JPS6237692B2 - - Google Patents

Info

Publication number
JPS6237692B2
JPS6237692B2 JP22112382A JP22112382A JPS6237692B2 JP S6237692 B2 JPS6237692 B2 JP S6237692B2 JP 22112382 A JP22112382 A JP 22112382A JP 22112382 A JP22112382 A JP 22112382A JP S6237692 B2 JPS6237692 B2 JP S6237692B2
Authority
JP
Japan
Prior art keywords
gas
scale
steel
annealing
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22112382A
Other languages
Japanese (ja)
Other versions
JPS59113124A (en
Inventor
Toshimichi Mori
Saburo Ootani
Hideo Kanisawa
Toshio Tomono
Kenji Fukuyasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22112382A priority Critical patent/JPS59113124A/en
Publication of JPS59113124A publication Critical patent/JPS59113124A/en
Publication of JPS6237692B2 publication Critical patent/JPS6237692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水分含有量を低減し低級炭化水素ガ
スを添加した不活性ガス雰囲気中で圧延スケール
を有する鋼材を焼鈍することにより、鋼材の脱炭
反応を抑制しつつ焼鈍する焼鈍方法に関するもの
である。 冷間鍛造は近年急速に発展した加工技術である
が、硬質で成形性の悪い中炭素鋼や低合金鋼を用
いる場合には、冷間加工性を向上させるために鋼
中の炭化物を球状化するための焼鈍処理が行なわ
れる。 ところで通常の熱間圧延線材では炭化物は層状
のパーライト組織となつており、この炭化物を球
状化するためには、A1変態点以上の温度に数時
間保持して炭化物の一部をオーステナイト中に固
溶させ、その後に徐冷またはA1変態点直下に数
時間保持して固溶した炭素を残留する炭化物のま
わりに析出球状化させなければならない。しかし
A1変態点以上の温度では炭素の拡散速度が非常
に早く焼鈍雰囲気ガス中に水分等の脱炭性成分が
存在すると、鋼材表面において、これら成分と炭
素が速やかに反応し、脱炭が著しく進行する。こ
の脱炭層が存在すると冷間鍛造後の製品表面が所
期の硬さに達しなくなる等の不都合が生じる。 またJISにおいても第1表に脱炭層許容基準が
あり、焼鈍後の脱炭層深さをこれらの値以下とし
なければならない。このため、A1変態点以上の
温度で焼鈍をおこなう場合には雰囲気ガスとして
浸炭が脱炭が生じないように制御したRXガス
(空気とブタンガスを混合し加熱変成したもの
で、CO≒24%、CO2≒0.5%、H2≒30%、残りは
N2からなるガス)等の還元性ガスが一般に用い
られている。この場合鋼材表面に附着したスケー
ルは酸素源となり、COやH2等と反応してCO2
H2O等の脱炭性ガスを生じるため、焼鈍前に酸洗
い等によりあらかじめスケールを除去することが
常識となつている。
The present invention relates to an annealing method for annealing a steel material having rolling scales in an inert gas atmosphere with reduced water content and added lower hydrocarbon gas, thereby suppressing the decarburization reaction of the steel material. be. Cold forging is a processing technology that has developed rapidly in recent years, but when using medium carbon steel or low alloy steel that is hard and has poor formability, it is necessary to make the carbides in the steel spheroidal to improve cold workability. An annealing treatment is performed to achieve this. By the way, in normal hot-rolled wire rods, the carbides are in the form of a layered pearlite structure, and in order to make the carbides spheroidal, some of the carbides are converted into austenite by holding the carbide at a temperature above the A1 transformation point for several hours. It is necessary to form a solid solution and then slowly cool it or hold it for several hours just below the A1 transformation point to cause the solidly dissolved carbon to precipitate around the remaining carbide and form spheroids. but
A1 At temperatures above the transformation point, the diffusion rate of carbon is very fast. If decarburizing components such as moisture are present in the annealing atmosphere gas, these components and carbon react quickly on the steel surface, resulting in significant decarburization. proceed. The presence of this decarburized layer causes problems such as the surface of the product after cold forging not reaching the desired hardness. JIS also has decarburized layer tolerance standards in Table 1, and the decarburized layer depth after annealing must be below these values. For this reason, when annealing is performed at a temperature above the A1 transformation point, the atmospheric gas is RX gas (a mixture of air and butane gas that is heated and transformed, CO≒24%), which is controlled to prevent carburization and decarburization. , CO 2 ≒ 0.5%, H 2 ≒ 30%, the rest
A reducing gas such as a gas consisting of N2 is generally used. In this case, the scale attached to the steel surface becomes an oxygen source and reacts with CO, H 2 , etc., producing CO 2 and
Since decarburizing gases such as H 2 O are generated, it is common practice to remove scale by pickling or the like before annealing.

【表】 しかしながらこれらの対策は非常に高価である
ばかりではなくCOやH2等の還元性ガスの使用に
は爆発の危険性もあり、またスケールを除去する
ための酸洗い時には廃酸処理対策に十分留意しな
ければならない。そのためスケールが付着したま
まの鋼材をN2等の不活性ガス中で焼鈍する方法
が試みられているが、鋼材表面スケールは局部的
にきわめて剥離しやすい。この剥離した部分は
N2ガス中の水分が鋼中の〔C〕と反応し脱炭が
進行するため工業的に成功した例はない。 従来から熱処理時の脱炭防止手段の1つとして
低級炭化水素ガス等の浸炭性ガス雰囲気中での熱
処理方法が知られているが、浸炭反応が進行し鋼
材表面が硬化するため鋼材の軟化を目的とする焼
鈍処理においてこの方法を用いることはきわめて
不都合であるほか、低級炭化水素の分解によつて
生じた炭素がススとなつて炉内壁や処理鋼材を汚
染するので実用的にはむしろ忌避されている。 本発明は、圧延スケールを有する鋼材を酸洗処
理等の前処理をすることなく焼鈍する方法を提供
するものであり、鋼材をN2等の不活性ガス雰囲
気下で焼鈍する際に、微量の低級炭化水素ガスを
添加することにより系中に混在する酸素や水分を
化学的に捕捉減少して鋼材の脱炭反応を抑制する
と同時に、雰囲気ガスとスケールとの反応により
生じるCO2,H2Oの脱炭性ガスの発生もあわせて
抑制することを目的とするものである。 即ち本発明は、水分含有量0.1%(容量)以下
の不活性ガス中に0.05〜1%(容量)の低級炭化
水素ガスを添加した雰囲気中で圧延スケールを有
する鋼材を焼鈍することを特徴とする鋼材の雰囲
気焼鈍方法である。 本発明はベースとなる雰囲気ガスとして水分
0.1%(容量)以下に制御したN2等の不活性ガス
を使用する。この場合本発明では低級炭化水素ガ
スによつて雰囲気ガス中の酸素及び水分を捕捉減
少できるが、雰囲気ガスに含まれる酸素及び水分
量は少ない程好ましい。本発明において水分量
0.1%(容量)以下と定めた理由は、N2等の不活
性ガス中に0.1%(容量)超の水分が含まれる
と、これと反応して無害化する為の低級炭化水素
ガス添加量が増大し、スケールとの反応により脱
炭性ガスが発生する危険がある。また場合によつ
ては鋼材への浸炭作用及びススの発生が生じ、鋼
材の軟化が得られず、また設備汚染を促進する等
の問題が発生するためである。しかし前記の要件
を満たすN2ガスを雰囲気ガスとして使用した場
合は後述する如き低級炭化水素ガスの添加効果が
発揮される。そして本発明はN2等の不活性ガス
雰囲気中に該ガス容量に対して0.05〜1%(容
量)の低級炭化水素ガスが配合される。低級炭化
水素の具体例として、メタンガス、エタンガス、
プロパンガスやブタンガス等が挙げられるが、プ
ロパンガスを例によつて酸素及び水分の除去効果
を説明すると下記の如くである。即ちプロパンガ
スは焼鈍温度で次式の如く分解する。 C3H8→〔C〕+C2H6+H2 (1) C2H6→〔C〕+CH4+H2 (2) CH4→〔C〕+2H2 (3) ここで生じたCH4は更に系中の酸素や水分と次式
の如く反応してこれらを捕捉減少する。 CH4+O2→CO2+2H2 (5) CH4+H2O→CO+3H2 (6) CO+H2O→CO2+H2 (7) ところで上記反応式からも明らかのように、低
級炭化水素は焼鈍雰囲気中の酸素や水分を捕捉減
少するのに卓越した効果を有する反面、次式の如
く熱分解生成分はスケールと反応して脱炭性ガス
を発生し脱炭を促進する。 2FeO+CO+H2→2Fe+CO2+H2O (8) (スケール) Fe3C+CO2→Fe3+2CO (9) Fe3C+H2O→Fe3+CO+H2 (10) またスケールの剥離部では逆に浸炭性の強いガ
スであつて通常の熱処理には致底使用し得ない。
しかしN2等の不活性ガス雰囲気中に適当量の低
級炭化水素ガスを添加するときは、脱炭性ガスを
発生するスケールの反応と、浸炭に基づく障害を
伴なうことなく優れた脱炭防止効果を発揮するこ
とが確認された。ここで低級炭化水素ガスの適度
の配合量とはN2等の不活性ガス雰囲気中に該ガ
ス容量に対して0.05〜1%(容量)の範囲であつ
て、この範囲内における配合量はN2ガス中に含
まれる酸素や水分の含有率及び被処理物たる熱延
鋼材表面に付着したスケールの量等に応じて適宜
定めるのがよい。低級炭化水素ガスの配合量が
0.05%未満の場合は満足な脱炭防止効果が得られ
ず、処理鋼材の機械的諸性質が低下してくる。一
方、低級炭化水素ガスの添加量が1%を越える多
量になると、低級炭化水素の分解によつて生じた
炭素がススとなつて炉内壁や処理鋼材を汚染し酸
洗によるスケール除去を困難にし、場合によつて
はスケールとの反応による脱炭とスケール剥離部
での浸炭作用が見られるようになつて目的とする
機械的諸性質が得られ難くなるので好ましくな
い。しかし前記範囲内で低級炭化水素を添加すれ
ば、ススの汚染、スケールの反応による脱炭及び
浸炭作用を生じることなく焼鈍雰囲気中の酸素及
び水分は効果的に除去され、鋼材の脱炭現象は殆
んど解消される。 前述の如く、本発明によればN2等の不活性ガ
ス中に適量の低級炭化水素ガスを添加することに
よつて、雰囲気ガス中に混入する酸素や水分を捕
捉減少し鋼材の脱炭作用を効果的に防止するもの
である。 次に本発明を実施例によつて説明する。 実施例 第2表の成分を有する鋼片を準備しこれを通常
の操業条件により加熱し11mmφ線材に圧延した。
圧延後の線材の脱炭層の深さは同表に示すとおり
である。 この線材を第3表に示す条件で焼鈍をおこなつ
た。焼鈍炉の雰囲気ガスは、安価な不活性ガスで
ある鈍度99.9%以上のN2ガスに所定量の低級炭化
水素ガスを配合した場合(本発明法)と、該雰囲
気ガスに本発明範囲外の量の低級炭化水素ガスお
よび水分を配合した場合(比較列1)と、酸洗し
て線材表面のスケールを除去した場合(比較例
2)を使用した。なお本発明法及び比較例1での
線材表面のスケールは、スケール剥離部をシユミ
レートするため、機械的な引張歪(3%)により
表面スケールを面積率30%〜70%剥離した状態で
使用した。N2ガス中の水分は、炉を十分密封し
炉内圧を若干正圧とした状態でN2ガスを流すこ
とによつて第3表記載の水分に制御した。なお水
分の測定は露点温度を測定することによつておこ
なつた。
[Table] However, these measures are not only very expensive, but also there is a risk of explosion when using reducing gases such as CO and H2 , and waste acid treatment measures are also required when pickling to remove scale. Careful attention must be paid to the following. For this reason, attempts have been made to anneal the steel with scale still attached in an inert gas such as N 2 , but the scale on the surface of the steel is extremely likely to peel off locally. This peeled part
There have been no industrial successes because the moisture in the N 2 gas reacts with the [C] in the steel and decarburization progresses. A heat treatment method in a carburizing gas atmosphere such as a lower hydrocarbon gas has been known as one of the means to prevent decarburization during heat treatment. It is extremely inconvenient to use this method in the intended annealing process, and carbon produced by the decomposition of lower hydrocarbons becomes soot and contaminates the inner walls of the furnace and the treated steel, so it is rather avoided in practice. ing. The present invention provides a method for annealing steel materials with rolling scales without pretreatment such as pickling treatment, and when annealing steel materials in an inert gas atmosphere such as N2 , a trace amount of By adding lower hydrocarbon gas, oxygen and moisture mixed in the system are chemically captured and reduced, suppressing the decarburization reaction of steel materials, and at the same time reducing CO 2 and H 2 O generated by the reaction between atmospheric gas and scale. The purpose is also to suppress the generation of decarburizing gas. That is, the present invention is characterized in that a steel material having a rolling scale is annealed in an atmosphere in which 0.05 to 1% (by volume) of lower hydrocarbon gas is added to an inert gas with a moisture content of 0.1% (by volume) or less. This is an atmosphere annealing method for steel materials. The present invention uses water as the base atmospheric gas.
Use an inert gas such as N2 controlled at 0.1% (volume) or less. In this case, in the present invention, oxygen and moisture in the atmospheric gas can be captured and reduced by the lower hydrocarbon gas, but it is preferable that the amounts of oxygen and moisture contained in the atmospheric gas be as small as possible. In the present invention, the water content
The reason for setting it below 0.1% (volume) is that if more than 0.1% (volume) of moisture is contained in an inert gas such as N2 , the amount of lower hydrocarbon gas added will react with the moisture and render it harmless. There is a risk that decarburizing gas will be generated due to reaction with scale. Further, in some cases, carburization of the steel material and generation of soot may occur, making it impossible to soften the steel material and causing problems such as promoting equipment contamination. However, when N 2 gas that satisfies the above requirements is used as the atmospheric gas, the effect of adding a lower hydrocarbon gas as described later will be exhibited. In the present invention, a lower hydrocarbon gas is blended in an inert gas atmosphere such as N 2 in an amount of 0.05 to 1% (volume) based on the gas volume. Specific examples of lower hydrocarbons include methane gas, ethane gas,
Examples include propane gas and butane gas, and the effect of removing oxygen and moisture using propane gas as an example will be explained below. That is, propane gas decomposes at the annealing temperature as shown in the following equation. C 3 H 8 → [C] + C 2 H 6 + H 2 (1) C 2 H 6 → [C] + CH 4 + H 2 (2) CH 4 → [C] + 2H 2 (3) The CH 4 produced here is Furthermore, it reacts with oxygen and moisture in the system as shown in the following equation to capture and reduce them. CH 4 +O 2 →CO 2 +2H 2 (5) CH 4 +H 2 O→CO+3H 2 (6) CO+H 2 O→CO 2 +H 2 (7) By the way, as is clear from the above reaction formula, lower hydrocarbons are annealed. While it has an outstanding effect of trapping and reducing oxygen and moisture in the atmosphere, the thermal decomposition products react with scale to generate decarburizing gas and promoting decarburization, as shown in the following equation. 2FeO+CO+H 2 →2Fe+CO 2 +H 2 O (8) (Scale) Fe 3 C+CO 2 →Fe 3 +2CO (9) Fe 3 C+H 2 O→Fe 3 +CO+H 2 (10) On the other hand, the peeled parts of scale have strong carburizing properties. It is a gas and cannot be used for normal heat treatment.
However, when an appropriate amount of lower hydrocarbon gas is added in an inert gas atmosphere such as N2 , the scale reaction that generates decarburizing gas and the excellent decarburization without carburization-based problems can be achieved. It was confirmed that it has a preventive effect. Here, the appropriate blending amount of lower hydrocarbon gas is the range of 0.05 to 1% (volume) based on the gas volume in an inert gas atmosphere such as N2 , and the blending amount within this range is N2. It is preferable to set it appropriately depending on the content of oxygen and moisture contained in the two gases, the amount of scale attached to the surface of the hot rolled steel material to be treated, etc. The blended amount of lower hydrocarbon gas is
If it is less than 0.05%, a satisfactory decarburization prevention effect cannot be obtained, and the mechanical properties of the treated steel deteriorate. On the other hand, if the amount of low hydrocarbon gas added exceeds 1%, the carbon generated by the decomposition of the low hydrocarbons becomes soot and contaminates the furnace inner walls and treated steel, making it difficult to remove scale by pickling. In some cases, decarburization due to reaction with scale and carburizing effect at the scale-exfoliated portion may occur, making it difficult to obtain desired mechanical properties, which is not preferable. However, if lower hydrocarbons are added within the above range, oxygen and moisture in the annealing atmosphere can be effectively removed without causing soot contamination, decarburization or carburization due to scale reaction, and the decarburization phenomenon of steel can be effectively removed. Most will be resolved. As mentioned above, according to the present invention, by adding an appropriate amount of lower hydrocarbon gas to an inert gas such as N 2 , oxygen and moisture mixed in the atmospheric gas are captured and reduced, thereby decarburizing the steel material. This effectively prevents Next, the present invention will be explained with reference to examples. Example A steel billet having the components shown in Table 2 was prepared, heated under normal operating conditions, and rolled into a 11 mmφ wire rod.
The depth of the decarburized layer of the wire rod after rolling is shown in the same table. This wire rod was annealed under the conditions shown in Table 3. The atmospheric gas in the annealing furnace can be prepared by mixing a predetermined amount of lower hydrocarbon gas with N 2 gas, which is an inexpensive inert gas, with a dullness of 99.9% or more (method of the present invention), or by adding a gas outside the scope of the present invention to the atmospheric gas. A case in which lower hydrocarbon gas and moisture were mixed in an amount of (Comparative Example 1) and a case in which scale was removed from the surface of the wire by pickling (Comparative Example 2) were used. In addition, the scale on the surface of the wire in the method of the present invention and Comparative Example 1 was used in a state where 30% to 70% of the surface scale was peeled off by mechanical tensile strain (3%) in order to simulate the scale peeled part. . The moisture content in the N 2 gas was controlled to the moisture content listed in Table 3 by flowing N 2 gas while the furnace was sufficiently sealed and the pressure inside the furnace was set to a slightly positive pressure. The moisture content was measured by measuring the dew point temperature.

