JP2002079356A - Secondary cooling method in continuous casting - Google Patents

Secondary cooling method in continuous casting

Info

Publication number
JP2002079356A
JP2002079356A JP2000270557A JP2000270557A JP2002079356A JP 2002079356 A JP2002079356 A JP 2002079356A JP 2000270557 A JP2000270557 A JP 2000270557A JP 2000270557 A JP2000270557 A JP 2000270557A JP 2002079356 A JP2002079356 A JP 2002079356A
Authority
JP
Japan
Prior art keywords
cooling zone
cooling
casting
slab
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000270557A
Other languages
Japanese (ja)
Inventor
Soichiro Hisamura
総一郎 久村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000270557A priority Critical patent/JP2002079356A/en
Publication of JP2002079356A publication Critical patent/JP2002079356A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To continuously cast a high quality cast slab without developing the surface defect and the interval defect by varying a cooling length in a secondary cooling zone according to the casting velocity and the casting temperature. SOLUTION: In the secondary cooling zone 18 arranged just below a mold 10, plural cooling zones 20, 22, 24, 26, 28 are arranged in series in the drawing direction, and the secondary cooling is applied by spraying cooling water onto a cast slab 12 from nozzles 30 in each cooling zone. Each cooling zone 20, 22, 24, 26, 28 in the secondary cooling zone 18, is independently controlled to spray the cooling water and stop spraying with a command of a control system 32, respectively. In the control system 32, according to the high or low casting velocity to the cast slab 12, the cooling zone length used for cooling the cast slab 12 in the secondary cooing zone 18, is variably controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、連続鋳造される
鋳片の鋳造速度や鋳造温度に応じて、該鋳片を冷却する
2次冷却帯における冷却ゾーン長を可変制御するように
した連続鋳造における2次冷却方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to continuous casting in which a cooling zone length in a secondary cooling zone for cooling the cast slab is variably controlled according to a casting speed and a casting temperature of the cast slab to be continuously cast. In the second cooling method.

【0002】[0002]

【従来の技術】連続鋳造において、鋳型に注入された溶
鋼は該鋳型内で冷却(1次冷却)され、表面部のみが凝固
した状態(シェルが形成された状態)の鋳片となって引抜
かれ、その下流において冷却水のスプレーにより直接冷
却(2次冷却)されて凝固を更に促進するよう構成されて
いる。この2次冷却は、凝固組織のコントロールや鋳片
の割れ防止の観点から極めて重要である。また連続鋳造
では、生産性の観点やシェルの破損防止を目的として、
鋳型から引抜かれるときの鋳片の温度(鋳造温度)が低温
の場合には鋳造速度を高速化し、逆に鋳造温度が高温の
場合には鋳造速度を低速化する速度制御が行なわれてい
る。すなわち、鋳造温度が低温の場合は、鋳片の表面に
形成されるシェルは厚く、高速で引抜くことができる
が、鋳造温度が高温の場合はシェルが薄いために高速で
引抜くと該シェルが破損するおそれがあり、従って鋳造
温度が高温のときには鋳造速度は低速に制御されるもの
である。
2. Description of the Related Art In continuous casting, molten steel poured into a mold is cooled (primary cooling) in the mold, and is drawn into a slab in a state where only the surface is solidified (a state in which a shell is formed). It is configured such that it is withdrawn and cooled directly (secondary cooling) by spraying cooling water downstream thereof to further promote solidification. This secondary cooling is extremely important from the viewpoint of controlling the solidification structure and preventing cracks in the slab. In continuous casting, from the viewpoint of productivity and preventing damage to the shell,
Speed control is performed to increase the casting speed when the temperature of the slab (casting temperature) at the time of drawing from the mold is low, and to decrease the casting speed when the casting temperature is high. That is, when the casting temperature is low, the shell formed on the surface of the slab is thick and can be drawn at a high speed. However, when the casting temperature is high, the shell is thin and the shell is drawn at a high speed. Therefore, the casting speed is controlled to be low when the casting temperature is high.

