明は金属線材の連続鋳造法の一種である
デイツプフオーミング法に関し、特に中心部が純
銅で表面層が銅合金層となつている複合導電線材
を得るためのデイツプフオーミング法に関するも
のである。
[Detailed Description of the Invention] The present invention relates to a deep forming method, which is a type of continuous casting method for metal wires, and in particular to a method for obtaining a composite conductive wire material in which the center portion is pure copper and the surface layer is a copper alloy layer. This relates to the deep forming method.

周知のように電線・ケーブル等に使用される導
電用線材としては銅荒引線を伸線加工した純銅線
が広く使用されているが、用途によつては耐摩耗
性や耐熱性、強度等が不充分となることもあり、
そのため一部では銀、クロム、カドミウム、錫等
の合金元素を小量添加した銅合金線が使用されて
いる。例えばトロリー線などの如く、頻繁に摩擦
力が加わる導体としては、硬度を高めて耐摩耗性
を高めるため、銀や錫を添加した銀入り銅あるい
は錫入り銅等が使用されている。しかしながら銅
に銀等の合金元素を添加した場合導電率が低下す
る問題がある。したがつて高い耐摩耗性を得るた
めには導電率を犠性にせざるを得ず、逆にある程
度導電率を確保しようとすれば耐摩耗性向上に限
界が生じるのが実情である。そこでこの発明の発
明者等は、既に特願昭55−69849号で提案してい
るように、銅荒引線の製造に適用されているデイ
ツプフオーミング法を応用することによつて上述
の問題を解決し得ることを見出した。すなわち、
純銅からなる種線を、銀あるいは錫等の合金元素
を含む銅合金溶湯に連続的に浸漬して引上げ、こ
れによつて純銅種線の周囲に銅合金を附着凝固さ
せて、中心部が純銅で表面層が銅合金層となつて
いる複合導電線材を得る方法である。この提案の
方法によつて得られた複合導電線材は、内部は純
銅であるため全体としての導電率が相当に高く、
しかも表面は銅合金層であるから高い耐摩耗性を
与えることができ、したがつて導電率特性と耐摩
耗特性などとを同時に満足することが可能とな
る。
As is well known, pure copper wire, which is made by drawing rough copper wire, is widely used as a conductive wire material used for electric wires and cables, but depending on the application, it may have poor wear resistance, heat resistance, strength, etc. It may be insufficient,
For this reason, copper alloy wires containing small amounts of alloying elements such as silver, chromium, cadmium, and tin are used in some cases. For conductors that are frequently subjected to frictional forces, such as trolley wires, for example, silver-containing copper or tin-containing copper containing silver or tin is used to increase hardness and wear resistance. However, when alloying elements such as silver are added to copper, there is a problem that the conductivity decreases. Therefore, in order to obtain high wear resistance, electrical conductivity must be sacrificed, and on the other hand, if a certain degree of electrical conductivity is to be ensured, there is a limit to the improvement in wear resistance. Therefore, the inventors of this invention solved the above problem by applying the deep forming method applied to the production of copper wire, as already proposed in Japanese Patent Application No. 55-69849. We found that it is possible to solve the problem. That is,
A seed wire made of pure copper is continuously immersed in a molten copper alloy containing alloying elements such as silver or tin and pulled up. As a result, the copper alloy is attached and solidified around the pure copper seed wire, and the center becomes pure copper. This is a method for obtaining a composite conductive wire whose surface layer is a copper alloy layer. The composite conductive wire material obtained by this proposed method has a considerably high conductivity as a whole because the inside is made of pure copper.
Moreover, since the surface is a copper alloy layer, high wear resistance can be imparted, making it possible to simultaneously satisfy electrical conductivity characteristics and wear resistance characteristics.