【表】【table】

【表】【table】

【表】 第3表に示すように、本発明による焼鈍線材は
スケール剥離部を含めても焼鈍中の脱炭はほとん
どなく、いずれもJISの脱炭許容基準を十分満足
するものである。 以上説明したように本発明に従つて焼鈍するこ
とにより、線材表面の脱炭層をほとんど進行させ
ることなく鋼中の炭化物を球状化させるもので、
次に述べる利点を有し産業上極めて有用である。 利点1:焼鈍の前に熱間圧延鋼材に附着してい
るスケールを取り除く必要がなく酸洗い
等の工程が省略できる。 利点2:焼鈍雰囲気に従来使用していた高価な
COやH2等の還元ガス(RXガス)にか
わつて、N2ガス等の不活性ガスに所定
量の低級炭化水素ガスを配合するという
安価な雰囲気ガスを使用することができ
る。 利点3:鋼材をN2等の不活性ガス中で焼鈍す
る際脱炭しやすいスケール剥離部に対し
てスケール剥離防止対策を講じる必要が
ない。
[Table] As shown in Table 3, the annealed wire rod according to the present invention undergoes almost no decarburization during annealing, even in the area where scale peels off, and all fully satisfy the JIS decarburization tolerance standards. As explained above, by annealing according to the present invention, the carbides in the steel are spheroidized without substantially developing a decarburized layer on the surface of the wire.
It has the following advantages and is extremely useful industrially. Advantage 1: There is no need to remove scale attached to the hot rolled steel material before annealing, and processes such as pickling can be omitted. Advantage 2: The expensive
Instead of a reducing gas (RX gas) such as CO or H 2 , it is possible to use an inexpensive atmospheric gas in which a predetermined amount of lower hydrocarbon gas is mixed with an inert gas such as N 2 gas. Advantage 3: There is no need to take measures to prevent scale peeling from areas where scale easily decarburizes when steel is annealed in an inert gas such as N2 .

