JPS6349901A - Control constant setting device for plant control system - Google Patents
Control constant setting device for plant control systemInfo
- Publication number
- JPS6349901A JPS6349901A JP61194578A JP19457886A JPS6349901A JP S6349901 A JPS6349901 A JP S6349901A JP 61194578 A JP61194578 A JP 61194578A JP 19457886 A JP19457886 A JP 19457886A JP S6349901 A JPS6349901 A JP S6349901A
- Authority
- JP
- Japan
- Prior art keywords
- margin
- control
- control system
- gain
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 4
- 238000012369 In process control Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、プラントの温度、流量、圧力などを制御する
プラント制御系の制御定数設定装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a control constant setting device for a plant control system that controls the temperature, flow rate, pressure, etc. of a plant.
(従来の技術)
る。例えばPID制御系では、目標値信号r(tlと制
御:1Ly(tlとの偏差e (tlから、操作信号u
(tlを、矢のPID演算式
により求めるようにしている。ここで、C0+ 01
*C2は制御定数であり、それぞれ積分ゲイン、比例ゲ
イン、微分ゲインである。また、I−PD制御系では、
操作信号u(tlを、次のI−PD演算式により求めて
いる。ここで、K、fo、flは制御定数であり、それ
ぞれ積分ゲイン、比例ゲイン、微分ゲインである。(Conventional technology) For example, in a PID control system, the deviation e between the target value signal r(tl and control: 1Ly(tl) (from tl, the operation signal u
(tl is calculated using the arrow PID calculation formula. Here, C0+ 01
*C2 is a control constant, and is an integral gain, a proportional gain, and a differential gain, respectively. In addition, in the I-PD control system,
The operation signal u(tl is obtained by the following I-PD calculation formula. Here, K, fo, and fl are control constants, and are an integral gain, a proportional gain, and a differential gain, respectively.
制御系においては、通常これらの制御定数を色11御対
象の動特性に応じて適切に設定する必要がある。従来、
PID制御系、I−PD制御系の双方に共通な制御定数
の設定方法として、制御対象の部分的知識に基づく制御
系の設計法(北森俊行著、計測自動制御学会論文集、−
101,15+ム4昭和54年8月、 P549〜55
5)が知られている。この方法は、制御対象の分母系列
表現した伝達関数と制御系の望ましい特性を表わす参照
モデルとから、制御装置の制御定数を簡単な演算式によ
り求めることができる利点がある。In a control system, it is usually necessary to appropriately set these control constants according to the dynamic characteristics of the color 11 object. Conventionally,
As a method for setting control constants common to both PID control systems and I-PD control systems, a control system design method based on partial knowledge of the controlled object (written by Toshiyuki Kitamori, Proceedings of the Society of Instrument and Control Engineers, -
101,15+Mu4 August 1971, P549-55
5) is known. This method has the advantage that the control constants of the control device can be determined by a simple arithmetic expression from a transfer function expressed as a denominator series of the controlled object and a reference model representing desirable characteristics of the control system.
しかしながら、この方法では、ゲイン余裕及び位相余裕
に基づいた設計がなされていない為、制御対象のステッ
プ応答波形が一一パーシーートあるいは逆応答するよう
な制御系については、必ずしも良好に設計されないとい
う欠点があっ之。ま九、設計された制御定数を用いた場
合、制御系の安定性が保証されないという問題もあった
。However, this method has the disadvantage that it is not necessarily well designed for control systems where the step response waveform of the controlled object is 11 per sheet or has an inverse response, since the design is not based on gain margin and phase margin. Ahhh. Furthermore, there was also the problem that the stability of the control system was not guaranteed when designed control constants were used.
これに対し、PID制御系に限れば、ゲイン余裕位相余
裕に基づいた設計法が古くから知られているが、この方
法はゲート線図を用いた試行錯誤的な方法だよらなけれ
ばならず、しかも制御系の仕様通シにゲイン余裕、位相
余裕を設定する方法が明らかになっておらず経験に基づ
きなされていた。On the other hand, in the case of PID control systems, a design method based on gain margin and phase margin has been known for a long time, but this method requires a trial-and-error method using gate diagrams. Moreover, the method for setting gain margin and phase margin in the control system specifications was not clear, and was done based on experience.
