JPS6350028A - Formation of thin-film - Google Patents

Formation of thin-film

Info

Publication number
JPS6350028A
JPS6350028A JP19462686A JP19462686A JPS6350028A JP S6350028 A JPS6350028 A JP S6350028A JP 19462686 A JP19462686 A JP 19462686A JP 19462686 A JP19462686 A JP 19462686A JP S6350028 A JPS6350028 A JP S6350028A
Authority
JP
Japan
Prior art keywords
plasma
film
substrate
reaction chamber
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19462686A
Other languages
Japanese (ja)
Inventor
Masahiko Toki
雅彦 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19462686A priority Critical patent/JPS6350028A/en
Publication of JPS6350028A publication Critical patent/JPS6350028A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a dense film at high speed with low strain by forming an Si3N4 film onto a semiconductor substrate by N2 and the plasma of Si2H6, etc. at a low temperature by using a divergent magnetic field type ECR (electron cyclotron resonance) plasma device. CONSTITUTION:The temperature of an Si substrate 5 is elevated to 25-100 deg.C, N2 is introduced 3 into a chamber 1 at a predetermined flow rate at 1X10<-3>Torr, and Si2H6 is admitted 4 into a reaction chamber 2 at a prescribed flow rate. When a coil 6 is conducted, a magnetic field is generated and microwave power is applied, N2 is changed into plasma as ECR plasma R1, and extracted to the reaction chamber 2 through an opening 10 by a divergent magnetic field, Si2H6 is turned into plasma R2 in the chamber 2, and an Si3N4 film is shaped onto the Si substrate 5 by the plasma flows of R1 and R2. Since the plasma flows are controlled only by the divergent magnetic field at that time, the substrate 5 is brought to negative potential only by a floating potential section to plasma, thus removing ion bombardments, then damaging no substrate 5. According to the constitution, Si3N4 optimum for a protective film having small stress is acquired at high speed.

Description

【発明の詳細な説明】 〔概要〕 発散磁界型ECR(電子サイクロトロン共鳴:Elec
tron Cyclotron Re5onance)
プラズマ装置を用い、半導体基板上に、低温でN2ガス
とジシラン(5izl16)等のプラズマにより窒化シ
リコン膜(Si3N4膜)を形成するもので、低ストレ
スで緻密な良質の膜を高い成長速度で形成するものであ
る。
[Detailed description of the invention] [Summary] Diverging magnetic field type ECR (electron cyclotron resonance: Elec
tron Cyclotron Re5onance)
Using a plasma device, a silicon nitride film (Si3N4 film) is formed on a semiconductor substrate at low temperatures by plasma of N2 gas and disilane (5izl16), etc., forming a dense, high-quality film at a high growth rate with low stress. It is something to do.

゛   〔産業上の利用分野〕 本発明は発散磁界型EcRプラズマ装置を用いた薄膜形
成方法に係わり、特に高い解離率の材料ガスを用い、低
ストレスのSi3N4膜を形成する方法に関する。
[Field of Industrial Application] The present invention relates to a method for forming a thin film using a divergent magnetic field type EcR plasma apparatus, and particularly to a method for forming a low-stress Si3N4 film using a material gas with a high dissociation rate.

〔従来の技術〕[Conventional technology]

半導体基板、例えばシリコン(St)基板上に5iJ4
膜を形成する方法としては、熱窒化法、CVD法、RF
プラズマ法、ECRプラズマ法があるが、集積回路のチ
ップパッシベーション膜および多層配線構造の層間絶縁
膜として用いるためには、Si3N4膜を形成する前に
既にアルミニウム(^1)パターンが形成されているの
で、これに悪影響を及ぼすものであってはならない。
5iJ4 on a semiconductor substrate, for example a silicon (St) substrate.
Methods for forming the film include thermal nitriding, CVD, and RF.
There are plasma methods and ECR plasma methods, but in order to use them as chip passivation films for integrated circuits and interlayer insulating films for multilayer wiring structures, an aluminum (^1) pattern has already been formed before forming the Si3N4 film. , must not have any negative impact on this.

熱窒化法、CVD法は高温で膜形成が行われるので、こ
の目的のためには不適である。
Thermal nitriding and CVD methods are unsuitable for this purpose because they form films at high temperatures.