Claims (1)

【特許請求の範囲】[Claims] 1 水分含有量0.1%(容量)以下の不活性ガス
中に0.05〜1%(容量)の低級炭化水素ガスを添
加した雰囲気中で圧延スケールを有する鋼材を焼
鈍することを特徴とする鋼材の雰囲気焼鈍方法。
1. An atmosphere for steel products characterized by annealing steel products having rolling scales in an atmosphere in which 0.05 to 1% (by volume) of lower hydrocarbon gas is added to an inert gas with a moisture content of 0.1% (by volume) or less. Annealing method.
JP22112382A 1982-12-18 1982-12-18 Atmosphere annealing method of steel material Granted JPS59113124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22112382A JPS59113124A (en) 1982-12-18 1982-12-18 Atmosphere annealing method of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22112382A JPS59113124A (en) 1982-12-18 1982-12-18 Atmosphere annealing method of steel material

Publications (2)

Publication Number Publication Date
JPS59113124A JPS59113124A (en) 1984-06-29
JPS6237692B2 true JPS6237692B2 (en) 1987-08-13

Family

ID=16761826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22112382A Granted JPS59113124A (en) 1982-12-18 1982-12-18 Atmosphere annealing method of steel material

Country Status (1)

Country Link
JP (1) JPS59113124A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332489A (en) * 1992-06-03 1993-12-14 Suiken Technol:Kk Branching construction method for distributing water pipe, and branching execution tool and distributing water pipe which are used therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208016A (en) * 1983-05-12 1984-11-26 Nippon Steel Corp Method for annealing steel material
JPS61163217A (en) * 1985-01-08 1986-07-23 Nippon Steel Corp Method for annealing high cr steel wire rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05332489A (en) * 1992-06-03 1993-12-14 Suiken Technol:Kk Branching construction method for distributing water pipe, and branching execution tool and distributing water pipe which are used therefor

Also Published As

Publication number Publication date
JPS59113124A (en) 1984-06-29

Similar Documents

Publication Publication Date Title
US5242509A (en) Process of the production of an atmosphere for the thermal treatment of metals and thermal treatment apparatus
JPH0347914A (en) Method for heat treatment of metal in con- tinuous furnace under controlled atmosphere
US5498299A (en) Process for avoiding surface oxidation in the carburization of steels
US3695946A (en) Method of manufacturing oriented grain magnetic steel sheets
US4011111A (en) High strength, deep drawing quality, low carbon steel, article formed therefrom, and method for production thereof
JPS6237692B2 (en)
US3021237A (en) Processing of metal
CA1147634A (en) Protective atmosphere process for annealing and or spheroidizing ferrous metals
JP2915163B2 (en) Strength improvement surface treatment method
JP3135958B2 (en) Annealing method for hot rolled Cr-based stainless steel strip
JPS6360099B2 (en)
JPS59208016A (en) Method for annealing steel material
Sherwood et al. The effect of temperature on oxide scale adherence during descaling operations
US3523021A (en) Method of refining ferrochrome
JPS59145767A (en) Heat treatment of metallic zirconium material and zirconium alloy material
CA1239078A (en) Process for heat treating ferrous material
EP2050526A1 (en) Atmosphere for sintering, annealing or hardening comprising silane or borane
JP2000109934A (en) Bright annealing method for metal having high affinity for oxygen
US20090173417A1 (en) Method for annealing or hardening of metals
SU773098A1 (en) Method of thermal treatment of hot-rolled mean-and high-carbon steels
Holm Synthetic heat-treating atmospheres
JPH02274819A (en) Method for annealing high carbon steel strip
JP2881821B2 (en) Heat treatment method after hot working of chromium stainless steel and heat resistant steel
KR850001536B1 (en) Protective atmosphere process for annealing and or spheroidizing ferrous metals
JPS5918447B2 (en) Manufacturing method of spheroidized annealed wire