この慎鵞制御定数の設定の自動化は不可能であった。It was impossible to automate the setting of this control constant.
(発明が解決しようとする問題点)
このように、プラント制御系における従来の制御定数設
定法では、例えばPID、 I−PD等のあらゆる補償
動作形態について、望ましい制御系の特性通りに制御定
数を設計することができず、設計後の制御系の安定性を
保証することができなかった。(Problems to be Solved by the Invention) As described above, in the conventional control constant setting method for plant control systems, it is difficult to set control constants according to the desired control system characteristics for all types of compensation operation such as PID and I-PD. Therefore, it was not possible to guarantee the stability of the control system after it was designed.
本発明は、上述した従来の制御定数の自動設計方法の欠
点を改良するもので、種々の補償動作形□態について、
制御定数を望ましい制御系の特性通シに設計でき、さら
に設計後の制御系の安定性を保証できるプラント制御系
の制御定数演算部aを提供することを目的とする。The present invention improves the drawbacks of the conventional automatic design method of control constants described above.
It is an object of the present invention to provide a control constant calculation unit a for a plant control system that can design control constants according to desired control system characteristics and further guarantee the stability of the designed control system.
[発明の構成]
(問題を解決するための手段]
本発明は、制御系の望ましい動特性?示す参照モデルの
特性係数を入力し、この特性係数から位相余裕(PM
: Phase Margin )とゲイン余裕(GM
: Ga1n Margin)を演算する第1の演算手
段と、入力された制御対象の伝達関数とPID、 I−
PD等9補償動作形態情報と、第1の演算手段で演算さ
れた位相余裕とゲイン余裕とを入力し、制御対象の位相
余裕とゲイン余裕とが上記参照モデルの位相余裕とゲイ
ン余裕とに一致するように制御対象の制御定数を算出す
る第2の演算手段とを具備したことを特徴としている。[Structure of the Invention] (Means for Solving the Problem) The present invention inputs the characteristic coefficients of a reference model indicating desirable dynamic characteristics of a control system, and calculates the phase margin (PM) from these characteristic coefficients.
: Phase Margin) and gain margin (GM
: Ga1n Margin), the input transfer function of the controlled object, PID, I-
9 compensation operation mode information such as PD, and the phase margin and gain margin calculated by the first calculation means are input, and the phase margin and gain margin of the controlled object match the phase margin and gain margin of the above reference model. The present invention is characterized by comprising a second calculation means for calculating the control constant of the controlled object so as to calculate the control constant of the controlled object.
−
(作用)
これまで、プロセス制御系では位相余裕が16〜80°
、ゲイン余裕が3〜9dB、サーが制御系では、位相余
裕が40〜65°、ゲイン余裕が12〜20dBと1割
に広い許容幅を持っていた。このような位相余裕とゲイ
ン余裕に基づいていたため制御系の安定性は維持される
が、制御系の応答波形が意図した望ましい応答を持つか
どうかが、設計時には分らず、そのために位相余裕とゲ
イン余裕をを少しずつ変えて設計する試行錯誤になって
いた。- (Function) Until now, in process control systems, the phase margin was 16 to 80 degrees.
In the control system, the gain margin was 3 to 9 dB, and the phase margin was 40 to 65 degrees, and the gain margin was 12 to 20 dB, which is a 10% wide tolerance range. The stability of the control system is maintained because it is based on these phase margins and gain margins, but it is not known at the time of design whether the response waveform of the control system has the intended desired response. It was a trial and error process of designing by changing the allowance little by little.
本発明では制御系の望ましい特性を表わす参照モデルの
特性係数から正確な位相余裕とゲイン余裕とを演算して
いる。また、与えられた補償動作形態(PID制御系か
I−PD制御系)と入力した制御対象の伝達関数とから
、演算された位相余裕とゲイン余裕になるように制御定
数が演算できるので、設計後の制御系の動特性は、設定
した参照モデルの特性通シになると同時に安定性も保証
される。、(実施例)
以下1本発明を図示の実施例に従って詳細に説明する。In the present invention, accurate phase margins and gain margins are calculated from characteristic coefficients of a reference model representing desirable characteristics of a control system. In addition, the control constants can be calculated from the given compensation operation mode (PID control system or I-PD control system) and the input transfer function of the controlled object so that the calculated phase margin and gain margin are achieved. The subsequent dynamic characteristics of the control system will be consistent with the characteristics of the set reference model, and stability is also guaranteed. , (Example) The present invention will be described in detail below according to an illustrated example.
