JPS6349234A - Method for removing nitrogen oxides - Google Patents

Method for removing nitrogen oxides

Info

Publication number
JPS6349234A
JPS6349234A JP61193299A JP19329986A JPS6349234A JP S6349234 A JPS6349234 A JP S6349234A JP 61193299 A JP61193299 A JP 61193299A JP 19329986 A JP19329986 A JP 19329986A JP S6349234 A JPS6349234 A JP S6349234A
Authority
JP
Japan
Prior art keywords
catalyst layer
temp
temperature
nitrogen oxides
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61193299A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kawasaki
良隆 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61193299A priority Critical patent/JPS6349234A/en
Publication of JPS6349234A publication Critical patent/JPS6349234A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To increase the removal rate of nitrogen oxides by constituting a device of a 1st catalyst layer for oxidation and 2nd catalyst layer which consists essentially of zeolite and is provided on the down stream side thereof and controlling the 2nd catalyst layer to the temp. lower than the temp. of the 1st catalyst layer. CONSTITUTION:The 1st catalyst layer for oxidation consisting of a metal or the oxide. halide, etc., thereof and the 2nd catalyst layer which consists essentially of the zeolite and is provided on the down stream side thereof are disposed in series. While the 1st catalyst layer (oxygen oxidation reaction of NO) has an activity peak on the slightly higher temp. side, the 2nd catalyst layer (decomposition and removal reaction of NO2) has the higher activity on the lower temp. side. The temp. of the 1st catalyst layer is, therefore, controlled to 300-400 deg.C and the temp. of the 2nd catalyst layer is controlled to the temp. lower by 50-100 deg.C than the temp. of the 1st catalyst layer. The nitrogen oxides in an exhaust gas are nearly completely removed in the dry state in the presence of the oxygen by the above-mentioned constitution. The temp. control is executable to maintain the temp. difference between the 1st catalyst layer and the 2nd catalyst layer by interposing a space for heat insulation between the layers.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素が共存する燃焼排ガス中等に含まれる窒
素酸化物を、還元剤を用いずに接触除去せしめる窒素酸
化物除去方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for catalytically removing nitrogen oxides contained in combustion exhaust gas or the like in which oxygen coexists without using a reducing agent.

従来の技術 燃焼機器から排出される排ガス中には、二酸化炭素(C
O2)や水(N20)、窒素(N2)、酸素(02)な
どと共に、窒素酸化物(NoおよびCO2:これらを総
称してNo工(ノックス)と呼ばれる)が含ま九でいる
。この窒素酸化物は、特にNo2が人体に有害であり、
種々の呼吸器系の疾患を引き起こす要因になっていると
言われている。ところがNoも、常温の大気中で容易に
No2に酸化され、人体への影響を防止するためには全
窒素酸化物を除去する必要がある。従来はこれら窒素酸
化物を除去するために、主に次のような方法が検討され
ている汰気汚染研究協会編;「大気汚染ハンドブック 
←)燃焼編」(昭和54年)P、250〜283)。
Exhaust gas emitted from conventional combustion equipment contains carbon dioxide (C
It contains nitrogen oxides (NO and CO2: collectively called NOx), water (N20), nitrogen (N2), oxygen (02), etc. This nitrogen oxide, especially No2, is harmful to the human body,
It is said to be a factor that causes various respiratory diseases. However, No is easily oxidized to No2 in the atmosphere at room temperature, and it is necessary to remove all nitrogen oxides in order to prevent the effects on the human body. In order to remove these nitrogen oxides, the following methods have been mainly studied.
←) Combustion Edition” (1978) P, 250-283).

■ 乾式法:触媒存在下でアンモニア(NH3)や水X
(N2) 、−9化炭Z(CO)、メタン(cH4)等
の還元剤を添加し、No工をN2まで還元する方法で、
下記のような反応によって無害な一ρやCo  を副成
しなからN2に変えられる。
■ Dry method: Ammonia (NH3) and water
(N2), -9-carbonized carbon Z (CO), methane (cH4), and other reducing agents are added to reduce No. to N2.
Through the reaction described below, harmless ρ and Co can be converted into N2 without forming them as by-products.

