JPS6349566Y2 - - Google Patents

Info

Publication number
JPS6349566Y2
JPS6349566Y2 JP1982047611U JP4761182U JPS6349566Y2 JP S6349566 Y2 JPS6349566 Y2 JP S6349566Y2 JP 1982047611 U JP1982047611 U JP 1982047611U JP 4761182 U JP4761182 U JP 4761182U JP S6349566 Y2 JPS6349566 Y2 JP S6349566Y2
Authority
JP
Japan
Prior art keywords
water
water level
turbine
chamber
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982047611U
Other languages
Japanese (ja)
Other versions
JPS58149577U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4761182U priority Critical patent/JPS58149577U/en
Publication of JPS58149577U publication Critical patent/JPS58149577U/en
Application granted granted Critical
Publication of JPS6349566Y2 publication Critical patent/JPS6349566Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【考案の詳細な説明】 本考案は低水位発電機用反動翼水車の水車室に
関する。
[Detailed Description of the Invention] The present invention relates to a water turbine chamber of a reaction blade water turbine for a low water level generator.

従来、低水位発電機用反動翼水車の水車室は、
室内全体に流体が満ちており、その中で反動翼水
車が動いている。そのため反動翼水車の転向部の
一端は、常に流体の流れに逆らつて動くため、反
動翼水車に大きな抵抗となり、水車で動力を取り
出す効率が低いという欠点があつた。
Conventionally, the turbine chamber of a reaction blade turbine for a low water level generator is
The entire room is filled with fluid, and a reaction blade waterwheel is moving within it. For this reason, one end of the turning section of the reaction blade turbine always moves against the flow of fluid, creating a large resistance to the reaction blade turbine, resulting in a disadvantage that the efficiency of extracting power from the turbine is low.

そこで本考案は、反動翼水車室の上部に気室を
設け、この反動翼水車室内に配設されて流体入口
側の反動翼が下方に移動するとともに流体出口側
の反動翼が上方に移動する反動翼水車の上部転向
部を、流体上方の前記気室内に位置させ、反動翼
水車室内の水位に対応して前記気室に接続した高
圧空気管から気室内に高圧空気を供給し前記水位
を上部転向部下方に維持する水位制御装置を設け
たものである。
Therefore, in the present invention, an air chamber is provided in the upper part of the reaction blade turbine chamber, and the reaction blade located inside the reaction blade turbine chamber is arranged so that the reaction blade on the fluid inlet side moves downward and the reaction blade on the fluid outlet side moves upward. The upper turning part of the reaction blade turbine is located in the air chamber above the fluid, and high pressure air is supplied into the air chamber from a high pressure air pipe connected to the air chamber in accordance with the water level in the reaction blade turbine chamber to lower the water level. A water level control device is provided to maintain the water level below the upper turning point.

上記構成により、水位の変動に関係なく、反動
翼水車の上部転向部の受ける流体抵抗を軽減して
効率を向上させることができる。
With the above configuration, it is possible to reduce the fluid resistance experienced by the upper turning section of the reaction blade hydraulic turbine and improve efficiency, regardless of fluctuations in the water level.

以下本考案の一実施例を図面に基づいて説明す
る。
An embodiment of the present invention will be described below based on the drawings.