第1図は、本発明の一実施例に係るプラント制御系制御
定数設定装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of a plant control system control constant setting device according to an embodiment of the present invention.
即ち、本装置は、第1の演算手段であるPM−GM演算
部1と、第2の演算手段である制御定数演算部2とで構
成されている。That is, the present device is composed of a PM-GM calculation section 1, which is a first calculation means, and a control constant calculation section 2, which is a second calculation means.
PM−GM演算部1は、望ましい応答を示す参照モデル
の特性係数αl 、α2 、α3を入力して、参照モデ
ルの位相余裕PMと、ゲイン余裕GMとを算出するもの
である。また、制御定数演算部2は、上記PM−GM演
算部1で算出された位相余裕PM、ゲイン余裕GMと、
補償動作形態情報(制御系がPID制御系かI−PD制
御系かを示す情報)と、制御系の伝達関数G(Slとを
入力して制御定数C8,C1。The PM-GM calculation unit 1 inputs characteristic coefficients αl, α2, and α3 of a reference model indicating a desirable response, and calculates a phase margin PM and a gain margin GM of the reference model. Further, the control constant calculation section 2 calculates the phase margin PM and gain margin GM calculated by the PM-GM calculation section 1,
Compensation operation mode information (information indicating whether the control system is a PID control system or an I-PD control system) and the transfer function G (Sl) of the control system are inputted, and the control constants C8 and C1 are determined.
C2又はに+fo*ft を算出するものである。C2 or +fo*ft is calculated.
今、例えば制御系の望ましい動特性を示す参照モデルG
m(S)が、
・・・・・・(3)
で示されるとする。なお、ここでSは微分演算子、σは
ステップ応答の立上り時間に関する係数である。Now, for example, a reference model G showing the desired dynamic characteristics of the control system
Suppose that m(S) is expressed as... (3). Note that here, S is a differential operator, and σ is a coefficient related to the rise time of the step response.
参照モデルの特性係数α1 、α2 、α、を次の(4
)式のように表し、αの値を種々変えたときのステップ
応答波形群1;、牙え口(てポ七代う。The characteristic coefficients α1, α2, α of the reference model are expressed as follows (4
), and step response waveform group 1 when the value of α is varied.
α=0.0に設定すると、オーバーシュートのない応答
が得られ、α=0.4でオーバーシュートが殆んどなく
立上りの最も早い応答が得られる。α全0.4より大き
くしてゆくと、これにつれてオーバーシュート量が増大
し、α=1.0では約10%のオーバーシュート量とな
る。When α=0.0 is set, a response without overshoot is obtained, and when α=0.4, a response with almost no overshoot and the fastest rise is obtained. As α becomes larger than 0.4, the amount of overshoot increases accordingly, and when α=1.0, the amount of overshoot becomes about 10%.
PM−GM演算部1には、第2図に示す応答波形に基づ
いて選択された特性係数α2 、α1.α4が入力され
る。The PM-GM calculation unit 1 has characteristic coefficients α2, α1, . α4 is input.
PM−GM演算部1では、次のような演算により位相余
裕(PM)とゲイン余裕(GM)とが算出される。In the PM-GM calculation unit 1, a phase margin (PM) and a gain margin (GM) are calculated by the following calculations.
即ち、参照モデルの一巡伝達関数Gm(Stは(3)式
より、
で示すことができ、その周波数応答はS=jωとおくこ
とにより
・・・・・・(7)
わ
とした半径1の円と交Wる点Pと負の実軸とのなす角ψ
、が位相余裕PMである。In other words, the open loop transfer function Gm (St of the reference model can be expressed as follows from equation (3), and its frequency response can be expressed by setting S=jω...(7) With a radius of 1 The angle ψ between the point P that intersects the circle and the negative real axis
, is the phase margin PM.
いま、P点における交差角周波数をω、とすると、P点
ではゲインが1であるから、(7)式より、・・・・・
・(8)
の関係が得られ、x==(σω、)2とおいて(8)式
を展開し整理すると、
1−x+(2α3−α2’)x2+(2α2αじα32
)x3−α42x4=0・・・(9)となる。この(9
)式よりXの正の最大群xmを求める。Now, if the crossing angular frequency at point P is ω, then the gain is 1 at point P, so from equation (7),...