ところで上述のようにデイツプフオーミング法
により複合導電線材を得るための具体方法として
は、例えば第1図に示すように、溶解炉1におい
て銅合金溶湯2を溶製しておき、この銅合金溶湯
2を、溶解炉1から樋3を経て黒鉛等からなるる
つぼ4内へ供給し、一方純銅からなる種線5を、
るつぼ4の下方からるつぼ4の底部に設けられた
種線挿入孔6を経てるつぼ4内へ連続的に挿入し
て銅合金溶湯2に浸漬させ、さらにその種線5を
るつぼ4内の銅合金溶湯2から連続的に引上げて
冷却し、これによつて純銅種線5の周囲に銅合金
溶湯を附着凝固させ、さらに図示しない圧延工程
で所望の径まで圧延する方法が考えられる。しか
しながらこの方法は、同一品種の複合導電線材を
大量生産するには適しているものの、多品種小量
生産には不適当である。すなわち、この方法では
品種を変えたい場合(例えば純銅荒引線を得る場
合と複合導電線材を得る場合との間の変更、ある
いは複合導電線材の合金元素を変更するケース、
さらには同一合金元素でも合金濃度を変更するケ
ース等)に、溶解炉1内の溶湯をそつくり変更し
なければならず、またその場合連続操業を停止し
なければならないが、デイツプフオーミング法に
おいては操業を中断、再開するには相当の手間を
要し、したがつて操業コストが大幅に上昇してし
まうからである。
By the way, as a specific method for obtaining a composite conductive wire by the dip forming method as described above, for example, as shown in FIG. 1, a molten copper alloy 2 is melted in a melting furnace 1, The molten metal 2 is supplied from the melting furnace 1 through the gutter 3 into the crucible 4 made of graphite or the like, while the seed wire 5 made of pure copper is fed into the crucible 4.
The seed wire 5 is continuously inserted into the crucible 4 from below through the seed wire insertion hole 6 provided at the bottom of the crucible 4 and immersed in the molten copper alloy 2, and then the seed wire 5 is inserted into the copper alloy inside the crucible 4. A method can be considered in which the molten metal 2 is continuously pulled up and cooled, thereby causing the molten copper alloy to adhere and solidify around the pure copper seed wire 5, and then further rolled to a desired diameter in a rolling process (not shown). However, although this method is suitable for mass production of composite conductive wires of the same type, it is unsuitable for high-mix low-volume production. In other words, this method can be used when you want to change the product type (for example, when you want to change between pure copper wire and composite conductive wire, or when you want to change the alloy element of composite conductive wire).
Furthermore, in cases where the alloy concentration is changed even when the alloying element is the same, the molten metal in the melting furnace 1 must be warped and changed, and in that case, continuous operation must be stopped, but the deep forming method This is because it takes a considerable amount of effort to suspend and restart operations, resulting in a significant increase in operating costs.

そこで第2図に示すように、溶解炉1において
純銅を溶融して純銅溶湯7を作成し、その純銅溶
湯7を溶解炉1から樋3を経てるつぼ4内に供給
し、一方、合金元素または合金元素と銅との母合
金からなる粒状または線状の合金元素添加材料8
を適宜の添加装置9によつてるつぼ4内の溶湯に
直接添加し、これによりるつぼ4内において銅合
金溶湯2とし、前記同様に純銅種線5の周囲に銅
合金溶湯2を附着凝固させる方法が提案されてい
る。この方法ではるつぼ4内へ供給する添加材料
8の種類あるいは添加速度を変えるだけで異なる
品種の複合導電線材を得ることができ、したがつ
て多品種小量生産に適しているものと考えられ
る。しかしながらこの発明の発明者等が上記提案
の方法についてさらに検討を重ねたところ、上記
提案の方法により得られた複合導電線材は、表面
の銅合金層の組成のばらつき、特に線材の長手方
向でのばらつきが大きく、そのため使用目的によ
つては不適当となることが判明した。
Therefore, as shown in FIG. 2, pure copper is melted in the melting furnace 1 to create pure copper molten metal 7, and the pure copper molten metal 7 is supplied from the melting furnace 1 through the gutter 3 into the crucible 4. Granular or linear alloying element-added material 8 consisting of a master alloy of alloying element and copper
A method of adding directly to the molten metal in the crucible 4 using an appropriate addition device 9, thereby forming the molten copper alloy 2 in the crucible 4, and solidifying the molten copper alloy 2 around the pure copper seed wire 5 in the same manner as described above. is proposed. With this method, different types of composite conductive wires can be obtained by simply changing the type or addition rate of the additive material 8 fed into the crucible 4, and is therefore considered suitable for high-mix, low-volume production. However, the inventors of this invention further investigated the method proposed above, and found that the composite conductive wire obtained by the method proposed above suffers from variations in the composition of the copper alloy layer on the surface, especially in the longitudinal direction of the wire. It was found that the variation was large, making it unsuitable for some purposes.