図面は反動翼水車21の上部転向位置が水路2
4の水位23よりも低い実施例を示す。水路24
に設けた止水堤25には流体流入口26を設け、
その流体入口A側には水路用ゲート27を設け
る。止水堤25の流体出口B側には筒形の水路用
殻17を設け、その上流端を止水堤25の流体出
口Bへ取付け、下流端を流体出口B側へ開放す
る。前記水路用殻17の適当な位置には水車室5
を設け、水車室5内の上部及び下部にそれぞれ上
部水車軸18及び下部水車軸19を設け、各軸1
8,19には、水車室両側壁側にそれぞれチエー
ン車3を取付け、上下に対向する両チエーン車3
には反動翼付チエーン2がかけられている。この
反動翼付チエーン2の反動翼は流体によつて発生
する揚力により流体入口側が下方に移動するとと
もに、流体出口側が上方に移動するように構成さ
れている。上部水車軸18および下部水車軸19
の両端および中央には、上下端に設けた中間整流
導水固定翼支持板用軸受28が嵌合する3枚の中
間整流導水固定翼支持板29を取付ける。なお、
支持板29の数は心要により2個でも4個以上設
けてもよい。各中間整流導水固定翼支持板29間
には、なめらかに湾曲した複数層の中間整流導水
固定翼30を設ける。このように構成された反動
翼水車21の流体入口A側には、複数層からなる
整流導水固定翼31を設け、それぞれの両端を前
記水路用殻17の内側壁に取付ける。前記上部水
車軸18の一端は水路用殻17の外部へ延長さ
れ、伝導装置20を介して発電機1を駆動する。
In the drawing, the upper turning position of the reaction blade turbine 21 is the water channel 2.
An example is shown in which the water level is lower than the water level 23 of 4. Waterway 24
A fluid inlet 26 is provided in the cutoff bank 25 provided at
A waterway gate 27 is provided on the fluid inlet A side. A cylindrical channel shell 17 is provided on the fluid outlet B side of the water stop bank 25, its upstream end is attached to the fluid outlet B of the water stop bank 25, and its downstream end is opened to the fluid outlet B side. A water wheel chamber 5 is located at an appropriate position on the water channel shell 17.
An upper water wheel shaft 18 and a lower water wheel shaft 19 are provided in the upper and lower parts of the water turbine chamber 5, respectively.
8 and 19, chain wheels 3 are installed on both side walls of the water turbine chamber, and both chain wheels 3 are installed vertically opposite each other.
A chain 2 with reaction wings is attached to the chain 2. The reaction vanes of this chain 2 with reaction vanes are configured such that the fluid inlet side moves downward and the fluid outlet side moves upward due to lift generated by the fluid. Upper water wheel shaft 18 and lower water wheel shaft 19
At both ends and in the center, three intermediate rectifying water guiding fixed blade support plates 29 are attached, into which bearings 28 for intermediate rectifying water guiding fixed blade supporting plates provided at the upper and lower ends fit. In addition,
The number of support plates 29 may be two or four or more depending on the requirements. A plurality of smoothly curved intermediate rectifying water guiding fixed blades 30 are provided between each of the intermediate rectifying water guiding fixed blade supporting plates 29. On the fluid inlet A side of the reaction vane water turbine 21 configured in this way, a rectifying water guiding fixed vane 31 consisting of a plurality of layers is provided, and both ends of each vane are attached to the inner wall of the water channel shell 17. One end of the upper water wheel shaft 18 is extended to the outside of the channel shell 17 and drives the generator 1 through a transmission device 20 .

また、この水車室5には気室4内の水位16を
制御する水位制御装置が配設される。すなわち、
下方一端のフロートゲージ口15が前記水路用殻
17の上面の水車室5より適当長さ下流側で開口
し上方一端がフロートゲージ空気連絡管14を介
して前記水車室5上部の気室4と連通するフロー
トゲージケーシング9を設け、フロートゲージケ
ーシング9の中には磁石を有するフロート10を
浮かせておく。フロートゲージケーシング9の外
周には、フロート10の前記磁石に吸着されてフ
ロート10の動きに追従するリング状の移動駒1
1を設け、必要に応じて前記フロートゲージケー
シング9の近傍に移動駒11の上下移動をガイド
する移動駒ガイド12が設けられる。そして前記
移動駒11の動きを検出する電磁弁駆動用リミツ
トスイツチ13をフロートゲージケーシング9の
近くに設け、このリミツトスイツチ13の検出出
力によつて電磁弁7の開閉を制御して前記水車室
5内の水位16を制御する。なお、8は高圧空気
タンク〔図示せず〕と連通する高圧空気管で、前
記電磁弁7を介して水車室5上部の気室4の高圧
空気入口6に接続されている。この水位制御装置
は、上記の電磁弁7と高圧空気管8とフロートゲ
ージケーシング9とフロート10と移動駒11と
移動駒ガイド12とリミツトスイツチ13と空気
連絡管14とフロートゲージ口15とで構成され
る。
Further, a water level control device for controlling the water level 16 in the air chamber 4 is disposed in the water turbine chamber 5 . That is,
A float gauge port 15 at one lower end opens on the upper surface of the waterway shell 17 on the downstream side of the water turbine chamber 5 by a suitable length, and one upper end is connected to the air chamber 4 at the upper part of the water turbine chamber 5 through a float gauge air communication pipe 14. A communicating float gauge casing 9 is provided, and a float 10 having a magnet is floated inside the float gauge casing 9. On the outer periphery of the float gauge casing 9, there is a ring-shaped moving piece 1 that is attracted to the magnet of the float 10 and follows the movement of the float 10.
1, and if necessary, a movable piece guide 12 for guiding the vertical movement of the movable piece 11 is provided near the float gauge casing 9. A limit switch 13 for driving a solenoid valve that detects the movement of the moving piece 11 is provided near the float gauge casing 9, and the detection output of the limit switch 13 controls the opening and closing of the solenoid valve 7 to control the opening and closing of the solenoid valve 7. Control the water level 16. A high-pressure air pipe 8 communicates with a high-pressure air tank (not shown), and is connected to the high-pressure air inlet 6 of the air chamber 4 above the water turbine chamber 5 via the electromagnetic valve 7. This water level control device is composed of the above-mentioned solenoid valve 7, high pressure air pipe 8, float gauge casing 9, float 10, moving piece 11, moving piece guide 12, limit switch 13, air communication pipe 14, and float gauge port 15. Ru.

