JPS6142003A - Automatic adjusting method of control constant - Google Patents

Automatic adjusting method of control constant

Info

Publication number
JPS6142003A
JPS6142003A JP16294984A JP16294984A JPS6142003A JP S6142003 A JPS6142003 A JP S6142003A JP 16294984 A JP16294984 A JP 16294984A JP 16294984 A JP16294984 A JP 16294984A JP S6142003 A JPS6142003 A JP S6142003A
Authority
JP
Japan
Prior art keywords
control
transmission function
control system
controlled
process variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16294984A
Other languages
Japanese (ja)
Inventor
Hitoshi Sakuma
均 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP16294984A priority Critical patent/JPS6142003A/en
Publication of JPS6142003A publication Critical patent/JPS6142003A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To adjust a control constant to an optimum value and to allow process variables on the lower side of a control system to respond with excellent stability and promptness by identifying the transmission function of a controlled system in the control system and that of the controlled system on the lower side of the control system and allowing the transmission function from a target value of a controlled variable to a process variable, whose response control is required, on the lower side of the control system to coincide with the transmission function of a reference model showing an ideal response characteristic. CONSTITUTION:A control operation device is provided with the second controlled system (process) 6 on the lower side of the control system, the second identifying operation part 7 which identifies the transmission function of the second controlled system in accordance with a controlled variable signal ys(t) and a process variable signal xs(t), and the second detector 8 which detects a process variable x(t) to output the process variable signal xs(t). The first and the second controlled systems are approximated by self-regression moving average models, and G1(s) and G2(s) are identified in accordance with time series signals vs(t),ys(t), and xs(t) before and after them. A control constant operation part 4 obtains the transmission function from a target value rs(t) or y(t) to the process variable x(t) and obtains the optimum control constant on a basis of an operation formula so that this transmission function coincides with a transmission function Gm(sigma, s) of the reference model showing the ideal response characteristic, and the control constant of a control operation device 2 is corrected. Thus, the control constant by which the process variable in the lower side of the control system responds ideally is obtained easily without feeding back this process variable to the control system.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプロセスを制御する制御器の制御定数を、連応
性・安定性の良好な最適値に自動調整する制御定数自動
調整方法に関する0 〔発明の背景〕 この種の方法として、「制御対象の部分的知識に基づく
制御系の設計法」(計測自動制御学会論文集、第5巻、
第4号、5491555、昭54−8)に記載されてい
る(部分的)モデルマツチング法が知られている。以下
ではこの概要を簡単に述べる。第1図にモデルマツチン
グ法の概要を示す。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a control constant automatic adjustment method for automatically adjusting the control constant of a controller that controls a process to an optimal value with good coordination and stability. [Background] This type of method is described in ``Control system design method based on partial knowledge of the controlled object'' (Proceedings of the Society of Instrument and Control Engineers, Vol. 5,
The (partial) model matching method described in No. 4, 5491555, 1984-8) is known. A brief overview of this is given below. Figure 1 shows an overview of the model matching method.

lは制御対象(プロセス)、2はPIDのような制御演
算を行う制御演算部、3は制御対象の伝達関数を同定す
る同定演算部、4は制御演算部2の伝達関数G、(8)
の制御定数の最適値を計算する制御定数演算部、5は制
御量y(t)を検出し、制御量信号y、(t)を出力す
る検出器でめるーモデルマッチング法とは、制御対象の
伝達関数()+(1m)を同定し、制御量に対する目標
値信号「、(1)から制御量y(りまでの閉ループ伝達
関数W(Iりが、理想的な応答を表わす参照モデルの伝
達関数G、 (σ+’)と一致するように制御演算装置
2の制御定数の最適値を求める方法である。
l is the controlled object (process), 2 is the control calculation section that performs control calculations such as PID, 3 is the identification calculation section that identifies the transfer function of the controlled object, 4 is the transfer function G of the control calculation section 2, (8)
5 is a control constant calculation unit that calculates the optimal value of the control constant of the controlled object, and 5 is a detector that detects the controlled variable y(t) and outputs the controlled variable signal y,(t). The transfer function ()+(1m) for the controlled variable is identified, and the closed-loop transfer function W(I) from the target value signal ``,(1) to the controlled variable y(I) is the reference model representing the ideal response. This is a method of determining the optimum value of the control constant of the control calculation device 2 so as to match the transfer function G, (σ+').