・The relationship (8) is obtained, and by expanding and rearranging equation (8) by setting x = = (σω, )2, we get 1-x + (2α3-α2') x2 + (2α2α and α32
)x3-α42x4=0 (9). This (9
) Find the maximum positive group xm of X from the formula.
そして、(7)式と第3図とより、位相余裕ψMは、9
M = cai−’ (α2xrn−α4x−2)
・・・・・・αqによって求めることができる。Then, from equation (7) and Figure 3, the phase margin ψM is 9
M = cai-' (α2xrn-α4x-2)
・・・・・・It can be obtained by αq.
同様に、第3図に示すGrn (j w&クトル軌跡が
負の実軸と交わる点Gがゲイン余裕GMを規定する点で
あるから、ダイン余裕GMは、
と表わすことができる。従ってPM−GM演算部1は、
入力された参照モデルの特性係数α1 、α1.α3次
に制御定数演算部2では次のようにして制御定数が算出
される。Similarly, since the point G where the Grn (j w & vector intersects the negative real axis shown in FIG. 3) defines the gain margin GM, the dyne margin GM can be expressed as: Therefore, PM-GM The calculation unit 1 is
Characteristic coefficients α1, α1. of the input reference model. α3 Next, the control constant calculating section 2 calculates the control constant as follows.
まず、入力された制御対象の伝達関数G(Slを、とす
る。ここでtはむだ時間、al(i=0.l、2.・・
・)は分母多項式の係数、J (1=0.1 # 2−
・・・)は分子多項式の係数である。この周波数応答は
S=jωとおいて、
G(j 6J) = l G(jω) I ・e−’
”” −・−・・・QJと表わせる。ここでIG(
jω)1はゲイン特性であり、0(ω)は位相特性であ
る。First, let the input transfer function G (Sl) of the controlled object be, where t is the dead time, al (i=0.l, 2...
・) is the coefficient of the denominator polynomial, J (1=0.1 # 2−
) are the coefficients of the numerator polynomial. This frequency response is given by S=jω, G(j 6J) = l G(jω) I ・e−'
”” −・−・・・QJ. Here IG (
jω)1 is a gain characteristic, and 0(ω) is a phase characteristic.
いま入力された制御対象の補償動作形態がI −PD制
御系であるとすると、偏差e(t)と制御量y(t)と
の間の一巡伝達関数T(S)は、
となり、S=3ωとし、(6)式を代入することによシ
を得る。この−巡伝達関数T(jω)のベクトル軌跡に
ついても、第3図の軌跡と同様P点で位相余裕ψ、とな
る条件より、
(2)9M
を得る。ただし、ω、は、P 点を通過するときの交差
角周波数である。Assuming that the compensation operation form of the controlled object that has just been input is an I-PD control system, the round transfer function T(S) between the deviation e(t) and the control amount y(t) is as follows, and S= 3ω and by substituting equation (6), we obtain the equation. Regarding the vector locus of this -cyclic transfer function T(jω), (2) 9M is obtained from the condition that there is a phase margin ψ at point P, similar to the locus in FIG. However, ω is the crossing angular frequency when passing through point P.
次にG点のにイン余裕がGMである条件よシを得る。こ
こで、町は、G点を通過するときの角周波数である。そ
して、I−P動作ではsf*”0とし゛、I−FD動作
では、f1→として、a→、αの。Next, we obtain the condition that the in margin at point G is GM. Here, town is the angular frequency when passing through point G. Then, in the I-P operation, sf*"0 is set, and in the I-FD operation, as f1→, a→, α.
0時式を満たす町が見つかったときのK s fo a
flが設定したゲイン余裕GM、位相余裕ψ1を満た
す制御定数である。K s fo a when a town that satisfies the 0:00 formula is found
fl is a control constant that satisfies the set gain margin GM and phase margin ψ1.
次に、入力された補償動作形態がPID制御系である場
合の偏差e(υと制御量y(1)との間の一巡伝達関数
T(S)は、
となi)、5=Jsとして(2)式を代入することによ
シ・・・・・・(イ)
を得る。同様に、2点で位相余裕ψつとなる条件より、
を得る。Next, when the input compensation operation form is a PID control system, the round transfer function T(S) between the deviation e(υ and the controlled variable y(1) is as follows, i), 5=Js. By substituting equation (2), we obtain (a). Similarly, from the condition that there is one phase margin ψ at two points, we obtain.