2No+2H2→N2+2H20 2NO2+ 4 H2→N2+4H202NO+2CO
−bN  +2CO2 6NO+4NH−+5N2+6H20 6N02+8NH3→アN2+12H20■ 湿式法二
NOやNo2を水やアルカリ溶液に吸収させて除去する
方法で、吸収剤としてはNaOHなどのアルカリ溶液、
KMnO4やN aC102などの酸溶液、あるいは錯
体を形成するFe3O3、F e Cl 2などが用い
られる。
2No+2H2→N2+2H20 2NO2+ 4 H2→N2+4H202NO+2CO
-bN +2CO2 6NO+4NH-+5N2+6H20 6N02+8NH3→AN2+12H20 ■ Wet method 2 This is a method in which NO and No2 are absorbed and removed in water or an alkaline solution, and the absorbent is an alkaline solution such as NaOH,
An acid solution such as KMnO4 or NaC102, or Fe3O3 or FeCl2, which forms a complex, is used.

発明が解決しようとする問題点 上記従来の方法において、後者(湿式法)では吸収させ
た後の溶液を処理または再生しなければならず、装置も
大型で複雑になシ、小型の排ガス発生機器(例えば家庭
用の燃焼機器等)には不向きである。一方前者(乾式法
)は還元剤の供給を必要とし、有効に反応させるために
は還元剤を過剰に供給しなければならないから、この還
元剤のリークが生じ、二次公害のおそれがある。またア
ンモニアの場合を除き、一般【還元剤は排ガス中の酸素
と優先的に反応するから、酸素濃度が数チもある燃焼排
ガスの処理には膨大な量の還元剤が必要となる。また装
置も還元剤供給手段を付加して大きくなシ、小型の排ガ
ス発生機器に対しては不向きである。また前者の方法の
中には、還元剤を用いないで直接NOxをN2まで接触
分解する方法も提案されているが、特に燃焼排ガス中で
はNOxの大部分を占めるNoがかなり安定な化学種で
あり、接触分解するにはその反応速度が極めて遅い上に
、酸素の存在下では分解抑制作用があり、実際の排ガス
に対して実用可能な単一触媒が見出されていなかった。
Problems to be Solved by the Invention In the above conventional methods, the latter (wet method) requires treatment or regeneration of the solution after absorption, requires large and complicated equipment, and requires small exhaust gas generating equipment. (For example, it is unsuitable for household combustion equipment, etc.). On the other hand, the former (dry method) requires the supply of a reducing agent, and in order to cause an effective reaction, it is necessary to supply an excessive amount of the reducing agent, which may cause leakage of this reducing agent and cause secondary pollution. In addition, with the exception of ammonia, general reducing agents preferentially react with oxygen in exhaust gas, so a huge amount of reducing agent is required to treat combustion exhaust gas with an oxygen concentration of several inches. Furthermore, the apparatus is large in size due to the addition of a reducing agent supply means, making it unsuitable for small-sized exhaust gas generating equipment. Among the former methods, a method has also been proposed in which NOx is directly catalytically decomposed to N2 without using a reducing agent, but NO, which accounts for the majority of NOx, is a fairly stable chemical species, especially in combustion exhaust gas. However, the reaction rate is extremely slow for catalytic cracking, and in the presence of oxygen there is a decomposition inhibiting effect, so no single catalyst has been found that can be used practically for actual exhaust gases.

これに対して本発明者は先に、Noの酸化触媒を第1層
としゼオライトを第2層とする複合触媒によって、酸素
が共存する排ガス中のNOx を除去できることを提案
したが、最適温度条件で使用してもなお90%程度の除
去率に留っていた。
In response to this, the present inventor previously proposed that NOx in exhaust gas coexisting with oxygen could be removed using a composite catalyst consisting of a No oxidation catalyst in the first layer and zeolite in the second layer, but the optimum temperature condition was Even when used, the removal rate remained at about 90%.

本発明は上記従来の欠点を解消し、還元剤や吸収溶液を
必要とせず、乾式のままで酸素存在下での排ガス中のN
o工をほぼ完全に除去することを可能ならしめる触媒を
用いた窒素酸化物の除去方法を提供するものである。
The present invention solves the above-mentioned conventional drawbacks, and eliminates the need for reducing agents and absorption solutions, and allows the removal of N in exhaust gas in the presence of oxygen in a dry process.
The present invention provides a method for removing nitrogen oxides using a catalyst that makes it possible to almost completely remove nitrogen oxides.

問題点を解決するための手段 上記従来の問題点を解決するために本発明で用いる技術
手段は、金属またはその酸化物、ハロゲン化物等からな
る酸化用の第1触媒層と、その下流側に備えだゼオライ
トを主成分とする第2触媒層とを直列に配置すると共に
、第2触媒層を第1触媒層よりも低い温度に制御し、双
方の実用的に最高活性を示し得る条件を満足させて窒素
酸化物の除去率を向上させるものである。
Means for Solving the Problems Technical means used in the present invention to solve the above conventional problems include a first catalyst layer for oxidation consisting of a metal or its oxide, halide, etc., and a catalyst layer downstream thereof. In addition to arranging the second catalyst layer containing zeolite as the main component in series, the temperature of the second catalyst layer is controlled to be lower than that of the first catalyst layer, and the conditions for both to exhibit the highest practical activity are satisfied. This improves the removal rate of nitrogen oxides.

作  用 燃焼機器から排出される排ガスには数チから十数チに及
び酸素が共存しており、また数十ないし数百ppm の
窒素酸化物が含まれている。窒素酸化物の95%以上は
Noであり、残シの5%以下がNO2であるのが普通で
ある。ところがNoは、低温(300〜400℃以下)
では酸素によって酸化され、2NO十O→2N○2の反
応は比較的容易に生じ、大気中で無触媒でもある程度の
反応速度で進むが、分解反応2NO→N2+02は極め
て速度が遅く、白金(pt )や五酸化バナジウム■2
05)等の触媒を用いても、1000’Cで30多程度
の分解活性しか得られていない(大阪科学技術センター
編;「窒素化合物防除技術開発の現状」、(昭和51年
4月)P、91)。また吸着や吸収に対しても反応性が
乏しく、準安定状態となって除去することが難しい。
Function Exhaust gas discharged from combustion equipment contains oxygen coexisting in an amount ranging from several to a dozen or so, and also contains several tens to hundreds of ppm of nitrogen oxides. Generally, 95% or more of the nitrogen oxides are No, and the remaining 5% or less is NO2. However, No is low temperature (below 300-400℃)
is oxidized by oxygen, and the reaction of 2NO00 → 2N○2 occurs relatively easily and proceeds at a certain rate in the atmosphere without a catalyst, but the decomposition reaction 2NO → N2+02 is extremely slow, and the reaction of platinum (pt ) and vanadium pentoxide■2
Even if a catalyst such as 05) is used, only a decomposition activity of about 30 at 1000'C is obtained (edited by Osaka Science and Technology Center; "Current Status of Development of Nitrogen Compound Control Technology", (April 1976) P. , 91). Furthermore, it has poor reactivity with respect to adsorption and absorption, and becomes metastable, making it difficult to remove.