【0003】[0003]

【発明が解決しようとする課題】前記の高速鋳造時は、
2次冷却帯を鋳片が短時間で通過するため、冷却不足に
より未凝固部が多く、2次冷却帯を通過後の熱容量が大
きくなり、復熱影響によりシェル強度低下および凝固界
面での熱歪により内部割れを発生する問題がある。そこ
で、2次冷却帯での比水量を増加して鋳片の凝固を急速
に行なわせる対策が採用されているが、鋳片を短時間で
急冷するため、2次冷却帯を通過した後の復熱が大きく
なってしまい、内部割れを確実に防止することは困難で
あった。
At the time of the high-speed casting,
Since the slab passes through the secondary cooling zone in a short time, there are many unsolidified portions due to insufficient cooling, the heat capacity after passing through the secondary cooling zone increases, the shell strength decreases due to the effect of recuperation and the heat at the solidification interface. There is a problem that internal cracks occur due to strain. Therefore, measures have been taken to increase the specific water volume in the secondary cooling zone to rapidly solidify the slab, but to rapidly cool the slab in a short time, Reheating increased, and it was difficult to reliably prevent internal cracks.

【0004】また前記の低速鋳造時は、2次冷却帯での
冷却時間が長くなるため、該2次冷却帯を通過する鋳片
の単位長さ当たりの温度降下が大きくなり、割れ感受性
が増大する要因が多くなる難点が指摘される。例えば、
鋳片表面割れの原因となるAlNが粒界に析出する温度
域で、冷却−復熱サイクルの回数が増加し、このために
AlNの粒界析出量が増えて表面割れが発生し易くなる
ことが挙げられる。
In the low-speed casting, since the cooling time in the secondary cooling zone is prolonged, the temperature drop per unit length of the slab passing through the secondary cooling zone is increased, and the susceptibility to cracking is increased. It is pointed out that there are many factors that cause this. For example,
In the temperature range where AlN, which causes slab surface cracking, precipitates at the grain boundaries, the number of cooling and reheating cycles increases, and as a result, the amount of AlN grain boundary precipitation increases, and surface cracks are more likely to occur. Is mentioned.

【0005】[0005]

【発明の目的】この発明は、前述した従来の技術に内在
している前記課題に鑑み、これを好適に解決するべく提
案されたものであって、鋳造速度や鋳造温度に応じて2
次冷却帯における冷却ゾーン長を可変することで、表面
欠陥や内部欠陥の無い高品質の鋳片を連続鋳造し得る連
続鋳造における2次冷却方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems inherent in the prior art, and has been proposed to solve the problem suitably.
It is an object of the present invention to provide a secondary cooling method in continuous casting capable of continuously casting high-quality slabs having no surface defects or internal defects by changing a cooling zone length in a secondary cooling zone.

【0006】[0006]

【課題を解決するための手段】前述した課題を解決し、
所期の目的を好適に達成するため、本発明に係る連続鋳
造における2次冷却方法は、2次冷却帯において水をス
プレーして冷却しつつ鋳片を連続鋳造するに際し、前記
鋳片の鋳造速度または鋳造温度に応じて、前記2次冷却
帯で鋳片に水をスプレーする冷却ゾーンの長さを可変す
ることを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS]
In order to suitably achieve the intended purpose, the secondary cooling method in continuous casting according to the present invention is characterized in that, in performing continuous casting of a slab while spraying and cooling water in a secondary cooling zone, casting of the slab is performed. The length of the cooling zone for spraying water on the slab in the secondary cooling zone may be varied according to the speed or the casting temperature.

【0007】[0007]

【発明の実施の形態】次に、本発明に係る連続鋳造にお
ける2次冷却方法につき、好適な実施例を挙げて、添付
図面を参照しながら以下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a secondary cooling method in continuous casting according to the present invention will be described below with reference to the accompanying drawings with reference to preferred embodiments.

【0008】図1は、実施例に係る2次冷却方法が実施
される連続鋳造設備の要部を概略的に示すものであっ
て、鋳型10に鋳込まれた溶鋼は、ここで1次冷却され
て表面に外殻(シェル)が形成され、得られた鋳片12は
下流側に設けられた複数のピンチローラ14,14によ
り所定速度で連続的に引抜かれるよう構成される。なお
符号16は、自由回転可能なガイドローラを示す。
FIG. 1 schematically shows a main part of a continuous casting facility in which a secondary cooling method according to an embodiment is performed, in which molten steel cast in a mold 10 is subjected to primary cooling. Then, an outer shell (shell) is formed on the surface, and the obtained cast piece 12 is configured to be continuously pulled out at a predetermined speed by a plurality of pinch rollers 14 provided on the downstream side. Reference numeral 16 denotes a freely rotatable guide roller.