RFプラズマ法は、平行平板電極あるいはコイルにRF
雷電圧印加することによりプラズマを発生させ、被膜を
形成する方法で、成長温度は400〜450℃で、5i
l14とNH3ガスを導入し、0.1〜1.0Torr
に維持しながら、13.56 Mtlzの高周波をかけ
ると、導入ガスはプラズマ化し、Si基板上にSi3N
4膜を被着形成することが出来る。
The RF plasma method uses RF to parallel plate electrodes or coils.
This method generates plasma by applying lightning voltage to form a film, and the growth temperature is 400 to 450°C.
Introducing l14 and NH3 gas and increasing the temperature to 0.1 to 1.0 Torr.
When a high frequency of 13.56 Mtlz is applied while maintaining the
4 films can be deposited.

AIパターンの耐え得る温度450℃以下で5iJa膜
を形成しているが、しかし、この方法で形成したSi3
N4膜はその膜中に水素を含み熱処理による収縮率が大
で、従ってこれをパッシベーション膜としてへ1配線上
に形成した場合、Si3N4膜が下方のΔI配綿に大き
なストレス(圧縮応力)をかけ、At配線が陥没する等
の不良を生ずる。このとき、Si3N4膜が下方膜に及
ぼす圧縮応力の大きさは、1010dyne/cm2で
ある。
Although the 5iJa film is formed at a temperature below 450°C, which the AI pattern can withstand, the Si3 film formed by this method
The N4 film contains hydrogen and has a high shrinkage rate during heat treatment. Therefore, when this film is formed as a passivation film on the first wiring, the Si3N4 film will apply a large stress (compressive stress) to the ΔI cotton distribution below. , defects such as depression of the At wiring occur. At this time, the magnitude of compressive stress exerted by the Si3N4 film on the lower film is 1010 dyne/cm2.

又、この方法によると、N1(3ガスの解離が充分でな
く、N゛、N2 ”イオンの発生が少ないため、Si:
+Na膜成長速度は400〜700人/ m i n程
度である。
In addition, according to this method, the dissociation of N1 (3 gases is not sufficient and the generation of N'', N2'' ions is small, so Si:
+Na film growth rate is about 400 to 700 people/min.

ECRプラズマ法は、マイクロ波を使用してプラズマ励
起し、このプラズマガス中の電子をサイクロトロン共鳴
させて加速し、低圧で高密度のプラズマを得ようとする
ものである。ガスの解離率が非常に大きいため、水素結
合をもったスピーシーズが少なくなり、良好なSi3N
4膜を形成することが出来る。
The ECR plasma method aims to obtain a low-pressure, high-density plasma by exciting plasma using microwaves and accelerating electrons in the plasma gas by causing cyclotron resonance. Since the dissociation rate of gas is very high, there are fewer species with hydrogen bonds, resulting in a good Si3N
4 films can be formed.

