【発明の詳細な説明】[Detailed description of the invention]
この発明は、ガス軟窒化法に関し、とくに、ガ
ス軟窒化炉の前室に被処理物を搬入する前に、被
処理物の表面温度よりも露点温度の低いガスを導
入することにより、仕上り肌が良好で化合物層の
厚さおよび表面硬さが均一な品物が得られるよう
にしたものである。
従来、ガス軟窒化法として、アンモニアガスと
吸熱型変成ガス、アンモニアガスと発熱型変成ガ
ス、有機液剤分解ガスとアンモニアガスを主成分
とする雰囲気ガス等が用いられているが、何れの
ガス軟窒化法においても、前室の雰囲気ガスの露
点温度は約10〜35℃であつて前室内に搬入される
被処理物の表面温度よりも高くなつている。この
ような状態の前室に常温の被処理物を搬入する
と、前室の雰囲気ガス中の水分が被処理物の表面
に結露して水滴が生じ、この水滴に雰囲気ガス中
のアンモニアが溶け込んでアンモニア水が生成さ
れ、被処理物の表面にはアンモニア水によつて腐
食された斑模様が発生する。また、雰囲気ガス中
の一酸化炭素COは、低温域においては、CO→C
+CO2の反応によつて炭素Cを析出するため、こ
の析出炭素Cが被処理物の表面の水滴に付着す
る。
従来の方法では、上記のような被処理物を加熱
室に送つてガス軟窒化処理が行なわれているた
め、処理された品物の表面仕上り肌が悪くなるだ
けでなく、品物の表面に形成される化合物層の厚
さ、および表面硬さにばらつきが生じることにな
る。
そこで、前室における被処理物の表面の水滴発
生を防止をするため、被処理物を予熱して前室に
搬入し、その後、加熱室においてガス軟窒化処理
を行なう方法も採用されているが、この方法によ
ると、ガス軟窒化炉本体以外に予熱炉または予熱
室が必要となるため、大型の設備となつて設備費
が高価となるだけでなく、本来のガス軟窒化処理
工程のほかに予熱工程が加わり、処理時間が全体
として長くなるという欠点がある。
この発明は、上記の欠点を除去するためになさ
れたものであり、この発明の目的は、前室におけ
る雰囲気ガスの露点温度を被処理物の表面温度よ
りも低下させるようにしたガス軟窒化法を提供す
ることにあり、また、この発明の目的は、処理さ
れた品物の仕上り肌を光輝にして、表面化合物層
の厚さおよび硬さを均一にすることができるガス
軟窒化法を提供することにあり、さらに、この発
明の目的は、設備費が安価で処理工程が簡単なガ
ス軟窒化法を提供することにある。
すなわち、この発明は、図示する実施例のよう
に、ガス軟窒化炉の前室10を経て加熱室12に
送られた被処理物をガス軟窒化処理するに当り、
被処理物の表面温度よりも露点温度の低いガスを
前室10内に導入し、前室10内の雰囲気ガスの
露点温度が被処理物の表面温度よりも低下した後
に、被処理物を前室10内に搬入することを特徴
とするガス軟窒化法に係る。
この発明は、前室を有するガス軟窒化炉を用い
て、鉄鋼部品等の被処理物をガス軟窒化処理する
に当り、被処理物を前室に搬入する前に、被処理
物の表面温度よりも露点温度の低いガスを前室内
に導入して、加熱室から前室に流出した雰囲気ガ
スとの混合ガスの露点温度が、被処理物の表面温
度より低下した後に、被処理物を前室内に搬入す
る。前室内に導入するガスとしては、被処理物の
表面温度よりも露点温度の低いガスであれば、如
何なる種類のガスでも使用することができるが、
酸化性ガスは被処理物を光輝処理する目的から適
当でなく、爆発性ガス、可燃性ガス、毒性ガスも
安全性の見地から適当でなく、安全性が高く、し
かも、経済的に安価なガスの中から選定すれば、
窒素ガスが最も好ましく、炭酸ガス、アルゴン等
も必要に応じて使用することができる。これらの
導入ガスは、その露点温度が被処理物の表面温度
よりも十分に低いものを使用するのが好ましい。
たとえば、市販のボンベ入り窒素ガスの露点温度
は−50℃程度であり、ボンベ入り液体窒素の露点
温度は−80℃程度であるから、そのまま使用する
ことができる。
また、前室への導入ガスの流量、あるいは導入
時間は、前記のボンベ入り窒素ガスの場合では、
約5〜15分間継続する程度でよく、その間の適宜
の時点で被処理物を前室に搬入し、前室内の雰囲
気ガスが安定するのをまつて、被処理物を加熱室
に送り出した後に窒素ガスの導入を停止する。
このように、被処理物が前室に搬入される時点
では、前室内の雰囲気ガスの露点温度は、被処理
物の表面温度よりも低下した状態に維持されてい
るから、前室内に搬入された被処理物の表面に雰
囲気ガスが接触しても、水滴が発生することはな
い。
次に、この発明の方法を第1図に示したバツチ
型ガス軟窒化炉に適用した場合の工程について説
明する。同図において、符号10は前室、12は
加熱室、14は油槽をそれぞれ示し、前室10の
前壁には入口扉15、前室10と加熱室12との
仕切壁には中間扉16がそれぞれ開閉自在に設け
てある。また、前室10には、窒素ガス導入管2
0を設け、加熱室12には、図示しない雰囲気ガ
ス供給管が設けてある。加熱室12内の上部に
は、撹拌用フアン21が架設され、このフアン2
1は、加熱室12の上壁外部に設けたモータ22
によつて回転して、加熱室12内の雰囲気ガスを
撹拌する。また、油槽14には、モータ25によ
つて回転する撹拌羽根26が設けてあり、該撹拌
羽根26を介して油槽14内に貯留された冷却油
を撹拌する。
上記のバツチ型ガス軟窒化炉の前室10内に、
被処理物(図示せず)が搬入される前の約5〜15
分間、前室10の窒素ガス導入管20に連結され
ている窒素ガスボンベから窒素ガスを導入する。
導入された窒素ガスの流量を適宜調節して前室1
0内の雰囲気ガスの露点温度が被処理物の表面温
度より低下した後に、被処理物を前室10内に搬
入する。かくして、前室10内の雰囲気ガスが安
定した後、被処理物を加熱室12に送り、その後
に窒素ガスの前室10への導入を停止する。続い
て、加熱室12において被処理物のガス軟窒化処
理を行ない、処理が完了した品物は加熱室12か
ら前室10に搬出する。加熱室12で処理された
品物のうち、ガス冷却する品物は前室10でガス
冷却するが、油冷却する品物は、前室10に搬出
した直後に油槽14の冷却油内に浸漬して油冷却
する。この品物の冷却時において、前室10に再
び窒素ガスを導入して、前室10内への空気の吸
込みを防止するとともに、ガス冷却する場合の冷
却速度を増大させるようにすることもできる。冷
却された品物は、前室10から炉外に搬送する。
第2図は、この発明の方法を連続型ガス軟窒化
炉に適用した場合であり、同図において、符号1
0は前室、12は加熱室、18は後室、14は油