また、G 点のにイン余裕がGMであることより、を得
る。Also, since the in-margin at point G is GM, we get
としてり9.四式を満たすω、が見つかったときのco
l cll c、が設定したゲイン余裕GM と位相余
裕ψうを満たす制御定数である。Totori 9. co when ω is found that satisfies the formula
l cll c is a control constant that satisfies the set gain margin GM and phase margin ψ.
以上のように、制御定数演算部2では、I−PD制御系
の場合に(1s 、 (1′り、 t:tυ式を演算し
、PID制御系の場合に?優、四式を演算することによ
り、望ましい制御系の特性に合致した制御定数を算出す
ることができる。As described above, the control constant calculation unit 2 calculates the equations (1s, (1', t:tυ) in the case of the I-PD control system, and calculates the equations ? By doing so, it is possible to calculate control constants that match the desired characteristics of the control system.
[発明の効果]
このように本発明によれば、制御系の望ましい動特性を
あられす参照モデルの特性係数よりゲイン余裕GMと位
相余裕ψ、とを演算するようにしたので、応答波形イメ
ージに一致する正確なゲイン余裕と位相余裕が演算され
る。そして、次だ制御対象の伝達関数のケ0イン特性と
位相特性とから、設定したゲイン余裕と位相余裕に一致
する制御定数を求めているため、制御対象の零点、ムダ
時間も自動的に考慮されている形になシ、従来の制御対
象の部分的知識に基づく制御系の設計法(前記)に比べ
、適用範囲を格段に広げることができる。[Effects of the Invention] As described above, according to the present invention, the gain margin GM and the phase margin ψ are calculated from the characteristic coefficients of the reference model that determines the desired dynamic characteristics of the control system, so that the response waveform image Accurate matching gain and phase margins are computed. Next, the control constants that match the set gain margin and phase margin are determined from the key-in characteristics and phase characteristics of the transfer function of the controlled object, so the zero point and dead time of the controlled object are automatically taken into account. In this way, the scope of application can be greatly expanded compared to the conventional control system design method (described above) based on partial knowledge of the controlled object.
また、従来の方法では制御系の安定性を保証できないと
いう問題も、ゲイン余裕、位相余裕によシ十分な安定度
を残せることから解決され、安定度は保証される。Furthermore, the problem that the stability of the control system cannot be guaranteed with the conventional method is solved because sufficient stability can be left in the gain margin and phase margin, and stability is guaranteed.
第1図は本発明の一実施例に係るプラント制御系の制御
定数設定装置を示すブロック図、第2図は参照モデルの
応答波形図、第3図は参照モデルの一巡伝達関数のベク
トル軌跡を示す図である。
1・・・PM −GM i軍部、2・・・制御定数演算
部。
第1図
第2図
第 3 図FIG. 1 is a block diagram showing a control constant setting device for a plant control system according to an embodiment of the present invention, FIG. 2 is a response waveform diagram of a reference model, and FIG. 3 is a vector locus of the open-loop transfer function of the reference model. FIG. 1...PM-GM i-military section, 2...Control constant calculation section. Figure 1 Figure 2 Figure 3
Claims (1)
入力し該参照モデルのゲイン余裕及び位相余裕を算出す
る第1の演算手段と、この第1の演算手段により算出さ
れたゲイン余裕及び位相余裕と、前記制御対象の伝達関
数と、前記制御対象の補償動作形態情報とを入力し、前
記制御対象のゲイン余裕及び位相余裕が前記算出された
参照モデルのにイン余裕及び位相余裕に一致するように
前記制御対象の制御定数を算出する第2の演算手段とを
具備してなるプラント制御系の制御定数設定装置。a first calculation means for inputting characteristic coefficients of a reference model indicating a desired response of the controlled object and calculating a gain margin and a phase margin of the reference model; and a gain margin and a phase margin calculated by the first calculation means. , input the transfer function of the controlled object and compensation operation form information of the controlled object, and make the gain margin and phase margin of the controlled object match the in margin and phase margin of the calculated reference model. A control constant setting device for a plant control system, comprising: second calculation means for calculating a control constant of the controlled object.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61194578A JP2791011B2 (en) | 1986-08-20 | 1986-08-20 | Control parameter setting device for plant control system |
US07/085,726 US4882526A (en) | 1986-08-12 | 1987-08-10 | Adaptive process control system |
DE3750203T DE3750203T2 (en) | 1986-08-12 | 1987-08-11 | Adaptive process control system. |