従来例によると、ガスとして四弗化シリコン(SiFt
)あるいはモノシラ7(Silt)とN2を用い、Si
基板温度250℃で、圧力8 Xl0−’ Torrで
5iJ4膜を成長速度約375人/minで形成するも
のであるが、膜成長速度が余り速いとは言えず、この点
の改善が望まれている。
According to the conventional example, silicon tetrafluoride (SiFt
) or using monosilica 7 (Silt) and N2.
A 5iJ4 film is formed at a substrate temperature of 250°C and a pressure of 8 Xl0-' Torr at a growth rate of about 375 people/min, but the film growth rate cannot be said to be very fast, and improvements in this point are desired. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来例における膜成長速度をあげるとともに
、下部St基板に与える内部応力の小さく、且つ緻密な
Si3N4膜を形成しようとするものである。
The present invention aims to increase the film growth rate in the conventional example and to form a dense Si3N4 film with less internal stress applied to the lower St substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、電子サイクロトロン共鳴プラズマ
発生室(1)と、この電子サイクロトロン共鳴プラズマ
発生室(1)に隣接する反応室(2)と、前記電子サイ
クロトロン共鳴プラズマ発生室(1)にマイクロ波電力
およびガスを導入する手段と、前記反応室(2)にガス
を導入する手段と、前記電子サイクロトロン共鳴プラズ
マ発生室(1)内に導入したガスに電子サイクロトロン
共鳴プラズマ(R1)を発生させ、この電子サイクロト
ロン共鳴プラズマ(R1)を発散磁界により前記反応室
(2)に引き出し、前記反応室(2)に導入したガスに
プラズマ(R2)を発生させる手段とを備えて構成され
た薄膜形成装置を用いる薄膜形成方法において、 前記反応室(2)内で、半導体基板の表面(5)を室温
から100℃の範囲の温度に保ち、前記電子サイクロト
ロン共鳴プラズマ発生室(1)に窒素ガスを導入し、反
応室(2)にはジシラン或いはトリシランを導入して、
これにより発生したプラズマ(R2)により、前記半導
体基板(5)の表面に窒化シリコン膜を形成させる工程
を有する本発明による薄膜形成方法により達成される。
The solution to the above problem is to provide an electron cyclotron resonance plasma generation chamber (1), a reaction chamber (2) adjacent to the electron cyclotron resonance plasma generation chamber (1), and a microelectronic cyclotron resonance plasma generation chamber (1). means for introducing wave power and gas; means for introducing gas into the reaction chamber (2); and generating electron cyclotron resonance plasma (R1) in the gas introduced into the electron cyclotron resonance plasma generation chamber (1). , means for drawing out this electron cyclotron resonance plasma (R1) into the reaction chamber (2) by a divergent magnetic field and generating plasma (R2) in the gas introduced into the reaction chamber (2). In the thin film forming method using the apparatus, the surface (5) of the semiconductor substrate is maintained at a temperature in the range of room temperature to 100°C in the reaction chamber (2), and nitrogen gas is supplied to the electron cyclotron resonance plasma generation chamber (1). and introducing disilane or trisilane into the reaction chamber (2),
This is achieved by the thin film forming method according to the present invention, which includes the step of forming a silicon nitride film on the surface of the semiconductor substrate (5) using the plasma (R2) generated thereby.

〔作用〕[Effect]

本発明による発散磁界型ECRプラズマ装置を用い、ジ
シラン(SiJ6)又はトリシラン(SizH6)ガス
とN2ガスによるプラズマで半導体基板上に5i3Na
膜を形成するもので、低ストレスで良質な膜を高い成長
速度で形成することが出来る。
Using the diverging magnetic field type ECR plasma device according to the present invention, 5i3Na is deposited on a semiconductor substrate using plasma using disilane (SiJ6) or trisilane (SizH6) gas and N2 gas.
It forms a film, and can form a high-quality film at a high growth rate with low stress.

〔実施例〕〔Example〕

第1図は本発明におけるSi+Na膜形成に用いた発散
磁界型ECRプラズマ装置の構成概略図である。
FIG. 1 is a schematic diagram of the configuration of a divergent magnetic field type ECR plasma apparatus used for forming a Si+Na film in the present invention.

この図において、1はECRプラズマ発生室で、これに
隣接して反応室2が設けられ、この反応室2には排気系
として、ターボモレキュラーポンプ15、メカニカルブ
ースフポンプ16、ウォータポンプ17の主排気系が設
けられ残留不純物ガスおよび膜形成時に導入されるガス
を排気している。
In this figure, reference numeral 1 denotes an ECR plasma generation chamber, and a reaction chamber 2 is provided adjacent to this, and this reaction chamber 2 has a turbo molecular pump 15, a mechanical boost pump 16, and a water pump 17 as an exhaust system. An exhaust system is provided to exhaust residual impurity gas and gas introduced during film formation.

プラズマ生成用のマイクロ波は、マイクロ波発振器8で
発振した周波数2.45 GHzのマイクロ波を導波管
7とマイクロ波導入窓(アルミナ製)9を経由して、共
振寸法に作られたECRプラズマ発生室1に供給される
The microwave for plasma generation is a microwave with a frequency of 2.45 GHz oscillated by a microwave oscillator 8. The plasma is supplied to the plasma generation chamber 1.

また、マイクロ波導入窓9に近い部分の導波管7の外周
およびECRプラズマ発生室1の外周には電磁石コイル
6があり、これにより発散磁界を形成さす。
Further, an electromagnetic coil 6 is provided on the outer periphery of the waveguide 7 near the microwave introduction window 9 and on the outer periphery of the ECR plasma generation chamber 1, thereby forming a diverging magnetic field.

磁束密度の大きさは共鳴の起こる値875  ガウスよ
り少し大きい値からマイクロ波の進む方向に徐々に減少
するようにして、マイクロ波の吸収効率を上げている。
The magnitude of the magnetic flux density is gradually decreased from a value slightly larger than 875 Gauss, at which resonance occurs, in the direction in which the microwave advances, thereby increasing the microwave absorption efficiency.

ECRプラズマ発生室1には第1のガス導入口3よりガ
スを導入している。
Gas is introduced into the ECR plasma generation chamber 1 through a first gas introduction port 3.

また、反応室2にはSi基板5が基板載置台12の上に
おかれ、基板表面の温度が急上昇しないようにされてい
る。
Further, a Si substrate 5 is placed on a substrate mounting table 12 in the reaction chamber 2 to prevent the temperature of the substrate surface from rising rapidly.

この発散磁界型ECRプラズマ装置によるときは、発散
磁界のためプラズマ流中の電子やイオンが磁束線に垂直
線方向に散逸するのを防止されているので、プラズマ流
は反応室2の側壁等への衝突なしにSi基板5に達する
ので、側壁への衝突による水分、不純物の発生を少なく
出来る。
When using this divergent magnetic field type ECR plasma device, the divergent magnetic field prevents electrons and ions in the plasma flow from dissipating in a direction perpendicular to the magnetic flux lines, so the plasma flow is directed toward the side wall of the reaction chamber 2. Since the particles reach the Si substrate 5 without any collision, the generation of moisture and impurities due to collisions with the side walls can be reduced.

Si3N、膜成長はこの装置を使用して、次のようにし
て行われる。
The Si3N film is grown using this apparatus in the following manner.

Si基板5を室温〜100℃にし、圧力をlXl0−”
Torrにして、第1のガス導入口3よりはN2ガスを
23 cc /secの流量でECRプラズマ発生室1
に導入し、第2のガス導入口4からはSi2H6ガスを
30 cc /secの流量で反応室2に導入する。電
磁石コイル6に電流を流し磁界を形成して2.45GH
zのマイクロ波電力 500Wをかける。
The Si substrate 5 is heated to room temperature to 100°C, and the pressure is set to lXl0-"
Torr, N2 gas is supplied to the ECR plasma generation chamber 1 from the first gas inlet 3 at a flow rate of 23 cc/sec.
Si2H6 gas is introduced into the reaction chamber 2 from the second gas inlet 4 at a flow rate of 30 cc/sec. A current is passed through the electromagnetic coil 6 to form a magnetic field of 2.45GH.
Apply 500W of microwave power to z.

導入したN2ガスはプラズマ化し、ECRプラズマR1
となり、発散磁界によって反応室2との境界にあるアパ
ーチャ10を通過し、反応室2に引き出されれ、ここで
SiJ、ガスをプラズマ(R2)化し、プラズマR1と
R2のプラズマ流によりSi基板5の表面上にSi3N
、膜が形成される。
The introduced N2 gas turns into plasma and becomes ECR plasma R1.
It passes through the aperture 10 at the boundary with the reaction chamber 2 by the divergent magnetic field and is drawn out to the reaction chamber 2, where the SiJ gas is turned into plasma (R2), and the plasma flow of the plasmas R1 and R2 forms the Si substrate 5. Si3N on the surface
, a film is formed.

この場合、発散磁界のみでプラズマ流を制御しているの
で、Si基板5はプラズマに対して約20Vの浮遊電位
分だけの負電位となるだけであるため、イオン衝撃がな
くSi基板5を傷めることがない。
In this case, since the plasma flow is controlled only by the divergent magnetic field, the Si substrate 5 has only a negative potential of about 20 V floating potential with respect to the plasma, so there is no ion bombardment and damage to the Si substrate 5. Never.

RFプラズマ法で、5iHnの替わりに5itHbガス
を用いてSiJ*膜形成を行おうとしても、アモルファ
スシリコンとなり良好なStJ、膜を得ることが出来な
い。
Even if an attempt is made to form a SiJ* film using 5itHb gas instead of 5iHn using the RF plasma method, it becomes amorphous silicon and a good StJ film cannot be obtained.