まず、制御対象を自己回帰移動平均モデルで近似し、そ
の伝達関数G+ (S)を操作信号v、(りと制御量信
号ys (lから、カルマンフィルタ・アルゴリズムを
用いて同定し、次のように変形する@次く、例えば制御
演算装置2がPI動作の場合には、その伝達関数G、(
S)は次のようKなる@こζで、K、は比例ゲイン、T
xは積分時定数と呼ばれる制御定数である。
First, the controlled object is approximated by an autoregressive moving average model, and its transfer function G + (S) is identified from the operation signal v, (ri and control amount signal ys (l) using the Kalman filter algorithm, and is expressed as Deform @Next, for example, when the control calculation device 2 is in PI operation, its transfer function G, (
S) is K as follows, where K is the proportional gain and T
x is a control constant called an integral time constant.

とのG、(S)、G、(S)を用いれば、閉ループ伝達
関数W(S)は次のようになる。
Using G, (S), G, (S), the closed loop transfer function W(S) becomes as follows.

次に1理想的な応答を表わす参照モデルの伝達関数G、
(σ、s)を次のように置く◎G、(σ、 s) −(
4) α豐+屯σS十α嘗σ!S3+α穆σす8+…(α1=
α+=1 ) 目標値信号r、(t)のステップ上昇(下降)K対して
、制御量y(t)Kオーバーシュート(アンダーシュー
ト)のない応答をさせるような参照モデルは、α茸−0
.375、αs=o、o625、α4=0.0039と
すればよいことが知られている。
Next, the transfer function G of the reference model representing an ideal response,
Put (σ, s) as follows◎G, (σ, s) −(
4) α豐+屯σS十α嘗σ! S3+α穆σsu8+…(α1=
α+=1) A reference model that responds to the step increase (decrease) K of the target value signal r, (t) without overshoot (undershoot) of the control amount y(t) is α+=0.
.. 375, αs=o, o625, α4=0.0039.

(3)式と(4)式が一致すれば次式が成り立つ。If equations (3) and (4) match, the following equation holds true.

Gl(8) G、(s) =                 (
s)■ =−〔la+ (gr Fhthσ)3σ3 + (gr−g+α雪σ十g・(αI−αl)σ1)+
・・・) (7)(2)式と(7)式が一致するという
条件から、分子の各項を比較して次式が導かれる。
Gl(8) G,(s) = (
s)■ =-[la+ (gr Fhthσ)3σ3 + (gr-g+α snow σ0g・(αI-αl)σ1)+
...) (7) From the condition that equations (2) and (7) match, the following equation is derived by comparing each term of the numerator.

(分子のSの0次の項) (分子の3の1次の項) [(p=z−(g富−g・α倉σ )        
             (9)σ (分子の3の2次の項) o−g言−Hrαtσ+go(αI−α旬σ”    
  (10)実際には分子の3の3次以上の項がおるが
、特性上重要なSの低次の項から一致させれば、理想的
な制御特性を得ることができる。今の場合、未知数はに
□Txの制御定数と立ち上がり時間に相当するσの3つ
だけであるので、(10)式からσを求め、これを(9
)式に代入し、K、を求め、これらを(8)式に代入し
てTxを求める。
(0th order term of S in numerator) (1st order term in 3 in numerator) [(p=z-(g wealth - g・αkuraσ)
(9) σ (quadratic term of 3 in the numerator)
(10) Although there are actually terms higher than the third order of 3 in the numerator, ideal control characteristics can be obtained by matching the lower order terms of S, which are important in terms of characteristics. In this case, there are only three unknowns: the control constant of □Tx and σ corresponding to the rise time, so find σ from equation (10) and convert it into (9
) to obtain K, and substitute these into equation (8) to obtain Tx.