EP87307109A EP0256842B1 (en) | 1986-08-12 | 1987-08-11 | Adaptive process control system |
KR1019870008826A KR900005546B1 (en) | 1986-08-12 | 1987-08-12 | Adaptive process control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61194578A JP2791011B2 (en) | 1986-08-20 | 1986-08-20 | Control parameter setting device for plant control system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6349901A true JPS6349901A (en) | 1988-03-02 |
JP2791011B2 JP2791011B2 (en) | 1998-08-27 |
Family
ID=16326871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61194578A Expired - Fee Related JP2791011B2 (en) | 1986-08-12 | 1986-08-20 | Control parameter setting device for plant control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2791011B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5392678A (en) * | 1992-08-27 | 1995-02-28 | Makita Corporation | Miter saw |
US5437214A (en) * | 1992-05-22 | 1995-08-01 | Makita Corporation | Miter saw |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60105006A (en) * | 1983-11-12 | 1985-06-10 | Meidensha Electric Mfg Co Ltd | Automatic setting device for pi and pid controller parameter |
JPS6142003A (en) * | 1984-08-03 | 1986-02-28 | Hitachi Ltd | Automatic adjusting method of control constant |
-
1986
- 1986-08-20 JP JP61194578A patent/JP2791011B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60105006A (en) * | 1983-11-12 | 1985-06-10 | Meidensha Electric Mfg Co Ltd | Automatic setting device for pi and pid controller parameter |
JPS6142003A (en) * | 1984-08-03 | 1986-02-28 | Hitachi Ltd | Automatic adjusting method of control constant |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5437214A (en) * | 1992-05-22 | 1995-08-01 | Makita Corporation | Miter saw |
US5660094A (en) * | 1992-05-22 | 1997-08-26 | Makita Corporation | Miter saw |
US5839339A (en) * | 1992-05-22 | 1998-11-24 | Makita Corporation | Miter saw |
US5392678A (en) * | 1992-08-27 | 1995-02-28 | Makita Corporation | Miter saw |
Also Published As
Publication number | Publication date |
---|---|
JP2791011B2 (en) | 1998-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7272454B2 (en) | Multiple-input/multiple-output control blocks with non-linear predictive capabilities | |
EP0256842B1 (en) | Adaptive process control system | |
US5268835A (en) | Process controller for controlling a process to a target state | |
WO1996034324A1 (en) | Feedback method for controlling non-linear processes | |
US5988850A (en) | Curve interpolation method for performing velocity control during connecting motion of a robot | |
JPH06119001A (en) | Controller | |
JPS6349901A (en) | Control constant setting device for plant control system | |
JPH0822306A (en) | Automatic adjusting device for arithmetic control parameter | |
JPH077285B2 (en) | Plant control equipment | |
JPH07210208A (en) | Autotuning method for thermal power plant and thermal power plant controller utilizing the same | |
JP2585294B2 (en) | PID controller | |
JPH09146610A (en) | Multivariable nonlinear process controller | |
Feiler et al. | Adaptive speed control of a two-mass system | |
JP2758246B2 (en) | Auto tuning controller | |
Rivas-Echeverria et al. | Neural network-based auto-tuning for PID controllers | |
JPH11506553A (en) | Dynamic process modeling equipment | |
JPH09101804A (en) | Method for setting parameter in adaptive control system | |
Kulinchenko et al. | Pressure Regulator for Low Temperature Separation Process | |
JPS61267101A (en) | Arithmetic unit for plant controlling system control constant | |
JPS6346503A (en) | Pid controller | |
JPS629405A (en) | Process controller | |
JPH0666041B2 (en) | Two degree of freedom sampled value PID controller | |
JPH09101803A (en) | Method and device for generating control knowledge | |
JP3427944B2 (en) | Trajectory tracking positioning control method | |
JPH02259802A (en) | Pid controller adjusting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |