JPS6349584B2 - - Google Patents

Info

Publication number
JPS6349584B2
JPS6349584B2 JP5215582A JP5215582A JPS6349584B2 JP S6349584 B2 JPS6349584 B2 JP S6349584B2 JP 5215582 A JP5215582 A JP 5215582A JP 5215582 A JP5215582 A JP 5215582A JP S6349584 B2 JPS6349584 B2 JP S6349584B2
Authority
JP
Japan
Prior art keywords
cooling
cooling device
air
water
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5215582A
Other languages
Japanese (ja)
Other versions
JPS58168466A (en
Inventor
Akira Nakagawa
Masaki Okajima
Koji Kagaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5215582A priority Critical patent/JPS58168466A/en
Publication of JPS58168466A publication Critical patent/JPS58168466A/en
Publication of JPS6349584B2 publication Critical patent/JPS6349584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • B22D11/225Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は連続鋳造装置の2次冷却装置に関する
もので、その目的は精密な冷却制御が可能な装置
を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a secondary cooling device for a continuous casting apparatus, and an object thereof is to provide a device that allows precise cooling control.

さて、周知の通り連続鋳造装置では鋳型での1
次冷却に続き、スプレイ冷却、気水冷却等の2次
冷却により鋳片の凝固を促進する手段が採用され
ており、加えて所定寸法に切断された鋳片が所定
の温度を保有するように冷却制御されている。と
ころで近時省エネルギーと高生産性および高品質
をねらいとして連続鋳造された鋳片を冷間手入や
加熱炉を通すことなく直接熱間圧延工程に送つて
圧延加工する、いわゆる直接圧延が実用されるよ
うになり、その工業的規模での実施に従事した本
発明者等は鋳片の2次冷却にさまざまな技術的課
題が残されていることを知つた。
Now, as is well known, in continuous casting equipment, 1
Following the next cooling, a method is adopted to promote the solidification of the slab through secondary cooling such as spray cooling or air/water cooling, and in addition, to ensure that the slab that has been cut into specified dimensions maintains a specified temperature. Cooling is controlled. By the way, in recent years, with the aim of energy saving, high productivity, and high quality, so-called direct rolling has been put into practice, in which continuously cast slabs are sent directly to a hot rolling process without passing through cold treatment or heating furnaces. The inventors of the present invention, who have been engaged in implementing this method on an industrial scale, have found that various technical problems remain in the secondary cooling of slabs.

その1つは、鋳片(以下ストランドと云う)を
なるべく高温状態たとえば1150℃と云う状態で切
断し、早急に熱間圧延工程に送らねば適切な圧延
が行なわれ難いと云う問題があり、そのため過冷
却を避けようとすると凝固シエルが破れ易くな
り、ブレークアウトを惹起すると云う二律背反の
課題をかかえることになる。その他ストランドの
各部を均一に冷却することは冷却ノズル配置、ロ
ール配置、各種ガイド配置など物理的制約条件に
加え、ノズル詰りや鋳造トラブルなどの変動要因
が加わるため非常に難かしい操作が要求されると
云う問題があり、鋳造速度の変更など特に冷却制
御にとつて重要な制御因子となる。
One of these problems is that it is difficult to properly roll the slab unless it is cut at a high temperature (for example, 1150°C) and sent to the hot rolling process as soon as possible. Attempts to avoid supercooling tend to cause the solidified shell to break, causing breakouts, which is a trade-off. Uniformly cooling each part of the strand requires extremely difficult operations due to physical constraints such as cooling nozzle arrangement, roll arrangement, and various guide arrangements, as well as variable factors such as nozzle clogging and casting trouble. This problem becomes an important control factor, especially in cooling control, such as changing the casting speed.

また、鋼塊の場合は熱間脆性と云う特性があ
り、過度の冷却や温度変化を与えると直接圧延が
出来なくなると云う問題がある。
In addition, steel ingots have a property called hot brittleness, and there is a problem in that direct rolling becomes impossible if excessive cooling or temperature changes are applied.

そこで、本発明者等は鋳造中のストランドを常
に所望の温度となしうる2次冷却装置を研究した
結果、本発明を開発したもので、その要旨は、連
続鋳造装置の2次冷却装置において、該2次冷却
装置がスプレー冷却装置に続く気水冷却装置およ
びロール外冷冷却装置を順に、もしくは気水冷却
装置とロール外冷冷却装置を順に列設した装置か
らなり、さらに前記水冷却装置が、ストランドの
温度測定装置からの実測値と設定温度の差に応じ
てストランド全体冷却およびストランドの幅方向
の選択冷却を指令する演算冷却制御装置と、該演
算冷却制御装置からの指令により気水、水、気体
噴出の3態様もしくはそれに加えて無噴出の4態
様自在に切替制御されるノズル群を備えているこ
とを特徴とする連続鋳造装置の2次冷却装置であ
る。
Therefore, the present inventors have developed the present invention as a result of research into a secondary cooling device that can always maintain the desired temperature of the strand during casting. The secondary cooling device consists of a spray cooling device followed by an air/water cooling device and an external roll cooling device, or a device in which an air/water cooling device and a roll external cooling device are arranged in sequence, and further the water cooling device is , an arithmetic cooling control device that instructs cooling of the entire strand and selective cooling of the strand in the width direction according to the difference between the actual measurement value from the strand temperature measurement device and the set temperature; This is a secondary cooling device for a continuous casting apparatus characterized by having a group of nozzles that can be freely switched and controlled in three modes of water and gas ejection, or in addition, four modes of no ejection.

次に図面に従い、本発明を彎曲型連続鋳造装置
に適用した実施例装置について以下詳細に説明す
る。
Next, referring to the drawings, an example apparatus in which the present invention is applied to a curved continuous casting apparatus will be described in detail below.

第1図は本発明にかかる2次冷却装置の概略ブ
ロツク線図であり、図示していないタンデイツシ
ユから溶鋼は鋳型1に注入され、1次冷却されて
ストランド2となつて該鋳造から引抜かれる(オ
シレーシヨン装置や架台やロール等は説明の便宜
上省略してある)。3はスプレー冷却装置で、図
示していないエプロンロールの間に設けられた多
数の冷却水ノズルと供給水管群から構成されてお
り、ストランド2は前記スプレー冷却装置3を経
由する間に強固な凝固シエルをもつ。ついで4は
気水冷却装置で、ガイドロール、ピンチロール、
ベンデイングロール等のロール群の間に臨む多数
の気水ノズルとそれらに水および気体(たとえば
空気あるいはN2、CO2等の気体)を供給する供
給管群から構成されている。スランド2は前記気
水冷却装置4を経由する間に所望の表面温度(又
は平均温度)となるように冷却作用をうける。5
はロール外冷冷却装置で、水平ガイドロールの外
表面に対向して設けられた気水冷却ノズル又は噴
霧ノズルもしくは冷却気体ノズル群とそれに冷却
媒体を供給する供給管群で構成されている。6は
スプレー冷却装置3と気水冷却装置4の間に設け
られたストランド2の表面温度測定装置(非接触
型又は接触型)で、7は気水冷却装置4とロール
外冷冷却装置5の間に設けられた表面温度装測定
装置で、8はロール外冷冷却装置5を通過し切断
装置(たとえばガス切断装置)9の前面に達した
ストランド2の表面温度を測定する表面温度測定
装置である。10は切断後の所定寸法を有する単
位鋳片で、11は単位鋳片10の局部的低温部分
を加熱する誘導加熱装置、12は熱間圧延機(図
示していない)の前面に設けられたスケールブレ
ーカーである。
FIG. 1 is a schematic block diagram of a secondary cooling device according to the present invention, in which molten steel is injected into a mold 1 from a tundish (not shown), is primarily cooled, becomes a strand 2, and is pulled out from the casting. (The oscillation device, mount, rolls, etc. are omitted for convenience of explanation.) 3 is a spray cooling device, which is composed of a large number of cooling water nozzles and a group of supply water pipes installed between apron rolls (not shown), and the strand 2 is solidified while passing through the spray cooling device 3. Has Ciel. Next, 4 is an air/water cooling device, which includes guide rolls, pinch rolls,
It consists of a large number of air/water nozzles that face between groups of rolls such as bending rolls, and a group of supply pipes that supply water and gas (for example, air or gases such as N 2 and CO 2 ) to these nozzles. While passing through the air-water cooling device 4, the sland 2 is cooled to a desired surface temperature (or average temperature). 5
The roll external cooling device is composed of a group of air/water cooling nozzles, spray nozzles, or cooling gas nozzles provided opposite to the outer surface of a horizontal guide roll, and a group of supply pipes for supplying a cooling medium thereto. 6 is a surface temperature measuring device (non-contact type or contact type) of the strand 2 installed between the spray cooling device 3 and the air/water cooling device 4; A surface temperature measurement device 8 is provided between the strands 2 and 2, and 8 is a surface temperature measurement device that measures the surface temperature of the strand 2 that has passed through the roll external cooling device 5 and reached the front of the cutting device (for example, a gas cutting device) 9. be. 10 is a unit slab having predetermined dimensions after cutting; 11 is an induction heating device that heats a locally low-temperature portion of the unit slab 10; and 12 is installed at the front of a hot rolling mill (not shown). It's a scale breaker.

次に13は工程総合制御装置であつて、現に鋳
造すべきストランド2に関する目標表面温度を、
演算冷却制御置14に指令する。演算冷却制御装
置14は前記工程総合制御装置よりの指令信号と
前記表面温度測定装置6〜8の測定値および冷却
制御に関するその他のパラメーター(溶鋼温度、
冷却能、鋳造速度等)に基づく演算結果に応じて
スプレー冷却装置3の冷媒供給開閉弁装置15、
気水冷却装置4の冷媒供給開閉弁装置16および
ロール外冷冷却装置5の冷媒供給開閉弁装置17
に制御信号を発信する。
Next, 13 is a comprehensive process control device that controls the target surface temperature of the strand 2 to be cast.
A command is given to the calculation cooling control unit 14. The arithmetic cooling control device 14 receives command signals from the overall process control device, measured values of the surface temperature measuring devices 6 to 8, and other parameters related to cooling control (molten steel temperature,
refrigerant supply opening/closing valve device 15 of the spray cooling device 3 according to calculation results based on cooling capacity, casting speed, etc.);
Refrigerant supply on-off valve device 16 of the air-water cooling device 4 and refrigerant supply on-off valve device 17 of the roll external cooling device 5
sends a control signal to the

前記ストランド2は切断装置9の直前において
所定の表面温度に代表される所望の平均温度(熱
間直接圧延可能温度)を保有する必要があり、そ
のため表面温度測定装置8の測定値が冷却演算の
主要因子として利用される。切断装置9によつて
所定寸法にされた単位鋳片10(以下単に鋳片1
0と云う)はそのまま圧延工程に送られるか又は
図示した誘導加熱装置11において局部的に温度
低下した部分(特に鋳片の前面や両側面が放熱に
より温度低下しやすくそこが所定の温度以下とな
る圧延工程で割れや形状不良、品質欠陥を生じや
すいため昇温させる必要が生ずる場合がある)の
加熱が行なわれ圧延工程に送られる。
The strand 2 needs to have a desired average temperature represented by a predetermined surface temperature (temperature that allows direct hot rolling) immediately before the cutting device 9, so that the measured value of the surface temperature measuring device 8 is used for cooling calculation. Used as the main factor. A unit slab 10 (hereinafter simply referred to as slab 1) cut into a predetermined size by a cutting device 9
0) is sent to the rolling process as it is, or in the induction heating device 11 shown in the figure, the temperature drops locally in the area where the temperature has dropped (particularly the front and both sides of the slab, where the temperature tends to drop due to heat radiation). (It may be necessary to raise the temperature because cracks, shape defects, and quality defects are likely to occur during the rolling process) and the material is heated and sent to the rolling process.