槽をそれぞれ示し、前室10の前壁には入口扉1
5、前室10と加熱室12との仕切壁および加熱
室12と後室18との仕切壁には、それぞれ、中
間扉16および17、後室158の後壁には、出
口扉19が、それぞれ開閉自在に設けてある。符
号20は、前室10の窒素ガス導入管、23は、
後室18の窒素ガス導入管、21は、加熱室12
の撹拌用フアン、22は撹拌用フアンのモータ、
26は、油槽14の撹拌羽根、25は、撹拌羽根
のモータである。
上記の連続型ガス軟窒化炉における工程は、前
記バツチ型ガス軟窒化炉の場合と同様に、前室1
0に被処理物を搬入する前に、窒素ガス導入管2
0から前室10内に窒素ガスを導入して、前室1
0内の雰囲気ガスの露点温度を被処理物の表面温
度より低下させた後に、被処理物を前室10内に
搬入し、前室10内の雰囲気ガスが安定した後、
被処理物を加熱室12に送り、その後に窒素ガス
の導入を停止する。加熱室12に送られた被処理
物は、ガス軟窒化処理され、処理が完了した品物
は、後室18に搬出されて、後室18においてガ
ス冷却されるか、あるいは後室18から油槽14
の冷却油内に浸漬して油冷却される。この冷却時
に、後室18内に窒素ガス導入管23を介して窒
素ガスを導入して、後室18内への空気の吸込み
を防止するとともに、ガス冷却する場合の冷却速
度を増大させるようにすることもできる。冷却さ
れた品物は、後室18から炉外に搬送する。
第1表は、この発明の方法により処理した品物
と従来の方法により処理した品物との表面仕上り
肌、表面に形成された化合物層の厚さおよび表面
硬さを比較するために実施した試験結果である。
試験には、バツチ型ガス軟窒化炉を使用し、
SPCCおよびS45Cの材質からなる被処理物につい
て行なつた。前室への導入ガスは市販のボンベ入
り窒素ガスを使用して、加熱炉における雰囲気ガ
スは、アンモニアガス70%、有機液剤分解ガス30
%の混合ガスとし、処理温度570℃で2時間処理
した後、油冷却した。
This invention relates to a gas soft nitriding method, and in particular, by introducing a gas whose dew point temperature is lower than the surface temperature of the workpiece before the workpiece is introduced into the front chamber of the gas soft-nitriding furnace, the finished surface is improved. This makes it possible to obtain products with good hardness and uniform compound layer thickness and surface hardness. Conventionally, in the gas soft-nitriding method, ammonia gas and endothermic modified gas, ammonia gas and exothermic modified gas, organic liquid decomposition gas and an atmosphere gas mainly composed of ammonia gas, etc. have been used. In the nitriding method as well, the dew point temperature of the atmospheric gas in the front chamber is about 10 to 35°C, which is higher than the surface temperature of the workpiece carried into the front chamber. When a workpiece at room temperature is brought into the front chamber under such conditions, moisture in the atmospheric gas in the front chamber condenses on the surface of the workpiece, forming water droplets, and ammonia in the atmospheric gas dissolves into these water droplets. Ammonia water is produced, and a mottled pattern corroded by the ammonia water appears on the surface of the object to be treated. In addition, carbon monoxide in the atmospheric gas changes from CO to C in the low temperature range.
Since carbon C is precipitated by the +CO 2 reaction, this precipitated carbon C adheres to water droplets on the surface of the object to be treated. In the conventional method, the object to be treated as described above is sent to a heating chamber for gas nitrocarburizing treatment, which not only deteriorates the surface finish of the treated object but also causes the formation of problems on the surface of the object. This results in variations in the thickness of the compound layer and surface hardness. Therefore, in order to prevent the generation of water droplets on the surface of the workpiece in the front chamber, a method has been adopted in which the workpiece is preheated and brought into the front chamber, and then gas nitrocarburizing is performed in the heating chamber. According to this method, a preheating furnace or a preheating chamber is required in addition to the gas soft nitriding furnace, which not only results in large equipment and high equipment costs, but also requires a There is a disadvantage that a preheating step is added and the overall processing time becomes longer. This invention was made to eliminate the above-mentioned drawbacks, and an object of the invention is to provide a gas nitrocarburizing method in which the dew point temperature of the atmospheric gas in the front chamber is lowered than the surface temperature of the workpiece. It is also an object of the present invention to provide a gas nitrocarburizing method capable of making the finished surface of the treated article bright and uniform in the thickness and hardness of the surface compound layer. In particular, a further object of the present invention is to provide a gas nitrocarburizing method that requires low equipment costs and has simple processing steps. That is, in the present invention, as in the illustrated embodiment, when subjecting a workpiece sent to the heating chamber 12 via the front chamber 10 of the gas soft-nitriding furnace to gas soft-nitriding treatment,
A gas with a dew point temperature lower than the surface temperature of the workpiece is introduced into the front chamber 10, and after the dew point temperature of the atmospheric gas in the front chamber 10 has become lower than the surface temperature of the workpiece, the workpiece is brought into the front chamber. This relates to a gas nitrocarburizing method characterized by carrying the gas into a chamber 10. In this invention, when a workpiece such as a steel part is gas soft-nitrided using a gas soft-nitriding furnace having a front chamber, the surface temperature of the workpiece is After the dew point temperature of the mixed gas with the atmospheric gas flowing out from the heating chamber into the front chamber falls below the surface temperature of the workpiece, the workpiece is brought into the front chamber. Bring it into the room. Any type of gas can be used as the gas introduced into the front chamber as long as it has a dew point temperature lower than the surface temperature of the object to be treated.
Oxidizing gases are not suitable for the purpose of brightly treating the objects to be treated, and explosive gases, combustible gases, and toxic gases are also not suitable from a safety standpoint. If you choose from
Nitrogen gas is most preferred, and carbon dioxide gas, argon, etc. can also be used as necessary. It is preferable to use gases whose dew point temperature is sufficiently lower than the surface temperature of the object to be treated.
For example, the dew point temperature of commercially available nitrogen gas in a cylinder is about -50°C, and the dew point temperature of liquid nitrogen in a cylinder is about -80°C, so they can be used as they are. In addition, the flow rate or introduction time of the gas introduced into the front chamber is as follows in the case of nitrogen gas in a cylinder as described above.
It only needs to last for about 5 to 15 minutes, and at an appropriate point during that time, the object to be processed is carried into the front chamber, and after the atmospheric gas in the front chamber has stabilized, the object to be processed is sent to the heating chamber. Stop introducing nitrogen gas. In this way, when the workpiece is carried into the front chamber, the dew point temperature of the atmospheric gas in the front chamber is maintained lower than the surface temperature of the workpiece. Even if the atmospheric gas comes into contact with the surface of the workpiece, water droplets will not be generated. Next, the steps when the method of the present invention is applied to the batch type gas nitrocarburizing furnace shown in FIG. 1 will be explained. In the figure, reference numeral 10 indicates a front chamber, 12 a heating chamber, and 14 an oil tank.The front wall of the front chamber 10 has an entrance door 15, and the partition wall between the front chamber 10 and the heating chamber 12 has an intermediate door 16. are provided so that they can be opened and closed. In addition, a nitrogen gas introduction pipe 2 is provided in the front chamber 10.
0, and the heating chamber 12 is provided with an atmospheric gas supply pipe (not shown). A stirring fan 21 is installed in the upper part of the heating chamber 12.
1 is a motor 22 installed outside the upper wall of the heating chamber 12.
The heating chamber 12 is rotated by the heating chamber 12 to stir the atmospheric gas inside the heating chamber 12. Further, the oil tank 14 is provided with a stirring blade 26 that is rotated by a motor 25, and the cooling oil stored in the oil tank 14 is stirred via the stirring blade 26. In the front chamber 10 of the batch type gas nitrocarburizing furnace,
Approximately 5 to 15 minutes before the workpiece (not shown) is brought in
Nitrogen gas is introduced from a nitrogen gas cylinder connected to the nitrogen gas introduction pipe 20 in the front chamber 10 for a minute.
The flow rate of the introduced nitrogen gas is adjusted appropriately to open the front chamber 1.
After the dew point temperature of the atmospheric gas in the chamber 0 falls below the surface temperature of the object to be processed, the object to be processed is carried into the front chamber 10. After the atmospheric gas in the front chamber 10 is thus stabilized, the object to be processed is sent to the heating chamber 12, and then the introduction of nitrogen gas into the front chamber 10 is stopped. Subsequently, the object to be treated is subjected to gas nitrocarburizing treatment in the heating chamber 12, and the treated object is carried out from the heating chamber 12 to the front chamber 10. Among the items processed in the heating chamber 12, items to be gas-cooled are cooled with gas in the front chamber 10, while items to be oil-cooled are immersed in cooling oil in the oil tank 14 immediately after being carried out to the front chamber 10. Cooling. When cooling the article, nitrogen gas may be reintroduced into the front chamber 10 to prevent air from being drawn into the front chamber 10 and to increase the cooling rate when cooling with gas. The cooled articles are transported from the front chamber 10 to the outside of the furnace. Figure 2 shows the case where the method of the present invention is applied to a continuous gas soft-nitriding furnace, and in the figure, reference numeral 1
0 is a front chamber, 12 is a heating chamber, 18 is a rear chamber, and 14 is an oil tank, and the front wall of the front chamber 10 has an entrance door 1.
5. Intermediate doors 16 and 17 are provided on the partition wall between the front chamber 10 and the heating chamber 12 and between the heating chamber 12 and the rear chamber 18, respectively, and an exit door 19 is provided on the rear wall of the rear chamber 158. Each can be opened and closed freely. Reference numeral 20 is a nitrogen gas introduction pipe of the front chamber 10, and 23 is a
A nitrogen gas introduction pipe 21 in the rear chamber 18 is connected to the heating chamber 12
a stirring fan; 22 is a stirring fan motor;
26 is a stirring blade for the oil tank 14, and 25 is a motor for the stirring blade. The steps in the continuous gas soft-nitriding furnace described above are similar to those in the batch-type gas soft-nitriding furnace.
Before carrying the object to be processed into the nitrogen gas introduction pipe 2
Nitrogen gas is introduced into the front chamber 10 from 0 to the front chamber 1.
After the dew point temperature of the atmospheric gas in the chamber 0 is lowered below the surface temperature of the object to be processed, the object to be processed is carried into the front chamber 10, and after the atmospheric gas in the front chamber 10 is stabilized,
The object to be processed is sent to the heating chamber 12, and then the introduction of nitrogen gas is stopped. The workpiece sent to the heating chamber 12 is subjected to gas nitrocarburizing treatment, and the finished workpiece is carried out to the rear chamber 18 and cooled with gas in the rear chamber 18, or is transferred from the rear chamber 18 to the oil tank 14.
It is cooled by being immersed in cooling oil. During this cooling, nitrogen gas is introduced into the rear chamber 18 via the nitrogen gas introduction pipe 23 to prevent air from being sucked into the rear chamber 18 and to increase the cooling rate when performing gas cooling. You can also. The cooled articles are transported out of the furnace from the rear chamber 18. Table 1 shows the results of tests conducted to compare the surface finish, the thickness of the compound layer formed on the surface, and the surface hardness of articles treated by the method of the present invention and articles treated by the conventional method. It is. A batch-type gas nitrocarburizing furnace was used for the test.
The experiments were carried out on objects to be treated made of SPCC and S45C materials. The gas introduced into the front chamber is nitrogen gas in a commercially available cylinder, and the atmospheric gas in the heating furnace is 70% ammonia gas and 30% organic liquid decomposition gas.
% mixed gas and treated at a treatment temperature of 570°C for 2 hours, then cooled with oil.
【表】
第1表の結果から明らかなように、この発明の
方法により処理した品物は、従来の方法により処
理した品物に比べて、表面仕上り肌が光輝である
だけでなく、表面の化合物層の厚さが厚くなり、
表面硬さも硬くなり、しかもそれらのばらつきが
少なく均一な表面層が得られることが判る。
以上、説明したように、この発明は、ガス軟窒
化炉の前室に、露点温度が被処理物の表面温度よ
りも低いガスを導入して、前室内の雰囲気ガスの
露点温度を被処理物の表面温度より低下させた後
に、被処理物を前室に搬入する構成としているか
ら、前室に搬入された被処理物の表面に水滴を発
生させずに加熱室におけるガス軟窒化処理を行う
ことが可能となる。したがつて、この発明によれ
ば、従来のように水滴にアンモニアが溶け込んだ
り、析出炭素が付着することがなくなるから、表
面の仕上り肌を光輝にすることができるだけでな
く、表面に形成される化合物層の厚さが均一とな
り、さらに、表面硬さのばらつきの幅も小さく、
すぐれた品質の品物を得ることができる。
また、この発明によれば、従来のガス軟窒化炉
に大きな設備を追加することなく、僅少の設備費
で実施することができるだけでなく、処理工程も
簡単であるから、短時間での処理が可能となる。[Table] As is clear from the results in Table 1, the products treated by the method of the present invention not only have a brighter surface finish, but also have a compound layer on the surface, compared to products treated by the conventional method. The thickness of the
It can be seen that the surface hardness becomes hard, and a uniform surface layer with less variation in the hardness can be obtained. As explained above, the present invention introduces a gas whose dew point temperature is lower than the surface temperature of the workpiece into the front chamber of a gas soft-nitriding furnace, and lowers the dew point temperature of the atmospheric gas in the front chamber to the workpiece. Since the workpiece is brought into the front chamber after the surface temperature has been lowered to below the surface temperature of becomes possible. Therefore, according to the present invention, since ammonia does not dissolve into water droplets and deposited carbon does not adhere to water droplets as in the past, it is possible not only to achieve a bright finish on the surface, but also to prevent ammonia from being formed on the surface. The thickness of the compound layer is uniform, and the variation in surface hardness is also small.
You can get products of excellent quality. Further, according to the present invention, not only can the process be carried out at a small equipment cost without adding large equipment to the conventional gas soft-nitriding furnace, but also the treatment process is simple, so the treatment can be carried out in a short time. It becomes possible.
【図面の簡単な説明】[Brief explanation of drawings]
第1図は、この発明の方法に用いるバツチ型ガ
ス軟窒化炉の縦断側面図、第2図は、この発明の
方法に用いる連続型ガス軟窒化炉の縦断側面図で
ある。
図中、10は前室、12は加熱室、20は窒素
ガス導入管である。
FIG. 1 is a longitudinal side view of a batch-type gas soft-nitriding furnace used in the method of the present invention, and FIG. 2 is a longitudinal side view of a continuous-type gas soft-nitriding furnace used in the method of the present invention. In the figure, 10 is a front chamber, 12 is a heating chamber, and 20 is a nitrogen gas introduction pipe.