第2図は本発明におけるマイクロ波電力とストレスとの
関係図である。
FIG. 2 is a diagram showing the relationship between microwave power and stress in the present invention.

この図において、縦軸はストレス(圧縮応力)で、横軸
はマイクロ波の入射電力で、形成5iJ4膜が下層に及
ぼすストレスがマイクロ波電力によって、どのように変
化するかを示すもので、フラットネステスターを用いて
定量した。
In this figure, the vertical axis is stress (compressive stress) and the horizontal axis is microwave incident power, which shows how the stress exerted on the underlying layer by the formed 5iJ4 film changes depending on the microwave power. It was quantified using a nest tester.

マイクロ波電力を500W程度としたとき最もストレス
が小さく約1.8 Xl09dyne/cm2の圧縮応
力で、RFプラズマ法で形成した場合より、格段に小さ
くなる。これにより、Si、N4膜の下にAI膜層があ
っても、このへ1膜層に障害が起こることがなくなる。
When the microwave power is about 500 W, the stress is the smallest, about 1.8 Xl09dyne/cm2, which is much smaller than when formed by the RF plasma method. As a result, even if there is an AI film layer under the Si or N4 film, failure will not occur in the first film layer.

又、ストレスが0と云う状態も条件によっては、見出す
ことが可能である。
Also, depending on the conditions, it is possible to find a state where stress is 0.

第3図は本発明におけるマイクロ波電力と成長速度およ
び屈折率の関係図である。
FIG. 3 is a diagram showing the relationship between microwave power, growth rate, and refractive index in the present invention.

この図において、左側縦軸は成長速度、右側縦軸は屈折
率、横軸はマイクロ波電力である。
In this figure, the left vertical axis is the growth rate, the right vertical axis is the refractive index, and the horizontal axis is the microwave power.

屈折率は5iJ4膜の膜質を示す指標で2.0程度のと
き、緻密で耐湿性の優れた良好な膜が得られる。即ち、
赤外線吸収スペクトルで確認した所、この程度の屈折率
の場合、水素の含有(S i IIの存在)は殆ど認め
られなくなり、ストレスの小さい、耐湿性の良好な膜を
形成する。
The refractive index is an index indicating the film quality of the 5iJ4 film, and when it is about 2.0, a good film that is dense and has excellent moisture resistance can be obtained. That is,
As confirmed by infrared absorption spectrum, when the refractive index is at this level, hydrogen content (presence of S i II) is hardly recognized, and a film with low stress and good moisture resistance is formed.

5izHb:30 cc /sec % Nz: 23
 cc /sec 、マイクロ波型カニ500Wの場合
、屈折率 2.0、成長速度約1000人/min と
なる。
5izHb: 30 cc/sec% Nz: 23
cc/sec, microwave type crab 500W, the refractive index is 2.0, and the growth rate is about 1000 people/min.

5izH6は解離率がSiシのそれよりも大きいため、
膜成長速度が大となるものめである。
Since the dissociation rate of 5izH6 is higher than that of Si,
This is the one that increases the film growth rate.

上記の5iJ6の替わりに5i3H,を用いてSi3N
Using 5i3H instead of 5iJ6 above, Si3N
.

膜を形成すると、5iJsは更に解離率が高いので〆防
テ、膜成長速度が更に大きい良質な膜を得ることが出来
る。
When a film is formed, since 5iJs has a higher dissociation rate, it is possible to obtain a high-quality film with a higher film growth rate.