第2図aは本発明における前述とは異なつた実
施例装置に関する概略説明図で、本実施例ではス
プレー装置はなく、2次冷却装置は気水冷却装置
4とロール外冷冷却装置5で構成されている。図
中、18はタンデイツシユを示す。第2図bは気
水冷却装置4の部分拡大図で、ガイドロール19
の間にノズル20が臨ませてあり、ストランド2
は前記ノズル20から噴出する気水もしくは水又
は気体(通常空気が利用される)によつて冷却さ
れ、場合によつてはノズル20からの気水、水又
は気体の噴出は選択的に停止される(その詳細は
後述する)。第2図cはロール外冷冷却装置5の
部分拡大図で、ノズル21から水平ガイドロール
22の外表面に気水又は冷却気体が吹きつけられ
る。また、このロール外冷冷却装置5においても
ノズル21からの前記気水、冷却気体の噴出は前
述した開閉装置17を制御して自在に制御でき、
場合によつては選択的に停止させることも可能で
ある。従つてこの部分ではストランド2に冷媒が
直接的に吹きつけられることはない。
FIG. 2a is a schematic explanatory diagram of a device according to an embodiment of the present invention different from that described above. In this embodiment, there is no spray device, and the secondary cooling device is composed of an air/water cooling device 4 and an external roll cooling device 5. has been done. In the figure, 18 indicates a tundish. FIG. 2b is a partially enlarged view of the air/water cooling device 4, showing the guide roll 19.
A nozzle 20 faces between the strands 2 and 2.
is cooled by air, water, or gas (usually air is used) ejected from the nozzle 20, and in some cases, the ejection of air, water, or gas from the nozzle 20 is selectively stopped. (Details will be explained later). FIG. 2c is a partially enlarged view of the roll external cooling device 5, in which air water or cooling gas is blown from the nozzle 21 onto the outer surface of the horizontal guide roll 22. Also, in this roll external cooling cooling device 5, the jetting of the air water and cooling gas from the nozzle 21 can be freely controlled by controlling the opening/closing device 17 described above.
Depending on the case, it is also possible to stop it selectively. Therefore, the refrigerant is not directly blown onto the strand 2 in this portion.

第3図はスプレー冷却装置3の部分詳細図で、
エプロンロール23の間に多数のスプレーノズル
24が臨ませてあり、制御弁25に制御されて冷
媒(通常冷却水)がストランド2に吹付けられ
る。ノズル24は必要に応じて複数個につき1個
の制御弁を設けるなど同時制御する場合もある。
FIG. 3 is a partial detailed view of the spray cooling device 3.
A large number of spray nozzles 24 are provided between the apron rolls 23 and are controlled by a control valve 25 to spray refrigerant (usually cooling water) onto the strands 2. If necessary, the nozzles 24 may be controlled simultaneously by providing one control valve for each of the nozzles 24.

次に第4図は気水冷却装置4の部分詳細図で、
26は空気制御弁、27は冷却水制御弁を示し、
ノズル20からは気水が噴出する。この状態で空
気制御弁26を閉じるとノズル20から水のみが
噴出し、逆に冷却水制御弁27を閉じ空気制御弁
26を開くとノズル20から空気のみが噴出し、
さらに空気制御弁26を閉じると冷却は行なわれ
なくなる。前述の3態様もしくはそれに加えて無
噴出の4態様は後にさらに詳細に述べる通り、ノ
ズル毎またはノズル群毎に実施される。
Next, FIG. 4 is a partial detailed diagram of the air/water cooling device 4.
26 is an air control valve, 27 is a cooling water control valve,
Air and water are ejected from the nozzle 20. If the air control valve 26 is closed in this state, only water will be ejected from the nozzle 20, and conversely, if the cooling water control valve 27 is closed and the air control valve 26 is opened, only air will be ejected from the nozzle 20.
Further, when the air control valve 26 is closed, cooling is no longer performed. The above-mentioned three embodiments or in addition to the four non-ejection modes are implemented for each nozzle or for each nozzle group, as will be described in more detail later.