この方法は、従来多くのパラメータサーベイにより求め
ていた制御定数の最適値を、代数方程式を解くことくよ
り求めるという簡単なものであるが、制御系の閉ループ
に関する方法であり、制御系の下流側Kal々の特性を
有するプロセスが存在し、そのプロセス量に理想的な応
答をさせる必要がるる場合にはそのit適用することが
できないという問題点があった@ 〔発明の目的〕ゝ 本発明の目的は、制御系の下流側のプロセス量に安定性
、連応性の優れた応答をさせることのできる制御定数a
mm方法を提供することにある〇〔発明の概要〕 本発明は、制御系内の制御対象の伝達関数と、制御系下
流側の制御対象の伝達関数を同定し、制御量の目標値か
ら応答を調節する必要のある制御系下流側のプロセス量
までの伝達関数を、理想的な応答特性を表わす参照モデ
ルの伝達関数と一致させ、制御定数を最適値Vcv!4
整するようにしたものである。
This method is a simple method in which the optimal values of control constants, which were conventionally determined by many parameter surveys, are determined by solving algebraic equations. There is a problem in that it cannot be applied when there is a process having the characteristics of Kal and others and it is necessary to give an ideal response to the process quantity. The purpose is to create a control constant a that can provide a stable and highly responsive response to the downstream process variables of the control system.
[Summary of the Invention] The present invention identifies a transfer function of a controlled object in a control system and a transfer function of a controlled object on the downstream side of the control system, and calculates a response from a target value of a controlled variable. The transfer function to the process variable on the downstream side of the control system that needs to be adjusted is made to match the transfer function of the reference model representing the ideal response characteristics, and the control constant is set to the optimum value Vcv! 4
It was designed to be adjusted.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の一実施例を示す。6は制御系下流側の
第2制御対象(プロセス)、7は制御量信号y、(t)
とプロセス量信号x、(りから第2制御対象の伝達関数
を同定する第2同定演算部、8はプロセス量x(t)を
検出しプロセス量信号X、(t)を出力する第2検出器
である。
FIG. 2 shows an embodiment of the present invention. 6 is the second controlled object (process) on the downstream side of the control system, 7 is the controlled variable signal y, (t)
and process quantity signal x, (2) a second identification calculation unit that identifies the transfer function of the second controlled object from It is a vessel.

まず、第1制御対象及び第2制御対象を自己回帰移動平
均モデルで近似し、その前後の時系列信号v、(t)、
y、(t)、x、(t)から、Gl(8)、am(s)
を同定し、次のように変形する。
First, the first controlled object and the second controlled object are approximated by an autoregressive moving average model, and the time series signals before and after that, v, (t),
From y, (t), x, (t), Gl(8), am(s)
is identified and transformed as follows.

次に、a、(s)、G+(’)、Gj(!I)を用いれ
[y(t)の目標値r、(t)からプロセス量x(t)
までの伝達関数w*(s)は次のようになる0 (4)式と(13)式が一致すれば次式カー成り立つO
G、(!l)   G言(S) いま、制御演算部2がPI動作であるとし、(14)弐
K(2)、 (4)、  (11)、  (12)式を
代入すれば次式が成シ立つ0 次に各項の係数を比較して次式が成り立つ。
Next, using a, (s), G+('), Gj (!I), [from the target value r of y(t), (t), the process amount x(t)
The transfer function w*(s) up to
G, (!l) G word (S) Now, assuming that the control calculation unit 2 is in PI operation, and substituting equations (14) 2K (2), (4), (11), and (12), we get the following. 0 The formula holds true Next, the coefficients of each term are compared and the following formula holds true.

(Sの0次の係数) Ts  c1+a  Fhs (Sの1次の係数) (Sの2次の係数) この(1B)式から正の最小のσを求め、これを(17
)式に代入しに、を求め、これらを(16)式に代入し
てT! を求める。制御定数演算部4では、これらの演
算式に基づいてK $ 、T sを求め、匍制御演算装
置20制御定数を修正す+O 以上述べ九ように、本発明の一実施例では、制御しよう
とする、制御系下流側のプロセス量を制御系にフィード
バックすることなしに1そのプロセス量に理想的な応答
をさせることのできる制御定数を容易に求めることがで
きるという効果がろるO 前記実施例において、制御系はI−PD制御系であって
もよい。
(0th order coefficient of S) Ts c1+a Fhs (1st order coefficient of S) (2nd order coefficient of S) Find the minimum positive σ from this formula (1B) and convert it to (17
), calculate , and substitute these into equation (16) to obtain T! seek. The control constant calculation unit 4 calculates K $ and T s based on these calculation formulas, and corrects the control constants in the control calculation unit 20. As described above, in one embodiment of the present invention, the This embodiment has the advantage that control constants that can provide an ideal response to the process variables downstream of the control system can be easily determined without feeding the process variables downstream to the control system. In this case, the control system may be an I-PD control system.