この発明は以上の事情に鑑みてなされたもの
で、前記提案の方法をさらに改良して、複合導電
線材の表面側の銅合金層の組成のばらつきが可及
的に生じないようにしたデイツプフオーミング法
およびデイツプフオーミング法を実施するに好適
なるつぼ装置を提供することを目的とするもので
ある。
The present invention has been made in view of the above circumstances, and is a dip method that further improves the method proposed above to minimize variations in the composition of the copper alloy layer on the surface side of the composite conductive wire. It is an object of the present invention to provide a crucible device suitable for carrying out the forming method and the dip forming method.

すなわちこの発明のデイツプフオーミング法
は、るつぼ内部を種線走行室と合金元素添加室と
に区分し、合金元素添加室に外部の溶解炉等から
純銅溶湯を供給するとともにその合金元素添加室
において合金元素または母合金を添加溶融させて
銅合金溶湯を作成し、その銅合金溶湯を種線走行
室へ導入し、種線走行室において種線の周囲に銅
合金溶湯を附着凝固させるようにしたものであ
り、またこの発明のデイツプフオーミング用るつ
ぼ装置は、前述のようにるつぼ内を種線走行室と
合金元素添加室とに区分するための中空筒状の障
壁を設けたものである。
That is, in the deep forming method of the present invention, the inside of the crucible is divided into a seed wire running chamber and an alloying element addition chamber, pure copper molten metal is supplied to the alloying element addition chamber from an external melting furnace, etc., and the alloying element addition chamber is A molten copper alloy is created by adding and melting an alloying element or a master alloy, and the molten copper alloy is introduced into a seed wire running chamber, and the molten copper alloy is attached and solidified around the seed wire in the seed wire running chamber. Moreover, the crucible device for deep forming of the present invention is provided with a hollow cylindrical barrier for dividing the interior of the crucible into the seed wire running chamber and the alloying element addition chamber, as described above. be.

以下この発明について添付図面を参照して詳細
に説明すると、第3図はこの出願の第1発明すな
わちデイツプフオーミング法を実施するための装
置の一例、すなわち第2発明の一実施例のるつぼ
装置を示すものであり、また第4図は第3図のる
つぼ装置に使用される障壁11の一例を示すもの
である。第3図において、黒鉛等の耐熱材料から
なる有底筒状のるつぼ4の底部には純銅の種線5
を挿入するための種線挿入孔6が形成されてお
り、またるつぼ4の側面には外部から純銅溶湯7
が供給される溶湯供給口10が形成され、この供
給口10には溶解炉1が樋3を介して接続されて
いる。一方前記るつぼ4内には、黒鉛等からなる
中空円筒状の障壁11が配設されている。この障
壁11はその内側の空間が前記種線挿入孔6の上
方に位置するように配置されており、したがつて
この障壁11によりるつぼ4の内部は、種線挿入
孔6の上方の種線走行室4Aと溶湯供給口10に
連続する合金元素添加室4Bとに区分される。な
お障壁11の下端にはその内側の種線走行室4A
と外側の合金元素添加室4Bとを連通するための
複数の連通孔12が周方向に間隔を置いて形成さ
れている。したがつて種線走行室4Aと合金元素
添加室4Bとはそれらの下部において連続してい
る。
This invention will be described in detail below with reference to the accompanying drawings. FIG. 3 shows an example of an apparatus for implementing the first invention of this application, that is, a dip forming method, that is, a crucible according to an embodiment of the second invention. FIG. 4 shows an example of the barrier 11 used in the crucible device of FIG. 3. In FIG. 3, a pure copper seed wire 5 is attached to the bottom of a bottomed cylindrical crucible 4 made of a heat-resistant material such as graphite.
A seed wire insertion hole 6 is formed for inserting the pure copper molten metal 7 from the outside on the side of the crucible 4.
A melting furnace 1 is connected to the supply port 10 via a gutter 3. On the other hand, inside the crucible 4, a hollow cylindrical barrier 11 made of graphite or the like is disposed. This barrier 11 is arranged so that the space inside thereof is located above the seed line insertion hole 6, and therefore, the inside of the crucible 4 is located above the seed line insertion hole 6 by this barrier 11. It is divided into a traveling chamber 4A and an alloying element addition chamber 4B which is continuous with the molten metal supply port 10. In addition, at the lower end of the barrier 11, there is a seed line running room 4A inside the barrier 11.
A plurality of communication holes 12 are formed at intervals in the circumferential direction for communicating between the alloy element addition chamber 4B and the outer alloy element addition chamber 4B. Therefore, the seed line running chamber 4A and the alloying element addition chamber 4B are continuous at their lower portions.

