JPS6349577Y2 - - Google Patents

Info

Publication number
JPS6349577Y2
JPS6349577Y2 JP6435484U JP6435484U JPS6349577Y2 JP S6349577 Y2 JPS6349577 Y2 JP S6349577Y2 JP 6435484 U JP6435484 U JP 6435484U JP 6435484 U JP6435484 U JP 6435484U JP S6349577 Y2 JPS6349577 Y2 JP S6349577Y2
Authority
JP
Japan
Prior art keywords
oil
inlet
outlet
chamber
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6435484U
Other languages
Japanese (ja)
Other versions
JPS60175881U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6435484U priority Critical patent/JPS60175881U/en
Publication of JPS60175881U publication Critical patent/JPS60175881U/en
Application granted granted Critical
Publication of JPS6349577Y2 publication Critical patent/JPS6349577Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、油冷式コンプレツサの冷却用の油を
冷却する装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a device for cooling oil for cooling an oil-cooled compressor.

従来技術 気体の圧縮による発生熱を油で吸収する油冷式
コンプレツサにおいては、その油を冷却する必要
があるので、第1図に示すように通常はオイルク
ーラaに油を流通させて冷却しているが、塞冷時
または軽負荷時には油が過冷却されてしまうの
で、オイルクーラaをバイパスするためにサーモ
スタツトバルブbで開閉されるバイパス路cを設
け、油に温度が低い時にはサーモスタツトバルブ
よりバイパス路を通して油をコンプレツサdに直
接流通させてオイルクーラaには流通しないよう
にしている。
Prior Art In oil-cooled compressors that use oil to absorb the heat generated by compressing gas, it is necessary to cool the oil, so oil is normally cooled by circulating oil through an oil cooler a, as shown in Figure 1. However, since the oil becomes supercooled when the oil is blocked or under light load, a bypass passage c, which is opened and closed by a thermostat valve b, is provided to bypass the oil cooler a, and when the oil temperature is low, the thermostat The oil is made to flow directly from the valve to the compressor d through the bypass passage and not to the oil cooler a.

第1図で、eはエンジン、fはレシーバタン
ク、gはオイルフイルタである。
In FIG. 1, e is the engine, f is the receiver tank, and g is the oil filter.

しかし、この装置であると次の様な不具合を有
する。
However, this device has the following problems.

つまり、塞冷時に油の粘度が高い条件で始動し
た場合、油温が低い間はサーモスタツトバルブb
によつて油はバイパス路cを通つてコンプレツサ
dに正常に流れるが、油温が上昇してサーモスタ
ツトバルブbが作動して油をオイルクーラaに流
すように切替ると、油は急冷されて粘度が高くな
るために、オイルクーラa内を流れにくくなる。
In other words, if the engine is started with high oil viscosity during cooling, the thermostat valve B will close while the oil temperature is low.
As a result, oil normally flows through bypass path c to compressor d, but when the oil temperature rises and thermostat valve b is activated to switch the oil to flow to oil cooler a, the oil is rapidly cooled. Since the viscosity increases, it becomes difficult to flow inside the oil cooler a.

この結果、一時的に油の流量が低下してコンプ
レツサd内への給油が減少するために冷却不良と
なつてしまうので、吐出空気温度が異常に上昇し
てしまう。
As a result, the flow rate of oil temporarily decreases and the supply of oil into the compressor d decreases, resulting in insufficient cooling, and the temperature of the discharged air increases abnormally.

これにより、吐出空気の温度センサがこれを検
出して通常コンプレツサに装備された非常停止装
置を作動し、エンジンeを停止してしまうことが
ある。
As a result, the discharge air temperature sensor may detect this and activate an emergency stop device normally installed in the compressor, thereby stopping the engine e.

考案の目的 オイルクーラに油が流入する初期に、その油の
一部をオイルクーラを通さずに直接コンプレツサ
に流通でき、一時的な油の流量の低下を防止して
コンプレツサが冷却不良となることがないように
することを目的とする。
Purpose of the invention: At the initial stage when oil flows into the oil cooler, a portion of the oil can flow directly to the compressor without passing through the oil cooler, preventing a temporary drop in oil flow rate and causing compressor cooling failure. The purpose is to ensure that there are no

考案の構成 オイルクーラの入口圧力と出口圧力との差圧が
所定値以上になるとリリーフ作動するリリーフバ
ルブを備えた第2バイパス路で、前記入口と出口
とを短絡したもの。
Structure of the invention A second bypass path is provided with a relief valve that operates in relief when the differential pressure between the inlet pressure and the outlet pressure of the oil cooler exceeds a predetermined value, and the inlet and outlet are short-circuited.

実施例 第2図は全体概略説明図であり、コンプレツサ
1はエンジン2で駆動され、その圧縮空気はレシ
ーバータンク3に供給されると共に、冷却用の油
は第1管路4でレシーバータンク3内に供給さ
れ、第2管路5でオイルクーラ6の入口6aに供
給され、出口6bが第3管路7でコンプレツサ1
に接続してあると共に、第2、第3管路5,7は
サーモスタツトバルブ8と第1バイパス路9とで
短絡され、かつリリーフバルブ10と第2バイパ
ス路11とで短絡してある。
Embodiment FIG. 2 is an overall schematic explanatory diagram, in which the compressor 1 is driven by an engine 2, its compressed air is supplied to a receiver tank 3, and cooling oil is supplied to the receiver tank 3 through a first pipe 4. is supplied to the inlet 6a of the oil cooler 6 through the second pipe line 5, and the outlet 6b is supplied to the compressor 1 through the third pipe line 7.
The second and third pipes 5 and 7 are short-circuited through a thermostatic valve 8 and a first bypass path 9, and are also short-circuited through a relief valve 10 and a second bypass path 11.

第3図はオイルクーラ6の概略説明図であり、
アツパタンク12とロアタンク13とを多数のチ
ユーブ14で連通し、アツパタンク12には隔壁
15が設けられて第1、第2室121,122に区
分され、第1室121には入口6aが、第2室1
2には出口6bが形成され、入口6aと隔壁1
5の第1バイパス入口16とにサーモスタツトバ
ルブ8が設けてある。
FIG. 3 is a schematic explanatory diagram of the oil cooler 6,
The Atsupa tank 12 and the lower tank 13 are communicated through a number of tubes 14, and the Atsupa tank 12 is provided with a partition wall 15 to divide it into first and second chambers 12 1 and 12 2 , and the first chamber 12 1 has an inlet 6 a. , 2nd room 1
2 2 is formed with an outlet 6b, and an inlet 6a and the partition wall 1
A thermostatic valve 8 is provided at the first bypass inlet 16 of the first bypass inlet 5 .

第4図はサーモスタツトバルブ部分の詳細断面
図であり、サーモスタツトバルブ8は、アツパタ
ンク12に固定され、かつ開口17を有する蓋体
18と、蓋体18に対して上下動する筒体19と
温度変化により伸縮するベローズ20とを備えた
従来公知のベローズ式サーモスタツトバルブとな
り、筒体19が隔壁15の第1バイパス入口16
に開口した孔21内に液密に摺動自在に嵌合さ
れ、油温が低い時にはベローズ20が縮んで筒体
19が蓋体18に密着し、かつ第1バイパス入口
16の下方の弁座22と離隔して油は入口6a、
開口17、筒体19、第1バイパス入口16より
第2室122に直接流れると共に、油温が高い時
にはベローズ20が伸びて筒体19は弁座22に
密着して第1バイパス入口16を閉塞し、油は入
口6a、開口17より第1室121に流れ、チユ
ーブ14よりロアタンク13に流れ、再びチユー
ブ14よりアツパタンク12の第2室122に流
れて出口6bよりコンプレツサ1に流れる。この
チユーブ14を流れる時にエンジン2で駆動され
るフアン23によつて送風される風で冷却され
る。
FIG. 4 is a detailed sectional view of the thermostat valve part, and the thermostat valve 8 consists of a lid body 18 that is fixed to the upper tank 12 and has an opening 17, and a cylinder body 19 that moves up and down with respect to the lid body 18. This is a conventionally known bellows-type thermostatic valve equipped with a bellows 20 that expands and contracts according to temperature changes, and the cylindrical body 19 connects to the first bypass inlet 16 of the partition wall 15.
When the oil temperature is low, the bellows 20 contracts and the cylindrical body 19 comes into close contact with the lid body 18, and the valve seat below the first bypass inlet 16 is fitted in a fluid-tight manner. Separated from 22, oil enters an inlet 6a,
The oil flows directly from the opening 17, the cylindrical body 19, and the first bypass inlet 16 to the second chamber 122 , and when the oil temperature is high, the bellows 20 extends and the cylindrical body 19 comes into close contact with the valve seat 22, allowing the oil to flow through the first bypass inlet 16. The oil flows through the inlet 6a and opening 17 to the first chamber 121, through the tube 14 to the lower tank 13, again through the tube 14 to the second chamber 122 of the upper tank 12 , and through the outlet 6b to the compressor 1. When flowing through the tube 14, the air is cooled by the air blown by the fan 23 driven by the engine 2.

前記アツパタンク12には第1、第2室121
122とを連通する第2バイパス路11を構成す
る入口孔30と出口孔31とが形成され、かつ入
口孔30と同心状の大径孔32が形成してあり、
この大径孔32にはバルブ33が嵌挿され、この
バルブ33はバネ34で入口孔30の周縁30a
に圧着して入口孔30と出口孔31とを遮断して
前記リリーフバルブ10を構成していると共に、
バネ室34aはパイプ35で第2室122に開口
連通し、バルブ32は第2室122の圧力とバネ
34のバネ力とによつて遮断方向に押され、第1
室121の圧力で開放方向に押されるようになり、
バルブ32は第1室121の圧力P1と第2室122
の圧力P2との差P1−P2が一定値以上となる開放
方向にされて入口孔30と出口孔31とを連通す
る。
The atsupa tank 12 has a first chamber 12 1 , a second chamber 12 1 ,
An inlet hole 30 and an outlet hole 31 constituting the second bypass path 11 communicating with the second bypass passage 12 are formed, and a large diameter hole 32 concentric with the inlet hole 30 is formed.
A valve 33 is fitted into this large diameter hole 32, and this valve 33 is attached to the peripheral edge 30a of the inlet hole 30 by a spring 34.
The relief valve 10 is constructed by crimping the inlet hole 30 and the outlet hole 31, and
The spring chamber 34a is opened and communicated with the second chamber 122 through a pipe 35, and the valve 32 is pushed in the blocking direction by the pressure of the second chamber 122 and the spring force of the spring 34,
The pressure in chamber 12 1 will push it in the opening direction,
The valve 32 controls the pressure P 1 in the first chamber 12 1 and the pressure P 1 in the second chamber 12 2 .
The inlet hole 30 and the outlet hole 31 are opened in an opening direction in which the difference P 1 -P 2 from the pressure P 2 is greater than a certain value, and the inlet hole 30 and the outlet hole 31 are communicated with each other.

この様であるから、前述のようにサーモスタツ
トバルブ8が開放して油が第1室121より、チ
ユーブ14を通つてロアタンク13に流れ始める
時にチユーブ14の流通抵抗によつて流量が減少
すると、第1室121の圧力P1は高くなり、第2
室122の圧力P2は低くなるから、差圧P1−P2
所定値以上となり、バルブ33が開放するので、
油の一部は入口孔30より出力孔31を経て第2
室122に流れ、第2室122よりコンプレツサ1
に供給されるから、流量不足による冷却不良が防
止され、吐出空気温度が異常に上昇することがな
い。
Because of this, as mentioned above, when the thermostat valve 8 opens and oil starts to flow from the first chamber 121 to the lower tank 13 through the tube 14, the flow rate decreases due to the flow resistance of the tube 14. , the pressure P 1 in the first chamber 12 1 increases, and the pressure in the second chamber 12 1 increases.
Since the pressure P 2 in the chamber 12 2 becomes low, the differential pressure P 1 −P 2 becomes a predetermined value or more, and the valve 33 opens.
A part of the oil flows from the inlet hole 30 through the output hole 31 to the second
Flows to chamber 12 2 and from the second chamber 12 2 to compressor 1
This prevents cooling failure due to insufficient flow rate and prevents the discharge air temperature from rising abnormally.

そして、ある程度時間が経過すると油の粘度が
低くなつてスムーズにロアタンク13に流れるか
ら第1室121内の圧力P1が低下し、差圧P1−P2
が所定値以下となるので、バルブ33は遮断位置
となつて入口6aより流入した油は全量第1室1
1に流れるから、通常と同様の冷却効果が得ら
れる。
Then, after a certain amount of time has passed, the viscosity of the oil decreases and it flows smoothly into the lower tank 13, so the pressure P 1 in the first chamber 12 1 decreases, and the pressure difference P 1 - P 2
is below the predetermined value, the valve 33 is in the cutoff position, and the entire amount of oil flowing from the inlet 6a is discharged into the first chamber 1.
2 1 , so you can get the same cooling effect as normal.

なお、以上の実施例では第1室121と第2室
122の差圧を検出したが、これに限るものでは
なく、入口6aと出口6bとの差圧を検出してリ
リーフバルブ10を作動させれば良い。
In addition, although the differential pressure between the first chamber 12 1 and the second chamber 12 2 is detected in the above embodiment, the pressure difference between the inlet 6 a and the outlet 6 b is detected and the relief valve 10 is activated. All you have to do is activate it.

考案の効果 オイルクーラ6に油が流入する初期に、粘度数
影響によつてオイルクーラ6を流れる流量が減少
すると、入口6aと出口6bとの圧力差が大きく
なつてリリーフバルブ10が作動するから、その
油の一部がオイルクーラ6を通さずに直接出口6
bよりコンプレツサ1に流通でき、一時的な油の
流量の低下を防止してコンプレツサが冷却不良と
なることがなくなる。
Effect of the invention: When the flow rate of oil flowing through the oil cooler 6 decreases due to the influence of viscosity number at the beginning of oil flowing into the oil cooler 6, the pressure difference between the inlet 6a and the outlet 6b becomes large and the relief valve 10 is activated. , some of the oil flows directly to the outlet 6 without passing through the oil cooler 6.
b, the oil can flow to the compressor 1, preventing a temporary drop in the oil flow rate and preventing the compressor from cooling poorly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の概略説明図、第2図は本考案
の実施例を示す全体概略説明図、第3図はオイル
クーラの概略説明図、第4図はサーモスタツトバ
ルブ部分の詳細断面図である。 1はコンプレツサ、6はオイルクーラ、6aは
入口、6bは出口、8はサーモスタツトバルブ、
9は第1バイパス路、10はリリーフバルブ、1
1は第2バイパス路。
Fig. 1 is a schematic explanatory diagram of a conventional example, Fig. 2 is an overall schematic explanatory diagram showing an embodiment of the present invention, Fig. 3 is a schematic explanatory diagram of an oil cooler, and Fig. 4 is a detailed sectional view of a thermostat valve part. It is. 1 is a compressor, 6 is an oil cooler, 6a is an inlet, 6b is an outlet, 8 is a thermostatic valve,
9 is a first bypass path, 10 is a relief valve, 1
1 is the second bypass road.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] コンプレツサ1の油出口とオイルクーラ6の入
口6aとを接続し、その出口6bと油入口とを接
続すると共に、オイルクーラ6の入口6aと出口
6bとをサーモスタツトバルブ8を備えた第1バ
イパス路9で短絡すると共に、前記入口6aと出
口6bとを、入口6aの圧力と出口6bの圧力差
によつて作動するリリーフバルブ10を備えた第
2バイパス路11で短絡したことを特徴とする油
冷式コンプレツサの油冷却装置。
The oil outlet of the compressor 1 and the inlet 6a of the oil cooler 6 are connected, and the outlet 6b and the oil inlet are connected, and the inlet 6a and the outlet 6b of the oil cooler 6 are connected to a first bypass equipped with a thermostatic valve 8. It is characterized in that the inlet 6a and the outlet 6b are short-circuited at the passage 9, and the second bypass passage 11 is provided with a relief valve 10 that is operated by the pressure difference between the inlet 6a and the outlet 6b. Oil cooling system for oil-cooled compressors.
JP6435484U 1984-05-02 1984-05-02 Oil cooling system for oil-cooled compressor Granted JPS60175881U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6435484U JPS60175881U (en) 1984-05-02 1984-05-02 Oil cooling system for oil-cooled compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6435484U JPS60175881U (en) 1984-05-02 1984-05-02 Oil cooling system for oil-cooled compressor

Publications (2)

Publication Number Publication Date
JPS60175881U JPS60175881U (en) 1985-11-21
JPS6349577Y2 true JPS6349577Y2 (en) 1988-12-20

Family

ID=30595359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6435484U Granted JPS60175881U (en) 1984-05-02 1984-05-02 Oil cooling system for oil-cooled compressor

Country Status (1)

Country Link
JP (1) JPS60175881U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132232B2 (en) * 2007-09-25 2013-01-30 三菱電機株式会社 Oil level detection method for oil sump, oil supply control method, gas compression device provided with these, and air conditioner provided with this gas compression device

Also Published As

Publication number Publication date
JPS60175881U (en) 1985-11-21

Similar Documents

Publication Publication Date Title
US4009592A (en) Multiple stage expansion valve for an automotive air conditioning system
US4418548A (en) Variable capacity multiple compressor refrigeration system
US4104044A (en) Bidirectional flow filter-drier assembly
US4372486A (en) Reversible expansion valve
US5052193A (en) Air conditioning system accumulator
US5031416A (en) Variable area refrigerant expansion device having a flexible orifice
US5214939A (en) Variable area refrigerant expansion device having a flexible orifice
JPS6349577Y2 (en)
US4643002A (en) Continuous metered flow multizone air conditioning system
US5134860A (en) Variable area refrigerant expansion device having a flexible orifice for heating mode of a heat pump
JPH0330795B2 (en)
US3233822A (en) Refrigeration compressor
US2313391A (en) Refrigerating system
USRE27522E (en) System for maintaining pressure in refrigeration systems
JPH0212339B2 (en)
JP3381115B2 (en) Thermo-responsive steam trap
JP3381120B2 (en) Thermo-responsive steam trap
JPH062962A (en) Air conditioner
JPH05302760A (en) Refrigerating cycle
JPS6240135Y2 (en)
JPS6051627B2 (en) Cooling water heater
US3181794A (en) Condensate discharge booster
JPS6018563Y2 (en) Lubricating oil temperature control valve
JPH0144796Y2 (en)
US1880539A (en) Cooling system for internal combustion engines