このように構成したため、先ず高圧空気タンク
に空気を溜めておいてから、水車室5へ流体入口
Aから水を流す。水流によつて反動翼に揚力が発
生して、流体入口側の反動翼が下方に移動し流体
出口側の反動翼が上方に移動し、反動翼付チエー
ン2、チエーン車3、上部水車軸18、伝導装置
20を介して発電機1を動かして発電する。そし
て、下部の転向部で反動翼は流体の移動方向に沿
つて回動するため、反動翼水車21の抵抗となる
ことはなく、かえつて反動翼水車21の回動を高
めることができる。このとき、気室4の水位16
が上ると、反動翼水車21が上部で転向するとき
大きな抵抗となるので、その水位16を水位制御
装置により制御する必要がある。すなわち、前述
のようにフロートゲージケーシング9の上端は気
室4とフロートゲージ空気連絡管14により連通
されているため、フロートゲージケーシング9内
の水位は水車室5の水位16と同じような水位と
なり、前記フロート10はその水位に追従する。
一定高さ以上に水位16が上ると、移動駒11が
前記リミツトスイツチ13に作用し、電磁弁7が
開く。これによつて高圧空気タンクから高圧空気
管8を通り、高圧空気入口6から気室4内へ高圧
空気が流入し、気室4内の水位が下がる。する
と、フロート10ならびに移動駒11もこれに伴
つて下がり、リミツトスイツチ13を作用させて
電磁弁7を閉鎖する。このような動作を繰返して
気室4内の水位16を、反動翼水車21の上部転
向部が常に流体の外になるように制御している。
よつて、反動翼水車21の上部での転向は、気室
4内、すなわち流体外で行われ、流体に逆らつて
転向する抵抗がなくなり、水車で動力を取り出す
効率が極めて高くなるものである。
With this configuration, air is first stored in the high-pressure air tank, and then water is allowed to flow into the water turbine chamber 5 from the fluid inlet A. Lift force is generated on the reaction blades by the water flow, and the reaction blades on the fluid inlet side move downward and the reaction blades on the fluid outlet side move upward. , the generator 1 is operated via the transmission device 20 to generate electricity. Since the reaction blade rotates along the moving direction of the fluid at the lower turning portion, it does not become a resistance to the reaction blade water turbine 21, and on the contrary, the rotation of the reaction blade water turbine 21 can be increased. At this time, the water level in air chamber 4 is 16
If the water rises, there will be a large resistance when the reaction blade turbine 21 turns at the upper part, so the water level 16 needs to be controlled by a water level control device. That is, since the upper end of the float gauge casing 9 is communicated with the air chamber 4 through the float gauge air communication pipe 14 as described above, the water level inside the float gauge casing 9 is the same as the water level 16 in the water turbine chamber 5. , the float 10 follows the water level.
When the water level 16 rises above a certain level, the moving piece 11 acts on the limit switch 13, and the solenoid valve 7 opens. As a result, high-pressure air flows from the high-pressure air tank through the high-pressure air pipe 8 and into the air chamber 4 from the high-pressure air inlet 6, and the water level in the air chamber 4 is lowered. Then, the float 10 and the movable piece 11 are also lowered accordingly, and the limit switch 13 is activated to close the solenoid valve 7. By repeating such operations, the water level 16 in the air chamber 4 is controlled so that the upper turning portion of the reaction blade turbine 21 is always outside the fluid.
Therefore, the turning at the upper part of the reaction blade water turbine 21 is performed inside the air chamber 4, that is, outside the fluid, and there is no resistance to turning against the fluid, and the efficiency of extracting power from the water wheel is extremely high. .

上記実施例では水位制御装置のフロート10の
磁力とこれに連動する移動駒11ならびに移動駒
11の移動を検出するリミツトスイツチ13を用
いたが、これは第4図に示すように構成しても同
様である。第4図ではリミツトスイツチ13Aに
よつて直接にフロート10Aの動きを検出して電
磁弁7の開閉が行われる。
In the above embodiment, the magnetic force of the float 10 of the water level control device, the movable piece 11 interlocked with the magnetic force, and the limit switch 13 that detects the movement of the movable piece 11 were used, but this can be similarly configured as shown in FIG. It is. In FIG. 4, the electromagnetic valve 7 is opened and closed by directly detecting the movement of the float 10A by the limit switch 13A.

以上説明のように本考案の低水位発電機用反動
翼水車の水車室によると、反動翼水車の下部転向
部の反動翼は、流体の流れ方向に沿つて流体入口
側から流体出口側に転向移動して、流体の流れに
より反動翼の移動が促進され、また反動翼が流体
出口側から流体入口側に転向移動する上部転向部
は、流体上方の気室内にあつて抵抗がなく、従来
のものに比べて水車で動力を取り出す効率が大幅
に向上するものである。しかも、水車室上部の気
室は水位制御装置により、水位が常に上部転向部
より下方に維持されるので、流入する水路の水位
に大幅な変動があつた場合でも、上部転向部は常
に流体上方に位置することができる。
As explained above, according to the turbine chamber of the reaction blade turbine for a low water level generator of the present invention, the reaction blades in the lower turning section of the reaction blade turbine are turned from the fluid inlet side to the fluid outlet side along the fluid flow direction. The movement of the reaction blade is promoted by the fluid flow, and the upper turning part where the reaction blade is turned from the fluid outlet side to the fluid inlet side is located in the air chamber above the fluid and has no resistance, unlike conventional This greatly improves the efficiency of extracting power from a water wheel compared to conventional systems. In addition, the water level in the air chamber at the top of the turbine chamber is always maintained below the upper turning section by the water level control device, so even if there is a large fluctuation in the water level of the inflow channel, the upper turning section will always keep the fluid above the upper turning section. can be located in

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例を示す正面断面図、
第2図は第1図の平面図、第3図は第1図の要部
拡大図、第4図は水位制御の他の例を示す要部拡
大図である。 4……気室、5……水車室、6……高圧空気入
口、7……電磁弁、8……高圧空気管、9……フ
ロートゲージケーシング、10,10A……フロ
ート、13,13A……リミツトスイツチ、14
……フロートゲージ空気連絡管、15……フロー
トゲージ口、16,23……水位、18……上部
水車軸、19……下部水車軸、21……反動翼水
車。
FIG. 1 is a front sectional view showing an embodiment of the present invention;
2 is a plan view of FIG. 1, FIG. 3 is an enlarged view of the main part of FIG. 1, and FIG. 4 is an enlarged view of the main part showing another example of water level control. 4... Air chamber, 5... Water turbine chamber, 6... High pressure air inlet, 7... Solenoid valve, 8... High pressure air pipe, 9... Float gauge casing, 10, 10A... Float, 13, 13A... ...Limit switch, 14
... Float gauge air communication pipe, 15 ... Float gauge port, 16, 23 ... Water level, 18 ... Upper water wheel shaft, 19 ... Lower water wheel shaft, 21 ... Reaction blade water turbine.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 反動翼水車室の上部に気室を設け、この反動翼
水車室内に配設されて流体入口側の反動翼が下方
に移動するとともに流体出口側の反動翼が上方に
移動する反動翼水車の上部転向部を、流体上方の
前記気室内に位置させ、反動翼水車室内の水位に
対応して前記気室に接続した高圧空気管から気室
内に高圧空気を供給し前記水位を上部転向部下方
に維持する水位制御装置を設けたことを特徴とす
る低水位発電機用反動翼水車の水車室。
An air chamber is provided in the upper part of the reaction blade turbine chamber, and the reaction blade on the fluid inlet side moves downward while the reaction blade on the fluid outlet side moves upward. A turning section is located in the air chamber above the fluid, and high pressure air is supplied into the air chamber from a high pressure air pipe connected to the air chamber in accordance with the water level in the reaction blade turbine chamber to lower the water level below the upper turning section. A water turbine chamber for a reaction blade water turbine for a low water level generator, characterized in that it is provided with a water level control device for maintaining water level.
JP4761182U 1982-03-31 1982-03-31 Turbine chamber of reaction blade turbine for low water level generator Granted JPS58149577U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4761182U JPS58149577U (en) 1982-03-31 1982-03-31 Turbine chamber of reaction blade turbine for low water level generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4761182U JPS58149577U (en) 1982-03-31 1982-03-31 Turbine chamber of reaction blade turbine for low water level generator