次に第3図および第4図に示される装置を用い
て複合導電線材を得るための第1発明のデイツプ
フオーミング法について説明すると、溶解炉1に
て電気銅等の適宜の純銅材料を溶解し、得られた
純銅溶湯7を樋3を介し溶湯供給口10からるつ
ぼ4内の合金元素添加室4Bへ供給する。この合
金元素添加室4Bには上方から錫等の合金元素、
または錫等の合金元素と銅との母合金からなる合
金元素添加材料8を適宜の添加装置9によつて添
加する。斯くすれば合金元素添加室4B内におい
て純銅溶湯に錫等の合金元素が混合されて銅合金
溶湯2が生成される。この銅合金溶湯2は障壁1
1の下端の連通孔12を介して種線走行室4Aに
流れ込む。この種線走行室4A内においてはその
下部の種線挿入孔6を通して連続的に純銅種線5
が垂直上方へ走行しており、したがつてその種線
5が種線走行室4A内の銅合金溶湯2から上方へ
引き上げられる際に種線5の表面に銅合金溶湯2
が附着し、続いて冷却されてその表面の銅合金が
凝固する。ここで、前述のように合金元素添加材
料8と純銅溶湯7とは合金元素添加室4Bにおい
て混合されてからその下端の連通孔12を介して
種線走行室4Aに流れ込む。したがつて種線走行
室4Aにおいては銅合金溶湯2はほぼ均一な組成
となつており、そのため種線5に銅合金溶湯2が
附着凝固する際に組成が種線の長手方向等にばら
ついたりすることが防止される。
Next, the deep forming method of the first invention for obtaining a composite conductive wire using the apparatus shown in FIGS. 3 and 4 will be explained. The pure copper molten metal 7 obtained by melting is supplied through the gutter 3 from the molten metal supply port 10 to the alloying element addition chamber 4B in the crucible 4. This alloying element addition chamber 4B contains alloying elements such as tin from above.
Alternatively, an alloying element addition material 8 consisting of a master alloy of an alloying element such as tin and copper is added using a suitable addition device 9. In this way, alloying elements such as tin are mixed with the pure copper molten metal in the alloying element addition chamber 4B to produce the copper alloy molten metal 2. This molten copper alloy 2 is a barrier 1
1 flows into the seed wire running chamber 4A through the communication hole 12 at the lower end of the wire. In this seed wire running chamber 4A, pure copper seed wire 5 is continuously passed through the seed wire insertion hole 6 at the lower part thereof.
is traveling vertically upward, and therefore, when the seed wire 5 is pulled upward from the molten copper alloy 2 in the seed wire traveling chamber 4A, the molten copper alloy 2 is deposited on the surface of the seed wire 5.
is deposited and subsequently cooled to solidify the copper alloy on its surface. Here, as described above, the alloying element addition material 8 and the pure copper molten metal 7 are mixed in the alloying element addition chamber 4B, and then flow into the seed wire running chamber 4A through the communication hole 12 at the lower end thereof. Therefore, in the seed wire traveling chamber 4A, the molten copper alloy 2 has a substantially uniform composition, and therefore, when the molten copper alloy 2 adheres to the seed wire 5 and solidifies, the composition may vary in the longitudinal direction of the seed wire. It is prevented from doing so.

次にこの発明の実施例を記す。 Next, examples of this invention will be described.

実施例 第3図に示される装置(ただし、るつぼ4の内
径150mm、障壁11の内径75mm、外径115mm)を用
い、るつぼ4の溶湯供給口10から合金元素添加
室4Bに1160℃の純銅溶湯を溶湯深さが400mmを
維持するように供給するとともに、外径12.0mmの
純銅種線を毎分50mの走行速度で種線走行室4A
に走行させ、かつ合金元素添加室4Bに粒状の錫
を合金溶湯目標成分が錫0.3wt%となるように連
続的に供給してデイツプフオーミングを行つた。
Example Using the apparatus shown in FIG. 3 (inner diameter of crucible 4 is 150 mm, inner diameter of barrier 11 is 75 mm, outer diameter is 115 mm), pure copper molten metal at 1160°C is supplied from molten metal supply port 10 of crucible 4 to alloying element addition chamber 4B. The pure copper seed wire with an outer diameter of 12.0 mm was fed into the seed wire running chamber 4A at a running speed of 50 m/min.
Deep forming was performed by running the alloy and continuously supplying granular tin to the alloying element addition chamber 4B so that the target composition of the molten alloy was 0.3 wt % tin.

比較例 第2図に示される装置(ただしるつぼ内径150
mm)を用い、実施例と同様に純銅溶湯を供給する
とともに純銅種線を走行させ、かつるつぼ内に粒
状の錫を合金目標成分が錫0.3%となるように連
続的に添加してデイツプフオーミングを行つた。
Comparative example: The device shown in Figure 2 (with crucible inner diameter 150 mm)
mm), feed pure copper molten metal and run the pure copper seed wire in the same manner as in the example, and continuously add granular tin into the crucible so that the target alloy content is 0.3% tin. I did some forming.

これらの実施例および比較例により得られた複
合導電線材表面の合金層の錫濃度を分析したとこ
ろ、比較例のものでは錫濃度のばらつきが線材の
長手方向に0.1〜0.5%となつており、また線材の
同一横断面における錫濃度が均一ではなく、種線
に近い内側部分と外表面附近とで0.05〜0.7%と
大きな差があつた。これに対し実施例のもので
は、線材の長手方向への錫濃度のばらつきが0.20
〜0.40%程度と極めて小さく、また線材の同一横
断面における錫濃度のばらつきも0.25〜0.35程度
と極めて小さいことが明らかとなつた。
When we analyzed the tin concentration in the alloy layer on the surface of the composite conductive wires obtained in these Examples and Comparative Examples, we found that in the Comparative Examples, the variation in tin concentration was 0.1 to 0.5% in the longitudinal direction of the wire. Furthermore, the tin concentration in the same cross section of the wire was not uniform, and there was a large difference of 0.05 to 0.7% between the inner part near the seed line and the outer surface. On the other hand, in the example, the variation in tin concentration in the longitudinal direction of the wire was 0.20.
It has become clear that the tin concentration is extremely small, about 0.40%, and the variation in tin concentration in the same cross section of the wire is also extremely small, about 0.25 to 0.35.

なお上述の実施例においては合金元素として錫
を添加するものとしたが、複合導電線材の使用目
的等によつてAg、Be、Cr、Zr、Cdなどを添加
溶融しても良く、また場合によつては2種以上の
合金元素を同時に添加溶融しても良い。
In the above example, tin was added as an alloying element, but depending on the purpose of use of the composite conductive wire, Ag, Be, Cr, Zr, Cd, etc. may be added and melted. Alternatively, two or more alloying elements may be added and melted at the same time.

また、合金元素もしくは母合金を添加する方
法、および添加する母合金もしくは合金元素の形
状は任意であり、粒状のものをホツパーおよび供
給管を経て供給する他、板状もしくは線状のもの
をピンチロール等により連続的に供給するように
しても良い。
In addition, the method of adding the alloying element or master alloy and the shape of the master alloy or alloying element to be added are arbitrary.In addition to supplying granular materials through a hopper and supply pipe, plate-shaped or linear materials can be fed in a pinch. It may be continuously supplied using a roll or the like.

前述の説明で明らかなようにこの発明のデイツ
プフオーミング法によれば、中心部が純銅で表面
層が銅合金層となつている複合導電線材を、その
銅合金層の組成のばらつきが可及的に生じないよ
うに製造することができ、しかも合金元素添加室
内に添加する合金元素の種類、添加速度を変える
だけで異なる品種の複合導電線材を製造すること
が可能となる等、各種の効果が得られる。
As is clear from the above explanation, according to the deep forming method of the present invention, a composite conductive wire material having pure copper in the center and a copper alloy layer in the surface layer can be made with variations in the composition of the copper alloy layer. In addition, it is possible to manufacture various types of composite conductive wire materials by simply changing the type of alloying element added in the alloying element addition chamber and the addition rate. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ従来のデイツプ
フオーミング法による複合導電線材の製法を実施
する装置の一例を示す略解的な断面図、第3図は
この発明のデイツプフオーミング法を実施するた
めのるつぼ装置の一例を示す略解的な断面図、第
4図は第3図のるつぼ装置に使用される障壁の一
例を示す斜視図である。 2…銅合金溶湯、4…るつぼ、4A…種線走行
室、4B…合金元素添加室、5…種線、6…種線
挿入孔、7…純銅溶湯、8…合金元素添加材料、
10…溶湯供給口、11…障壁、12…連通孔。
FIGS. 1 and 2 are schematic cross-sectional views showing an example of an apparatus for manufacturing a composite conductive wire by the conventional deep forming method, respectively, and FIG. 3 is a schematic cross-sectional view showing an example of an apparatus for implementing the deep forming method of the present invention. FIG. 4 is a schematic cross-sectional view showing an example of a crucible device for use in the crucible device, and FIG. 4 is a perspective view showing an example of a barrier used in the crucible device of FIG. 2... Molten copper alloy, 4... Crucible, 4A... Seed wire running chamber, 4B... Alloying element addition chamber, 5... Seed wire, 6... Seed wire insertion hole, 7... Pure copper molten metal, 8... Alloying element addition material,
10... Molten metal supply port, 11... Barrier, 12... Communication hole.

Claims (1)

【特許請求の範囲】 1 純銅からなる種線をるつぼ内の銅合金溶湯に
連続的に浸漬して引上げ、これによつて種線表面
に銅合金を附着凝固させるデイツプフオーミング
法において、 前記るつぼ内を障壁によつて種線供給室と合金
元素添加室とに区分するとともに両室を連通孔に
よつて連通し、前記合金元素添加室にるつぼ外部
から純銅溶湯を連続的に供給するとともにその合
金元素添加室内の純銅溶湯に合金元素添加材料を
添加溶融して銅合金溶湯を生成し、かつ前記種線
走行室に前記種線を走行させて、合金元素添加室
から連通孔を介し種線走行室に供給された銅合金
溶湯を種線表面に附着凝固させることを特徴とす
るデイツプフオーミング法。 2 下底面に種線挿入孔が形成されるとともに周
壁面に溶湯供給口が形成されたるつぼ内に、全体
として中空筒状をなしかつ下端部に連通孔が形成
された障壁を前記種線挿入孔の上方を取囲むよう
に配設して、るつぼ内を前記障壁によつて種線挿
入孔上方の種線走行室と溶湯供給口側の合金元素
添加室とに区分したことを特徴とするデイツプフ
オーミング用るつぼ装置。
[Scope of Claims] 1. A dip forming method in which a seed wire made of pure copper is continuously immersed in molten copper alloy in a crucible and pulled up, thereby depositing and solidifying the copper alloy on the surface of the seed wire, comprising: The inside of the crucible is divided into a seed wire supply chamber and an alloying element addition chamber by a barrier, and both chambers are communicated through a communication hole, and pure copper molten metal is continuously supplied to the alloying element addition chamber from outside the crucible. An alloying element additive material is added and melted to the pure copper molten metal in the alloying element addition chamber to produce a molten copper alloy, and the seeding wire is run through the seeding wire running chamber, and the seeding wire is passed from the alloying element addition chamber through the communication hole. A deep forming method characterized by solidifying the molten copper alloy supplied to the wire running chamber onto the surface of the seed wire. 2. Insert the seed wire into a crucible in which a seed wire insertion hole is formed in the lower bottom surface and a molten metal supply port is formed in the peripheral wall surface, and a barrier having a hollow cylindrical shape as a whole and a communication hole formed in the lower end. The crucible is arranged so as to surround the upper part of the hole, and the inside of the crucible is divided by the barrier into a seed wire running chamber above the seed wire insertion hole and an alloying element addition chamber on the molten metal supply port side. Crucible device for deep forming.
JP14180580A 1980-10-09 1980-10-09 Dip forming method and crucible device for forming Granted JPS5768263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14180580A JPS5768263A (en) 1980-10-09 1980-10-09 Dip forming method and crucible device for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14180580A JPS5768263A (en) 1980-10-09 1980-10-09 Dip forming method and crucible device for forming