実施例は、Si基板上へのSi3N4膜形成について説
明したが半導体基板が他の材質の基板であって〔発明の
効果〕 以上詳細に説明したように、本発明によれば、ストレス
の小さい、汚染の少ない、緻密な、耐湿性の良好な、^
1パターン上のパンシベーション膜として最適な5i3
Na膜を高速に形成することが出来る。
Although the embodiment describes the formation of a Si3N4 film on a Si substrate, the semiconductor substrate is a substrate made of another material. [Effects of the Invention] As explained in detail above, according to the present invention, the formation of a Si3N4 film on a Si substrate can be performed with low stress. Less contamination, dense, and good moisture resistance ^
5i3 is optimal as a pansivation film on one pattern
A Na film can be formed at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明におけるSi3N4膜形成に用いた発散
磁界型ECRプラズマ装置の構成概略図、第2図は本発
明におけるマイクロ波電力とストレスとの関係図、 第3図は本発明におけるマイクロ波電力と成長速度およ
び屈折率の関係図である。 これら図において、 1はECRプラズマ発生室、 2は反応室、 3は第1のガス導入口、 4は第2のガス導入口、 5は半導体基板(St基板)、 6は電磁石コイル、 7は導波管、 8はマイクロ波発振器、 9はマイクロ波導入窓、 10はアパーチャ、 11はプラズマシャッタ、 12は基板載置台、 13はロードロッカー!、 14はロークリポンプ、 15はターボモレキュラーポンプ、 16はメカニカルブースタポンプ、 17はウォータポンプ、 R1は電子サイクロトロン共鳴(ECR)プラズマ、 R2はプラズマ ん  胞λl刀゛又妥入口        13.ロー
トパ口・・Iカー18開!18G3−50028(5) マイクO汝電力 (W) #廃コ日月1てあ1ブる74り03反電力とストレスに
の11   s 2a ・::すA四 長 55i14反             14;ロータ
゛ノボンア6 : 電私石]イル          
 15; ターホ′モレA−LラーオSンフ09 : 
マイクロ3g導入熱(アルミf)11月(二カ・1する
5r 3 N+ハ更)X2.戊に用し1丁に、4さ、歎
私恩代贋。 ηb 度 〜ir+           21尿−七・ 町
Fig. 1 is a schematic diagram of the configuration of a divergent magnetic field type ECR plasma apparatus used for forming the Si3N4 film in the present invention, Fig. 2 is a diagram showing the relationship between microwave power and stress in the present invention, and Fig. 3 is a diagram showing the relationship between microwave power and stress in the present invention. FIG. 3 is a relationship diagram between electric power, growth rate, and refractive index. In these figures, 1 is an ECR plasma generation chamber, 2 is a reaction chamber, 3 is a first gas inlet, 4 is a second gas inlet, 5 is a semiconductor substrate (St substrate), 6 is an electromagnetic coil, and 7 is an electromagnetic coil. Waveguide, 8 is a microwave oscillator, 9 is a microwave introduction window, 10 is an aperture, 11 is a plasma shutter, 12 is a substrate mounting table, 13 is a load locker! , 14 is a rotary pump, 15 is a turbo molecular pump, 16 is a mechanical booster pump, 17 is a water pump, R1 is an electron cyclotron resonance (ECR) plasma, and R2 is a plasma cell λl sword and an inlet 13. Rotopa mouth...I car 18 openings! 18G3-50028 (5) Microphone O thy power (W) electric private stone] il
15; Taho'more A-L Rao S Nhu 09:
Micro 3g introduction heat (aluminum f) November (2.1 5r 3 N + ha) X2. I used it for the first time, and it was 4 times, so I paid for it. ηb degree~ir+ 21 urine-7・town

Claims (1)

【特許請求の範囲】 電子サイクロトロン共鳴プラズマ発生室(1)と、 この電子サイクロトロン共鳴プラズマ発生室(1)に隣
接する反応室(2)と、 前記電子サイクロトロン共鳴プラズマ発生室(1)にマ
イクロ波電力およびガスを導入する手段と、 前記反応室(2)にガスを導入する手段と、前記電子サ
イクロトロン共鳴プラズマ発生室(1)内に導入したガ
スに電子サイクロトロン共鳴プラズマ(R1)を発生さ
せ、この電子サイクロトロン共鳴プラズマ(R1)を発
散磁界により前記反応室(2)に引き出し、前記反応室
(2)に導入したガスにプラズマ(R2)を発生させる
手段とを備えて構成された薄膜形成装置を用いる薄膜形
成方法において、 前記反応室(2)内で、半導体基板の表面(5)を室温
から100℃の範囲の温度に保ち、 前記電子サイクロトロン共鳴プラズマ発生室(1)に窒
素ガスを導入し、反応室(2)にはジシラン或いはトリ
シランを導入して、これにより発生したプラズマ(R2
)により、前記シリコン基板(5)の表面に窒化半導体
膜を形成させる工程を 有することを特徴とする薄膜形成方法。
[Claims] An electron cyclotron resonance plasma generation chamber (1), a reaction chamber (2) adjacent to the electron cyclotron resonance plasma generation chamber (1), and a microwave injected into the electron cyclotron resonance plasma generation chamber (1). means for introducing electric power and gas; means for introducing gas into the reaction chamber (2); generating electron cyclotron resonance plasma (R1) in the gas introduced into the electron cyclotron resonance plasma generation chamber (1); A thin film forming apparatus comprising means for drawing out this electron cyclotron resonance plasma (R1) into the reaction chamber (2) using a divergent magnetic field and generating plasma (R2) in the gas introduced into the reaction chamber (2). In the thin film forming method using the method, the surface (5) of the semiconductor substrate is kept at a temperature in the range of room temperature to 100°C in the reaction chamber (2), and nitrogen gas is introduced into the electron cyclotron resonance plasma generation chamber (1). Disilane or trisilane is introduced into the reaction chamber (2), and the plasma generated thereby (R2
) A method for forming a thin film, comprising the step of forming a nitride semiconductor film on the surface of the silicon substrate (5).
JP19462686A 1986-08-20 1986-08-20 Formation of thin-film Pending JPS6350028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19462686A JPS6350028A (en) 1986-08-20 1986-08-20 Formation of thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19462686A JPS6350028A (en) 1986-08-20 1986-08-20 Formation of thin-film