【0009】前記鋳型10の直下に設けられた2次冷却
帯18には、複数の冷却ゾーン20,22,24,26,2
8が引抜き方向に直列に設けられ、各冷却ゾーンに配設
された複数のノズル30から鋳片12に冷却水(水)を直
接スプレーすることで、該鋳片12の凝固を促進させる
2次冷却を行なうよう構成される。例えば、各冷却ゾー
ンに関し、上流側から第1冷却ゾーン20、第2冷却ゾ
ーン22、第3冷却ゾーン24、第4冷却ゾーン26、
第5冷却ゾーン28と称す。
A plurality of cooling zones 20, 22, 24, 26, 2 are provided in a secondary cooling zone 18 provided immediately below the mold 10.
8 are provided in series in the drawing direction, and cooling water (water) is directly sprayed on the slab 12 from a plurality of nozzles 30 disposed in each cooling zone, thereby promoting the solidification of the slab 12. It is configured to provide cooling. For example, regarding each cooling zone, the first cooling zone 20, the second cooling zone 22, the third cooling zone 24, the fourth cooling zone 26,
This is referred to as a fifth cooling zone 28.

【0010】前記2次冷却帯18の各冷却ゾーン20,
22,24,26,28では、制御装置32の指令により
各ノズル30の開閉弁(図示せず)が開閉されることで、
ゾーン毎で夫々独立して冷却水のスプレーおよびスプレ
ー停止が制御されると共に、冷却水の水量調整(鋳片の
単位重量当りのスプレー水量である比水量の調整)が可
能に構成されている。また制御装置32では、前記鋳片
12の鋳造速度(鋳型10から引抜かれる速度)が、前記
ピンチローラ14の回転速度から検出されて入力され、
得られた鋳造速度の高低に応じて、2次冷却帯18にお
いて鋳片12を冷却するために使用する冷却ゾーン長を
可変制御(使用するゾーンを選択)するよう設定されてい
る。すなわち実施例では、鋳造速度が定常的に行なわれ
る定常速度の場合は、第1冷却ゾーン20〜第4冷却ゾ
ーン26を使用して鋳片12を冷却するよう設定され、
この定常速度より低速の場合(鋳造温度が高温の場合)
は、第1冷却ゾーン20〜第3冷却ゾーン24までを使
用し、逆に高速の場合(鋳造温度が低温の場合)は、第1
冷却ゾーン20〜第5冷却ゾーン28までを使用するよ
う設定される。
Each cooling zone 20 of the secondary cooling zone 18
At 22, 24, 26, and 28, the on-off valves (not shown) of the nozzles 30 are opened and closed by commands from the control device 32,
The spraying and stopping of the cooling water are controlled independently for each zone, and the water amount of the cooling water (specific water amount adjustment, which is the spray water amount per unit weight of the slab) can be adjusted. In the control device 32, a casting speed of the slab 12 (a speed at which the slab 12 is pulled out from the casting mold 10) is detected and input from a rotation speed of the pinch roller 14, and is input.
In accordance with the obtained casting speed, the cooling zone length used for cooling the slab 12 in the secondary cooling zone 18 is set to be variably controlled (selecting the zone to be used). That is, in the embodiment, when the casting speed is a steady speed that is performed steadily, the casting slab 12 is set to be cooled using the first cooling zone 20 to the fourth cooling zone 26,
When the speed is lower than this steady speed (when the casting temperature is high)
Uses the first cooling zone 20 to the third cooling zone 24, and conversely, when the speed is high (when the casting temperature is low), the first cooling zone 20 to the third cooling zone 24 are used.
The setting is made such that the cooling zone 20 to the fifth cooling zone 28 are used.

【0011】[0011]

【実施例の作用】次に、前述した実施例に係る連続鋳造
における2次冷却方法の作用につき説明する。前記鋳型
10から引抜かれる鋳片12の鋳造速度が定常速度の場
合は、前記制御装置32から第1冷却ゾーン20〜第4
冷却ゾーン26に対して、ノズル30から冷却水をスプ
レーする冷却指令が出力される。従って、鋳型10から
引抜かれた鋳片12は、第1冷却ゾーン20〜第4冷却
ゾーン26を通過する間に、冷却水が直接スプレーされ
て2次冷却される。すなわち、第5冷却ゾーン28を鋳
片12が通過する際には冷却水はスプレーされず、該ゾ
ーン28は空冷域となる。
Next, the operation of the secondary cooling method in the continuous casting according to the above-described embodiment will be described. When the casting speed of the slab 12 drawn from the mold 10 is a steady speed, the controller 32 sends the first cooling zone 20 to the fourth cooling zone 20.
A cooling command for spraying cooling water from the nozzle 30 is output to the cooling zone 26. Therefore, while the slab 12 drawn from the mold 10 passes through the first cooling zone 20 to the fourth cooling zone 26, the cooling water is directly sprayed to be secondarily cooled. That is, when the slab 12 passes through the fifth cooling zone 28, the cooling water is not sprayed, and the zone 28 becomes an air cooling area.

【0012】前記鋳造速度が定常速度より低速の場合
は、前記制御装置32から第1冷却ゾーン20〜第3冷
却ゾーン24に対して、ノズル30から冷却水をスプレ
ーする冷却指令が出力される。従って、鋳型10から引
抜かれた鋳片12は、第1冷却ゾーン20〜第3冷却ゾ
ーン24を通過する間に、冷却水が直接スプレーされて
2次冷却される。この場合は、第4冷却ゾーン26およ
び第5冷却ゾーン28が空冷域となる。そして、このよ
うに低速鋳造時に冷却ゾーン長を短縮することで、2次
冷却帯18での冷却時間(鋳片12に冷却水がスプレー
される時間)は短縮され、鋳片12の単位長さ当たりの
温度降下を低く抑えることができ、割れ感受性が増大す
るのを防止し得る。すなわち、AlN析出温度域での冷
却〜復熱サイクルが減少し、AlNの粒界析出が抑制さ
れて脆化が軽減され、表面割れ等の表面欠陥の発生は防
止される。
When the casting speed is lower than the steady speed, the controller 32 outputs a cooling command to spray cooling water from the nozzle 30 to the first to third cooling zones 20 to 24. Therefore, while the slab 12 drawn from the mold 10 passes through the first cooling zone 20 to the third cooling zone 24, the cooling water is directly sprayed to be secondarily cooled. In this case, the fourth cooling zone 26 and the fifth cooling zone 28 are air cooling areas. By shortening the cooling zone length at the time of low-speed casting, the cooling time in the secondary cooling zone 18 (time during which the cooling water is sprayed on the slab 12) is reduced, and the unit length of the slab 12 is reduced. The temperature drop per hit can be kept low and the crack sensitivity can be prevented from increasing. That is, the cooling to reheating cycle in the AlN precipitation temperature range is reduced, the grain boundary precipitation of AlN is suppressed, embrittlement is reduced, and the occurrence of surface defects such as surface cracks is prevented.

【0013】更に、前記鋳造速度が定常速度より高速の
場合は、前記制御装置32から第1冷却ゾーン20〜第
5冷却ゾーン28に対して、ノズル30から冷却水をス
プレーする冷却指令が出力される。従って、鋳型10か
ら引抜かれた鋳片12は、第1冷却ゾーン20〜第5冷
却ゾーン28を通過する間に、冷却水が直接スプレーさ
れて2次冷却される。このように高速鋳造時に冷却ゾー
ン長を長くすることで、鋳片12は長い時間を掛けて冷
却されることとなり、2次冷却帯18の通過後における
復熱は小さくなり、熱歪みに起因する内部割れの発生は
抑制される。
Further, when the casting speed is higher than the steady speed, the controller 32 outputs a cooling command for spraying cooling water from the nozzle 30 to the first cooling zone 20 to the fifth cooling zone 28. You. Accordingly, while the slab 12 drawn from the mold 10 passes through the first cooling zone 20 to the fifth cooling zone 28, the cooling water is directly sprayed to be secondarily cooled. By increasing the cooling zone length during high-speed casting in this way, the slab 12 is cooled over a long period of time, and the recuperation after passing through the secondary cooling zone 18 is reduced, resulting from thermal distortion. The occurrence of internal cracks is suppressed.

【0014】[0014]

【実験例1】〜の3種の鋼種について、低速鋳造時
に使用する冷却ゾーンを、第1冷却ゾーン20〜第4冷
却ゾーン26までとした場合と、第1冷却ゾーン20〜
第3冷却ゾーン24までとした場合について、得られた
鋳片12における内部割れの個数および表面割れ発生指
数について測定した結果を、表1に示す。なお、表面割
れに関しては、表面割れが発生した鋳片の面数をカウン
トしたものを指数とした。
[Experimental Example 1] Regarding the three types of steels, the cooling zones used at the time of low-speed casting were the first cooling zone 20 to the fourth cooling zone 26, and the first cooling zone 20 to
Table 1 shows the results of measuring the number of internal cracks and the index of occurrence of surface cracks in the obtained cast piece 12 up to the third cooling zone 24. Regarding the surface cracks, an index was obtained by counting the number of surfaces of the slab where the surface cracks occurred.

【0015】 [0015]

【0016】表1から判明する如く、低速鋳造時におい
て使用する冷却ゾーン長を短縮することで、表面割れ指
数が低下することが確認された。なお、低速鋳造時にお
いては、冷却ゾーンの長短に関係なく内部割れは発生し
なかった。
As is clear from Table 1, it was confirmed that the surface cracking index was reduced by reducing the length of the cooling zone used during low-speed casting. In addition, at the time of low-speed casting, no internal crack occurred regardless of the length of the cooling zone.

【0017】[0017]

【実験例2】肌焼鋼について高速鋳造時に使用する冷却
ゾーンを、第1冷却ゾーン20〜第4冷却ゾーン26ま
でとした場合(例A)と、第1冷却ゾーン20〜第5冷却
ゾーン28までとした場合(例B)について、シェル平均
温度(指数)を測定した結果を、図2に示す。
[Experimental example 2] The case where the cooling zone used for high-speed casting of case hardening steel is from the first cooling zone 20 to the fourth cooling zone 26 (Example A), and the first cooling zone 20 to the fifth cooling zone 28 FIG. 2 shows the results of measuring the shell average temperature (index) for the cases (Example B).

【0018】図2から明らかな如く、冷却ゾーン長の短
かい例Aの場合は、第4冷却ゾーン26(図の第4)を通
過した後におけるシェル平均温度(指数)、すなわち復熱
が大きくなり、内部割れが発生する確率が高くなる。こ
れに対して冷却ゾーン長の長い例Bの場合は、第5冷却
ゾーン28(図の第5)を通過した後におけるシェル平均
温度(指数)、すなわち復熱は小さく抑えられ、内部割れ
が発生する確率は低くなるものである。
As is apparent from FIG. 2, in the case of Example A having a short cooling zone length, the average shell temperature (index) after passing through the fourth cooling zone 26 (fourth in the figure), that is, the recuperation is large. And the probability of occurrence of internal cracks increases. On the other hand, in the case of Example B having a long cooling zone length, the shell average temperature (index) after passing through the fifth cooling zone 28 (fifth in the figure), that is, recuperation is suppressed to a small value, and internal cracking The probability of doing so is low.

【0019】実施例では、鋳造速度の高低に応じて冷却
ゾーン長を可変する場合で説明したが、鋳造速度は鋳造
温度に対応するから、該温度の高低に応じて冷却ゾーン
長を可変するようにしてもよい。すなわち、鋳造温度が
定常的に行なわれる定常温度より低い場合には冷却ゾー
ン長を長くし、逆に高い場合には冷却ゾーン長を短縮す
るよう制御する。また鋳造速度や鋳造温度は、ピンチロ
ーラや鋳片の温度を実際に測定したものを用いる他に、
上位のコンピュータ等から予め設定入力された操業条件
のデータを用いてもよい。
In the embodiment, the case where the cooling zone length is changed according to the casting speed is described. However, since the casting speed corresponds to the casting temperature, the cooling zone length is changed according to the casting temperature. It may be. That is, when the casting temperature is lower than the steady-state steady temperature, the cooling zone length is increased, and when the casting temperature is higher, the cooling zone length is shortened. For the casting speed and casting temperature, besides using the actual measurement of the pinch roller and the temperature of the slab,
Operation condition data set and input in advance from a host computer or the like may be used.

【0020】なお、2次冷却帯における冷却ゾーンの
数、各ゾーンの長さ、各ゾーン内に配設されるノズルの
数等は、実施例のものに限定されるものでなく、適宜に
変更可能である。また、鋳造速度や鋳造温度に応じて選
択使用される冷却ゾーン長を細分化することで、更に高
品質の鋳片を連続鋳造することが可能となる。
The number of cooling zones in the secondary cooling zone, the length of each zone, the number of nozzles disposed in each zone, and the like are not limited to those in the embodiment, but may be changed as appropriate. It is possible. Further, by subdividing the cooling zone length selected and used in accordance with the casting speed and the casting temperature, it is possible to continuously cast a higher quality cast piece.

【0021】[0021]

【発明の効果】以上説明した如く、本発明に係る連続鋳
造における2次冷却方法によれば、鋳造速度や鋳造温度
に応じて2次冷却帯において鋳片の冷却に使用する冷却
ゾーン長を可変することで、表面欠陥や内部欠陥の無い
高品質の鋳片を連続鋳造することができる。
As described above, according to the secondary cooling method in continuous casting according to the present invention, the length of the cooling zone used for cooling the slab in the secondary cooling zone can be varied according to the casting speed and the casting temperature. By doing so, it is possible to continuously cast a high-quality cast piece having no surface defects or internal defects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の好適な実施例に係る2次冷却方法を実
施する連続鋳造設備の要部を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a main part of a continuous casting facility for performing a secondary cooling method according to a preferred embodiment of the present invention.

【図2】実験例2の結果を示すグラフ図である。FIG. 2 is a graph showing the results of Experimental Example 2.

【符号の説明】[Explanation of symbols]

12 鋳片 18 2次冷却帯 20 第1冷却ゾーン 22 第2冷却ゾーン 24 第3冷却ゾーン 26 第4冷却ゾーン 28 第5冷却ゾーン 12 Slab 18 Secondary cooling zone 20 First cooling zone 22 Second cooling zone 24 Third cooling zone 26 Fourth cooling zone 28 Fifth cooling zone

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2次冷却帯(18)において水をスプレーし
て冷却しつつ鋳片(12)を連続鋳造するに際し、 前記鋳片(12)の鋳造速度または鋳造温度に応じて、前記
2次冷却帯(18)で鋳片(12)に水をスプレーする冷却ゾー
ン(20,22,24,26,28)の長さを可変することを特徴とする
連続鋳造における2次冷却方法。
When a slab (12) is continuously cast while spraying and cooling water in a secondary cooling zone (18), the slab (12) is cast according to a casting speed or a casting temperature of the slab (12). A secondary cooling method in continuous casting, characterized in that the length of a cooling zone (20, 22, 24, 26, 28) for spraying water on a slab (12) in a secondary cooling zone (18) is varied.
【請求項2】 前記鋳片(12)の鋳造速度が低速または鋳
造温度が高温の場合には冷却ゾーン長を短縮し、鋳造速
度が高速または鋳造温度が低温の場合には冷却ゾーン長
を長くする請求項1記載の連続鋳造における2次冷却方
法。
2. When the casting speed of the slab (12) is low or the casting temperature is high, the cooling zone length is shortened. When the casting speed is high or the casting temperature is low, the cooling zone length is increased. The secondary cooling method in continuous casting according to claim 1.
JP2000270557A 2000-09-06 2000-09-06 Secondary cooling method in continuous casting Pending JP2002079356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270557A JP2002079356A (en) 2000-09-06 2000-09-06 Secondary cooling method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270557A JP2002079356A (en) 2000-09-06 2000-09-06 Secondary cooling method in continuous casting

Publications (1)

Publication Number Publication Date
JP2002079356A true JP2002079356A (en) 2002-03-19