第5図は本発明にかかる冷却制御要領を示す異
なつた実施例にかかる概略ブロツク線図で、28
は圧縮空気供給管で、29は圧力計、30は流量
計、31は流量調節弁、32は圧力指示制御計、
33は流量指示制御計、34は圧力および流量選
択制御計であり、又35は冷却水供給管、36は
電磁流量計、37は流量調節弁、38は流量指示
制御計、39は制御モード選択指示計、40は温
度指示制御計、41は制御変更指令装置である。
FIG. 5 is a schematic block diagram of different embodiments showing cooling control procedures according to the present invention.
is a compressed air supply pipe, 29 is a pressure gauge, 30 is a flow meter, 31 is a flow rate control valve, 32 is a pressure indicator controller,
33 is a flow rate indicator controller, 34 is a pressure and flow rate selection controller, 35 is a cooling water supply pipe, 36 is an electromagnetic flow meter, 37 is a flow rate control valve, 38 is a flow rate indicator controller, and 39 is a control mode selection controller. The indicator 40 is a temperature indicator controller, and 41 is a control change command device.

本装置においてはストランド2の表面温度は表
面温度測定装置8によつて測定され、その測定信
号は温度指示制御計40に入力される。温度指示
制御計40は制御変更指令装置41からの指令信
号と前記測定信号を比較し、差がある場合は制御
モード選択指示計39にその差分の信号を入力す
る。制御モード選択指示計39はその差分を解消
するのに最も適当な制御モードを選択して制御信
号を前記冷却水の流量指示制御計38、圧力指示
制御計32、空気の流量指示制御計33に与え
る。圧力および流量選択制御計34ではその指示
にもとづき圧力又は流量もしくはその双方の選択
が行なわれ、流量調節弁31が作動する。一方流
量指示制御計38の指令によつて流量調節弁37
が作動する。以上の制御操作によつてノズル20
は下記(1)〜(3)の3態様もしくはそれに無噴出を加
えた(1)〜(4)の4態様をとる。
In this device, the surface temperature of the strand 2 is measured by a surface temperature measuring device 8, and the measurement signal is input to a temperature indicator controller 40. The temperature indicator controller 40 compares the command signal from the control change command device 41 with the measurement signal, and if there is a difference, inputs the difference signal to the control mode selection indicator 39. The control mode selection indicator 39 selects the most appropriate control mode to eliminate the difference, and sends a control signal to the cooling water flow rate indicator 38, pressure indicator 32, and air flow rate indicator 33. give. The pressure and flow rate selection controller 34 selects either the pressure or the flow rate, or both, based on the instructions, and the flow rate regulating valve 31 operates. On the other hand, the flow control valve 37 is
is activated. Through the above control operations, the nozzle 20
takes the following three modes (1) to (3) or four modes (1) to (4) in which no ejection is added.

(1) 気水を噴出する。(1) Spout air and water.

(2) 水を噴出する。(2) Spout water.

(3) 空気を噴出する。(3) Blow out air.

(4) 無噴出。(4) No eruption.