前記実施例において、制御系に補償回路が含まれていて
もよい。
In the embodiment described above, a compensation circuit may be included in the control system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、フィードバック制御系の下流側にプロ
セスがあシ、そのプロセス量を制御する必要がある場合
、そのプロセス量に理想的な応答をさせることのできる
制御定数を容易に求めることができる。さらに、このプ
ロセス量をfllJllilcフィードバックする必要
がない、つまり既存の制御系を改良する必要がないため
、経済性に優れる。
According to the present invention, when there is a process on the downstream side of the feedback control system and it is necessary to control the process quantity, it is possible to easily obtain control constants that can give an ideal response to the process quantity. can. Furthermore, there is no need to feed back this process amount, that is, there is no need to improve the existing control system, so it is highly economical.

【図面の簡単な説明】[Brief explanation of the drawing]

するブロック図でおる。 This is a block diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、同定した制御対象伝達関数から制御定数を演算し、
制御演算装置の制御定数を調整する方法において、フィ
ードバックする制御量の目標値からプロセスの最も重要
な変化量までの伝達関数と参照モデルの伝達関数が一致
するように前記制御演算装置の制御定数を自動調整する
ことを特徴とした制御定数自動調整方法。
1. Calculate the control constant from the identified control target transfer function,
In a method of adjusting control constants of a control calculation device, the control constants of the control calculation device are adjusted so that the transfer function from the target value of the controlled variable to be fed back to the most important amount of change in the process matches the transfer function of the reference model. A control constant automatic adjustment method characterized by automatic adjustment.
JP16294984A 1984-08-03 1984-08-03 Automatic adjusting method of control constant Pending JPS6142003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16294984A JPS6142003A (en) 1984-08-03 1984-08-03 Automatic adjusting method of control constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16294984A JPS6142003A (en) 1984-08-03 1984-08-03 Automatic adjusting method of control constant

Publications (1)

Publication Number Publication Date
JPS6142003A true JPS6142003A (en) 1986-02-28

Family

ID=15764322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16294984A Pending JPS6142003A (en) 1984-08-03 1984-08-03 Automatic adjusting method of control constant

Country Status (1)

Country Link
JP (1) JPS6142003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349901A (en) * 1986-08-20 1988-03-02 Toshiba Corp Control constant setting device for plant control system
JPH02106575A (en) * 1988-02-16 1990-04-18 Kone Elevator Gmbh Method of regulating position controller for elevator
JPH04109304A (en) * 1990-08-30 1992-04-10 Fanuc Ltd Adaptive pi control system
JP2006277652A (en) * 2005-03-30 2006-10-12 Tokyo Univ Of Agriculture & Technology Servo gain computing method, program and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349901A (en) * 1986-08-20 1988-03-02 Toshiba Corp Control constant setting device for plant control system
JPH02106575A (en) * 1988-02-16 1990-04-18 Kone Elevator Gmbh Method of regulating position controller for elevator
JPH04109304A (en) * 1990-08-30 1992-04-10 Fanuc Ltd Adaptive pi control system
JP2006277652A (en) * 2005-03-30 2006-10-12 Tokyo Univ Of Agriculture & Technology Servo gain computing method, program and device
JP4576530B2 (en) * 2005-03-30 2010-11-10 国立大学法人東京農工大学 Servo gain calculation method, servo gain calculation program, and servo gain calculation device

Similar Documents

Publication Publication Date Title
EP0159103B1 (en) Process control apparatus
KR900005546B1 (en) Adaptive process control system
JPH01258003A (en) Autotuning pid controller
US4951191A (en) Process control having improved combination of feedforward feedback control
JPH07104681B2 (en) Process control equipment
KR0135586B1 (en) Gain adaptive control device
JPS5951133A (en) Electronic governor
US4950967A (en) Servomotor control apparatus
JPS6142003A (en) Automatic adjusting method of control constant
US7123973B2 (en) Partitioned control system and method
JPH07261805A (en) Automatic adjusting device for proportional plus integral plus derivative control parameter
JP2885544B2 (en) Dead time compensation controller
JPH0721724B2 (en) Automatic control device
RU2049290C1 (en) Method for cascade regulation of thermal energy equipment process parameters
JPS61190602A (en) Regulator
JP2507613B2 (en) Feedforward controller
SU1619234A1 (en) Device for monitoring and setting-up gain factor of forcing speed channel of follow-up system
JPH0556522B2 (en)
SU805255A2 (en) Pneumatic device for delay compensation
SU1120284A1 (en) Binary control system
SU962852A2 (en) Self-tuning control system
SU1257612A1 (en) Adaptive control system
SU1080118A1 (en) Regulator with entity model
SU1173390A1 (en) Self-adjusting system of automatic control of lagging objects
JPS61290505A (en) Process control device