Publications (1)

Publication Number Publication Date
JPS6350028A true JPS6350028A (en) 1988-03-02

Family

ID=16327643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19462686A Pending JPS6350028A (en) 1986-08-20 1986-08-20 Formation of thin-film

Country Status (1)

Country Link
JP (1) JPS6350028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372304B1 (en) * 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS5933837A (en) * 1982-08-19 1984-02-23 Nippon Telegr & Teleph Corp <Ntt> Formation of insulating film onto surface of semiconductor device
JPS60115235A (en) * 1983-11-26 1985-06-21 Nippon Telegr & Teleph Corp <Ntt> Formimg method of insulation film on compound semiconductor substrate
JPS61166975A (en) * 1985-01-16 1986-07-28 Anelva Corp Formation of film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS5933837A (en) * 1982-08-19 1984-02-23 Nippon Telegr & Teleph Corp <Ntt> Formation of insulating film onto surface of semiconductor device
JPS60115235A (en) * 1983-11-26 1985-06-21 Nippon Telegr & Teleph Corp <Ntt> Formimg method of insulation film on compound semiconductor substrate
JPS61166975A (en) * 1985-01-16 1986-07-28 Anelva Corp Formation of film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6372304B1 (en) * 1996-07-10 2002-04-16 Suzuki Motor Corporation Method and apparatus for forming SiC thin film on high polymer base material by plasma CVD

Similar Documents

Publication Publication Date Title
US11062910B2 (en) Surface treatment of silicon or silicon germanium surfaces using organic radicals
US4401054A (en) Plasma deposition apparatus
JPS61127121A (en) Formation of thin film
JP2005005280A (en) Method for passivating semiconductor substrate
JP2009290026A (en) Film forming method of semiconductor device which uses neutral particle
JPH03111578A (en) Method for forming thin film and device for forming thin film
KR102469451B1 (en) Method for area-selective etching of silicon nitride layers for the manufacture of microelectronic workpieces
US5401358A (en) Dry etching method
JP2001160551A (en) Method for etching polysilicon having a smooth surface
CN116110775A (en) Surface pretreatment process for improving quality of oxide film generated by remote plasma
JPS6350028A (en) Formation of thin-film
JPH0355401B2 (en)
JP4141021B2 (en) Plasma deposition method
JPH0521983B2 (en)
JPH05343391A (en) Manufacture of semiconductor device
JPH0614522B2 (en) Surface treatment method and surface treatment apparatus
KR102146543B1 (en) Method of fabricating amorphous silicon layer
KR100329787B1 (en) A method for eleminating of photoresistor in semiconductor device
JPS62254419A (en) Plasma deposition device
TW201831723A (en) Film Forming Method, Boron Film, and Film Forming Apparatus
JP2019102508A (en) Method and apparatus for forming boron-based film
JP3088446B2 (en) Plasma processing apparatus and plasma processing method
JPH05144773A (en) Plasma etching apparatus
JPH06333842A (en) Device and method for microwave plasma treatment
JPS6277465A (en) Formation of amorphous silicon film