而して上記(1)〜(3)については量的変化も含摂す
る。また制御変更指令装置41は図示していない
演算冷却制御装置14からの指令に応じて作動す
るもので、前述のフイードバツク制御のみでな
く、フイードフオワード制御も実施される。さら
にノズル20は1個のみを示したが、前述のよう
に適宜複数個を一群としたり、ストランド幅方向
で作動態様が異なるよう制御される場合もあり、
その詳細を第6図a,b,cの冷却パターンで説
明する。幅方向正面部分図で示されているストラ
ンド2a〜2cは矢印45の方向に引抜かれてお
り、斜線で示すブロツク42は気水で強冷却され
ており、点線で示すブロツク43は小量の水によ
る中冷却、白地のブロツク44は空気による弱冷
却の部分を示す。必要に応じて冷却パターンa〜
cおよびその他の任意の冷却パターンをとること
によりストランドの長さ方向および幅方向の温度
を制御し、高品質と省エネルギーを保証する最適
温度分布のものとする。
Therefore, the above (1) to (3) also include quantitative changes. The control change command device 41 operates in response to commands from the arithmetic cooling control device 14 (not shown), and performs not only the aforementioned feedback control but also feedback control. Further, although only one nozzle 20 is shown, as mentioned above, a plurality of nozzles may be grouped together, or the operating mode may be controlled to differ in the strand width direction.
The details will be explained using the cooling patterns shown in FIGS. 6a, b, and c. The strands 2a to 2c shown in the front partial view in the width direction are pulled out in the direction of the arrow 45, the block 42 shown with diagonal lines is strongly cooled with air and water, and the block 43 shown with dotted lines is cooled with a small amount of water. The white block 44 shows the part cooled by air. Cooling pattern a~ as needed
c and other arbitrary cooling patterns to control the temperature in the length and width directions of the strands, resulting in an optimal temperature distribution that guarantees high quality and energy savings.

第7図はノズル20の前述(1)〜(3)の3態様の具
体例を説明するための概略図で、幅方向正面部分
を示すストランド2の上下方向にノズル20は各
列4個又は5個が並列で、かつ干鳥状になるよう
に配列してあり、◎印は気水噴出中、〇印は小量
水噴出中、・印は空気のみ噴出中の状態を示す。
ストランド2の幅方向中心部は温度が高く相対的
に強冷却を必要とするが両端部ほど温度が下りや
すいので通常弱冷却とすることによつて良い結果
が期待できる。
FIG. 7 is a schematic diagram for explaining specific examples of the above-mentioned three aspects (1) to (3) of the nozzle 20, and there are four or more nozzles 20 in each row in the vertical direction of the strand 2 showing the front part in the width direction. Five of them are arranged in parallel and in the shape of a dried bird. ◎ indicates that air and water are being ejected, ○ indicates that a small amount of water is being ejected, and * indicates that only air is being ejected.
The temperature at the center in the width direction of the strand 2 is high and requires relatively strong cooling, but since the temperature tends to drop more easily at both ends, good results can usually be expected by using weak cooling.

第8図はノズル20に対する供給管系の群構成
の一例を示すもので、このように単位ノズル20
毎に個別制御可能な供給管系構成としたものか
ら、適宜な複数個をまとめて同時制御する群構成
としても時として良い結果が得られる。
FIG. 8 shows an example of a group configuration of the supply pipe system for the nozzle 20, and in this way, the unit nozzle 20
Good results can sometimes be obtained by using a supply pipe system configuration in which each unit can be individually controlled, or a group configuration in which a suitable plurality of units are controlled simultaneously.