Publications (2)

Publication Number Publication Date
JPS58149577U JPS58149577U (en) 1983-10-07
JPS6349566Y2 true JPS6349566Y2 (en) 1988-12-20

Family

ID=30058565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4761182U Granted JPS58149577U (en) 1982-03-31 1982-03-31 Turbine chamber of reaction blade turbine for low water level generator

Country Status (1)

Country Link
JP (1) JPS58149577U (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144746A (en) * 1974-06-26 1976-04-16 Schneider Daniel J
JPS566074A (en) * 1979-06-29 1981-01-22 Junichi Hiyama Water channel type generation set utilizing river head
US4292535A (en) * 1976-06-03 1981-09-29 Diggs Richard E Modular current power apparatus
JPS56143363A (en) * 1980-04-10 1981-11-09 Hitachi Zosen Corp Wave energy converter
JPS5726279A (en) * 1980-07-25 1982-02-12 Soroku Tamura Small hydroelectric power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5144746A (en) * 1974-06-26 1976-04-16 Schneider Daniel J
US4292535A (en) * 1976-06-03 1981-09-29 Diggs Richard E Modular current power apparatus
JPS566074A (en) * 1979-06-29 1981-01-22 Junichi Hiyama Water channel type generation set utilizing river head
JPS56143363A (en) * 1980-04-10 1981-11-09 Hitachi Zosen Corp Wave energy converter
JPS5726279A (en) * 1980-07-25 1982-02-12 Soroku Tamura Small hydroelectric power plant

Also Published As

Publication number Publication date
JPS58149577U (en) 1983-10-07

Similar Documents

Publication Publication Date Title
EP0098249B1 (en) Hydropower turbine system
US2246472A (en) Hydraulic power-accumulation system
US20100170236A1 (en) Atmospheric pressure hydropower plant
CN206667365U (en) A kind of underground pump station structure of well formula installation
JPS648189B2 (en)
JPS6349566Y2 (en)
CN202215795U (en) Drainage device
JPH0121047B2 (en)
GB2180008A (en) Tidal water powered generator
US3452962A (en) Method of reducing pressure rise in a hydraulic machine
RU2318956C1 (en) Water lift unit
CN217425989U (en) Vapor-liquid two-phase flow liquid level controller
CN208487021U (en) A kind of floatation type sewage pump
JPS6318782Y2 (en)
KR880000980A (en) Hydraulic Control Rod Drive Mechanism for Water Cooled Reactor
CN215673751U (en) Check valve capable of controlling flow
JP2007270477A (en) Dam-type fish pass and fish pass control method
JPS57210169A (en) Sand-separator for hydroelectric power plant
JP2004084311A (en) Downstream water level controller
JPS6214713B2 (en)
JPS62139979A (en) Hydraulic power plant
CN2224330Y (en) Safety water-level self-control valve for atmospheric boiler
JPS6141993Y2 (en)
JPS59138776A (en) Cross flow hydraulic turbine
KR20010025584A (en) automatic valve controled by different pressure