Publications (2)

Publication Number Publication Date
JPS5768263A JPS5768263A (en) 1982-04-26
JPS6350105B2 true JPS6350105B2 (en) 1988-10-06

Family

ID=15300534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14180580A Granted JPS5768263A (en) 1980-10-09 1980-10-09 Dip forming method and crucible device for forming

Country Status (1)

Country Link
JP (1) JPS5768263A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112767A (en) * 1985-11-12 1987-05-23 Fujikura Ltd Dip coating forming device
JP5087227B2 (en) * 2006-02-07 2012-12-05 ピグマリオン株式会社 Arithmetic teaching tools and arithmetic teaching method using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892739A (en) * 1954-10-01 1959-06-30 Honeywell Regulator Co Crystal growing procedure
JPS543644A (en) * 1977-06-10 1979-01-11 Shigeru Obiyama Piston

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103261U (en) * 1979-01-13 1980-07-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2892739A (en) * 1954-10-01 1959-06-30 Honeywell Regulator Co Crystal growing procedure
JPS543644A (en) * 1977-06-10 1979-01-11 Shigeru Obiyama Piston

Also Published As

Publication number Publication date
JPS5768263A (en) 1982-04-26

Similar Documents

Publication Publication Date Title
US3947265A (en) Process of adding alloy ingredients to molten metal
CN106001467B (en) A kind of preparation method of ultralow tin Cu-Sn contact wire
JPS6350105B2 (en)
JPS6029234A (en) Wire electrode for wire cut electrical discharge machining
JPS6124364Y2 (en)
US3295174A (en) Casting machine for clad metal bars
JPS6132110B2 (en)
JPS59166352A (en) Production of copper alloy wire
US4702302A (en) Method of making thin alloy wire
JPS59190336A (en) Production of aluminum alloy wire
JPS60121263A (en) Production of electrode wire for electric discharge working
US2697771A (en) Weld rod and method of making
JPH0530542B2 (en)
JPS6192770A (en) Dip forming method
JPS59134624A (en) Composite electrode wire for electric discharge machining and preparation thereof
JPS63286266A (en) Dip forming method
KR102041103B1 (en) Method for manufacturing alloy to enhance dispersibility of high melting metals into low melting metals
JPS59156549A (en) Production of fine copper alloy wire
JPS6152961A (en) Production of gold alloy wire
US3741741A (en) Process and apparatus for the preparation of surface-modified glass rbbon
JPS63286561A (en) Production of heat resistant copper alloy wire rod
JP3022277B2 (en) Pouring nozzle for belt wheel type continuous casting machine
JPH03162558A (en) Method and device for hot dip coating
JPS6117351A (en) Production of composite wire rod
JPS59156550A (en) Production of fine aluminum alloy wire