而して本発明の具体的一実施として、厚さ250
mm、幅1200mmのストランドを鋳造速度0.5〜1.8
m/分として鋳造した例において、本発明装置に
よるものは、従来周知の単一気水冷却に比し、切
断装置9の前においてストランドの表面温度を50
〜100℃上昇せしめ、実例として1100〜1190℃の
高温のものを得ることに成功した。品質について
も歩留りで5〜10%アツプと云う高成績を得ると
共に省エネルギー効果も約5%向上した。
As a specific implementation of the present invention, the thickness is 250 mm.
Casting speed 0.5~1.8 mm, width 1200mm strand
m/min, the device according to the invention lowers the surface temperature of the strand by 50 m/min in front of the cutting device 9, compared to conventional single air/water cooling.
The temperature was increased by ~100℃, and we succeeded in obtaining a high-temperature product of 1,100 to 1,190℃ as an example. In terms of quality, we achieved high results with yields increasing by 5 to 10%, and energy-saving effects improved by approximately 5%.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示すもので、第1図は本
発明にかかる装置の概略ブロツク線図、第2図
a,b,cは本発明にかかる他の実施例装置の概
略ブロツク線図および部分拡大図、第3図、第4
図はノズルおよび冷媒供給管概略図、第5図は本
発明の冷却制御要領を示す装置概略図、第6図
a,b,cは冷却パターン概略説明図、第7図は
冷却態様説明図、第8図は冷媒供給管構成概略説
明図である。 1は鋳型、2はストランド、3はスプレー冷却
装置、4は気水冷却装置、5はロール外冷冷却装
置、6は表面温度測定装置、7は表面温度測定装
置、8は表面温度測定装置、9は切断装置、10
は単位鋳片、11は誘導加熱装置、12はスケー
ルブレーカー、13は工程総合制御装置、14は
演算冷却制御装置、15は冷媒供給開閉弁装置、
16は冷媒供給開閉弁装置、17は冷媒供給開閉
弁装置、18はタンデイツシユ、19はガイドロ
ール、20はノズル、21はノズル、22は水平
ガイドロール、23はエプロンロール、24はス
プレーノズル、25は制御弁、26は空気制御
弁、27は冷却水制御弁、28は圧縮空気供給
管、29は圧力計、30は流量計、31は流量調
節弁、32は圧力指示制御計、33は流量指示制
御計、34は圧力および流量選択制御計、35は
冷却水供給管、36は電磁流量計、37は流量調
節弁、38は流量指示制御計、39は制御モード
選択指示計、40は温度指示制御計、41は制御
変更指令装置である。
The figures show embodiments of the present invention; FIG. 1 is a schematic block diagram of a device according to the present invention, and FIGS. 2 a, b, and c are schematic block diagrams of other embodiments of the device according to the present invention. and partially enlarged views, Figures 3 and 4.
The figure is a schematic diagram of a nozzle and a refrigerant supply pipe, FIG. 5 is a schematic diagram of a device showing the cooling control procedure of the present invention, FIGS. 6 a, b, and c are schematic diagrams of cooling patterns, and FIG. FIG. 8 is a schematic explanatory diagram of the refrigerant supply pipe configuration. 1 is a mold, 2 is a strand, 3 is a spray cooling device, 4 is an air/water cooling device, 5 is a roll external cooling device, 6 is a surface temperature measuring device, 7 is a surface temperature measuring device, 8 is a surface temperature measuring device, 9 is a cutting device, 10
1 is a unit slab, 11 is an induction heating device, 12 is a scale breaker, 13 is a comprehensive process control device, 14 is a calculation cooling control device, 15 is a refrigerant supply opening/closing valve device,
16 is a refrigerant supply on-off valve device, 17 is a refrigerant supply on-off valve device, 18 is a tundish, 19 is a guide roll, 20 is a nozzle, 21 is a nozzle, 22 is a horizontal guide roll, 23 is an apron roll, 24 is a spray nozzle, 25 is a control valve, 26 is an air control valve, 27 is a cooling water control valve, 28 is a compressed air supply pipe, 29 is a pressure gauge, 30 is a flow meter, 31 is a flow rate adjustment valve, 32 is a pressure indicator controller, 33 is a flow rate 34 is a pressure and flow rate selection controller, 35 is a cooling water supply pipe, 36 is an electromagnetic flowmeter, 37 is a flow rate adjustment valve, 38 is a flow rate indicator and controller, 39 is a control mode selection indicator, 40 is a temperature The indicator controller 41 is a control change command device.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造装置の2次冷却装置において、該2
次冷却装置がスプレー冷却装置に続く気水冷却装
置およびロール外冷冷却装置を順に、もしくは気
水冷却装置とロール外冷冷却装置を順に列設した
装置からなり、さらに前記気水冷却装置が、スト
ランドの温度測定装置からの実測値と設定温度の
差に応じてストランド全体冷却およびストランド
の幅方向の選択冷却を指令する演算冷却制御装置
と、該演算冷却制御装置からの指令により気水、
水、気体噴出の3態様もしくはそれに加えて無噴
出の4態様自在に切替制御されるノズル群を備え
ていることを特徴とする連続鋳造装置の2次冷却
装置。
1. In the secondary cooling device of continuous casting equipment, said 2
The secondary cooling device consists of a spray cooling device followed by an air/water cooling device and a roll external cooling device, or a device in which an air/water cooling device and a roll external cooling device are arranged in sequence, and the air/water cooling device further comprises: A calculation cooling control device that commands cooling of the entire strand and selective cooling of the strand in the width direction according to the difference between the actual measurement value from the strand temperature measurement device and the set temperature;
A secondary cooling device for a continuous casting apparatus, characterized in that it is equipped with a nozzle group that can be freely switched and controlled in three modes of ejecting water and gas, or in addition, four modes of no ejection.
JP5215582A 1982-03-30 1982-03-30 Secondary cooler of continuous casting device Granted JPS58168466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5215582A JPS58168466A (en) 1982-03-30 1982-03-30 Secondary cooler of continuous casting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5215582A JPS58168466A (en) 1982-03-30 1982-03-30 Secondary cooler of continuous casting device