Family

ID=18756980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270557A Pending JP2002079356A (en) 2000-09-06 2000-09-06 Secondary cooling method in continuous casting

Country Status (1)

Country Link
JP (1) JP2002079356A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106967A (en) * 2007-10-30 2009-05-21 Sumitomo Metal Ind Ltd Continuous casting method for steel
CN101658913B (en) * 2009-09-19 2012-03-28 新疆八一钢铁股份有限公司 Variable water ratio control method of secondary cooling of billet caster
US8522858B2 (en) 2006-01-11 2013-09-03 Sms Siemag Aktiengesellschaft Method and apparatus for continuous casting
US8651168B2 (en) 2007-05-07 2014-02-18 Board Of Trustees Of The University Of Illinois Cooling control system for continuous casting of metal
CN104162640A (en) * 2014-08-22 2014-11-26 首钢总公司 Secondary cooling process for improving surface quality of extremely-thick slab through intermittent spray
WO2019074161A1 (en) * 2017-10-12 2019-04-18 주식회사 포스코 Method for casting cast piece and casting equipment
CN112024837A (en) * 2019-06-04 2020-12-04 上海梅山钢铁股份有限公司 Real-time diagnosis method for continuous casting slab nozzle blockage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522858B2 (en) 2006-01-11 2013-09-03 Sms Siemag Aktiengesellschaft Method and apparatus for continuous casting
US8596335B2 (en) 2006-01-11 2013-12-03 Sms Siemag Aktiengesellschaft Method and apparatus for continuous casting
US8651168B2 (en) 2007-05-07 2014-02-18 Board Of Trustees Of The University Of Illinois Cooling control system for continuous casting of metal
JP2009106967A (en) * 2007-10-30 2009-05-21 Sumitomo Metal Ind Ltd Continuous casting method for steel
CN101658913B (en) * 2009-09-19 2012-03-28 新疆八一钢铁股份有限公司 Variable water ratio control method of secondary cooling of billet caster
CN104162640A (en) * 2014-08-22 2014-11-26 首钢总公司 Secondary cooling process for improving surface quality of extremely-thick slab through intermittent spray
WO2019074161A1 (en) * 2017-10-12 2019-04-18 주식회사 포스코 Method for casting cast piece and casting equipment
KR20190041224A (en) * 2017-10-12 2019-04-22 주식회사 포스코 Method for casting slab and casting apparatus
KR101974566B1 (en) 2017-10-12 2019-09-05 주식회사 포스코 Method for casting slab and casting apparatus
CN112024837A (en) * 2019-06-04 2020-12-04 上海梅山钢铁股份有限公司 Real-time diagnosis method for continuous casting slab nozzle blockage

Similar Documents

Publication Publication Date Title
JP5686062B2 (en) Steel continuous casting method
JP2002079356A (en) Secondary cooling method in continuous casting
TWI787589B (en) Continuous casting method of steel billet
JP4948225B2 (en) Method for producing a slab having a sound internal structure by controlling the secondary cooling specific water amount of each continuous casting by strand
JP4899629B2 (en) Billet continuous casting method
JPH0671389A (en) Horizontal continuous casting method
JP5131229B2 (en) Slab continuous casting method
KR20130088305A (en) Reducing method of crack for addition of boron high-carbon steel
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
CN112743052A (en) Slab crystallizer for solving casting blank narrow surface cracks and control method
KR20150075571A (en) Apparatus for producing bar of continuous casting process
JPH0515956A (en) Continuous casting method
JP3820961B2 (en) Steel continuous casting method
JP2006181583A (en) Method for producing continuously cast slab
JP2867894B2 (en) Continuous casting method
KR101303048B1 (en) Apparatus for setting cutting speed and method for operating the same
KR102638366B1 (en) Secondary cooling method and device for continuous casting cast steel
JPS63171249A (en) Continuous casting method for cast metal strip
JP2002239696A (en) Secondary cooling method for continuous casting
KR101246195B1 (en) Method for producing hardened steel slab in heat treatment
KR101748946B1 (en) Continuous casting method
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
KR20120097067A (en) Method for manufacturing slab having uniform width
JPH101719A (en) Method for cooling continuously cast bloom
JPH03193253A (en) Method for controlling surface temperature of continuous cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427