Publications (2)

Publication Number Publication Date
JPS58168466A JPS58168466A (en) 1983-10-04
JPS6349584B2 true JPS6349584B2 (en) 1988-10-05

Family

ID=12906959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5215582A Granted JPS58168466A (en) 1982-03-30 1982-03-30 Secondary cooler of continuous casting device

Country Status (1)

Country Link
JP (1) JPS58168466A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2059040A1 (en) * 1991-01-10 1992-07-09 Philippe Gheeraert Secondary cooling control sensor for a continuous casting machine, mannikin with such sensors and control process for a continuous casting machine
CN103480812B (en) * 2013-08-16 2016-03-02 中国重型机械研究院有限公司 A kind of be furnished with the secondary cooling water branch roads system that width cuts branch road

Also Published As

Publication number Publication date
JPS58168466A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
US4658882A (en) Machine for direct rolling of steel casting and producing steel product therefrom
US7954539B2 (en) Process and a plant for the production of metal strip
US4424855A (en) Method for cooling continuous casting
CN106180192A (en) A kind of wire and rod continuous casting billet high speed direct sending directly rolls system and method
CN104884189A (en) Hybrid cooling nozzle apparatus, and method for controlling cooling nozzle of continuous casting equipment using same
JPH03210963A (en) Cast billet cooling and device used for performance of said method
EP0960670B1 (en) Method for water-cooling slabs
KR100304759B1 (en) Continuous casting equipment operation method
GB2305144A (en) Strip casting using nozzle with side openings
US4660619A (en) Mold cooling apparatus and method for continuous casting machines
JPS6349584B2 (en)
KR20020063886A (en) Production of thin steel strip
JP3293794B2 (en) Cooling system for continuous casting machine
JPH0788598A (en) Spray cooling mold device for continuous casting
JP2002079356A (en) Secondary cooling method in continuous casting
KR20120087526A (en) Device for preventing crack of strand in continuous casting process and method therefor
JPS58116905A (en) Producing device for steel material by direct rolling
JP3377340B2 (en) Continuous casting method
JPS58209457A (en) Continuous casting device
JPH04344859A (en) Device for cooling continuous cast slab
JP2006181583A (en) Method for producing continuously cast slab
JPH03193253A (en) Method for controlling surface temperature of continuous cast slab
JPS63207461A (en) Apparatus for controlling temperature of cast slab
JPH06179051A (en) Method and device for continuously producing strip
JPH028591Y2 (en)