本発明は先に、第1触媒層で燃焼排ガス中のNOxの大
部分を占める準安定なNOを、共存する酸素によって反
応性に富むNO2へと酸化し、第2触媒層で分解および
吸着によって除去し、容易にNo工の除去ができる複合
触媒を見出した。第1触媒層の酸化触媒としては銀(A
q)、マンガン(Mn)、クロム(Cr)、パラジウム
(Pd)等の金属、あるいは三酸化二鉄(Fe203)
、酸化銅(CtxO)、酸化亜鉛(ZnO)等の金属酸
化物および塩化銅(CuC12)、フッ化銅(CuF 
 )、塩化鉄(F eC13)等の金属ノー0ゲン化物
の単独または混合物を使用でき、またこれらの金属・金
属化合物は、粒状、塊状あるいは発泡体や繊維状にして
直接用いても、あるいは多孔体に担持させて用いても良
く、更に下記の第2触媒層を構成するゼオライトをその
担体とするも可能であることを示した。第2触媒として
用いるゼオライトは、分子直径約3オングストロームの
NO□を吸着できる細孔径が必要であり、好ましくは6
オ/ゲストロ一ム以上の均一細孔径を有する合成ゼオラ
イトが適しているということを明らかにした。かくして
大部分がNoの状態である排ガス中の窒素酸化物音、第
1触媒層でNo2に酸化し、第2触媒層でN2と02に
分解しあるいは一部吸着して、窒素酸化物の除去を行な
い得るものであった。ただこの場合、両触煤層を同一温
度で用いていたために、最も活性の高いCu Cl 2
/モレキュラーシープ13X−モレキュラーシープ13
X系(反応温度=3QO℃、空間速度(SV)=200
00h−1)を用いても、排ガス中のNo工除去率は約
90%に留っていた。
The present invention first oxidizes metastable NO, which accounts for most of the NOx in the combustion exhaust gas, into highly reactive NO2 using coexisting oxygen in the first catalyst layer, and then decomposes and adsorbs it in the second catalyst layer. We have discovered a composite catalyst that can be used to easily remove No. Silver (A
q), metals such as manganese (Mn), chromium (Cr), palladium (Pd), or diiron trioxide (Fe203)
, copper oxide (CtxO), metal oxides such as zinc oxide (ZnO), copper chloride (CuC12), copper fluoride (CuF
), iron chloride (FeC13), etc., can be used alone or in mixtures, and these metals and metal compounds can be used directly in the form of granules, lumps, foams, or fibers, or can be used directly in the form of porous It was also shown that it is possible to use the zeolite which constitutes the second catalyst layer described below as the carrier. The zeolite used as the second catalyst must have a pore size capable of adsorbing NO□ with a molecular diameter of approximately 3 angstroms, preferably 6 angstroms.
It has been clarified that synthetic zeolites with uniform pore diameters of one or more pore sizes are suitable. In this way, the nitrogen oxide sound in the exhaust gas, which is mostly in the NO state, is oxidized to NO2 in the first catalyst layer, decomposed into N2 and 02 in the second catalyst layer, or partially adsorbed, and the nitrogen oxides are removed. It was something that could be done. However, in this case, since both soot layers were used at the same temperature, the most active Cu Cl 2
/Molecular Sheep 13X-Molecular Sheep 13
X system (reaction temperature = 3QO ℃, space velocity (SV) = 200
Even if 00h-1) was used, the No removal rate in the exhaust gas remained at about 90%.

ここで第1触媒層と第2触媒層の、夫々単独の温度特性
を見ると、第1触媒層(Noの酸素酸化反応)はやや高
温側に活性のピークを有し、−力筒2触媒層(No2の
分解・除去反応)は低温の方が高活性であることが明ら
かになった。従って両者間に温度差を設け、第1触媒層
を高温にし、第2触媒層を低温にすることによって、よ
り高活性の触媒作用を発現できるものである。この温度
差は、第1触媒層に用いる酸化触媒の種類によって多少
の分布はあるが、上記金属または金属酸化物・ハロゲン
化物による酸化活性ピークが300〜450℃にあるこ
とから、実用的て極端に大きな温度差を設けることは制
御上難しく、また第2触媒層での充分な活性を得るには
その必要もなく、50〜100℃の温度差があれば満足
できる活性が得られる。
Looking at the individual temperature characteristics of the first catalyst layer and the second catalyst layer, the first catalyst layer (oxygen oxidation reaction of NO) has an activity peak on the slightly higher temperature side; It became clear that the layer (No2 decomposition/removal reaction) was more active at lower temperatures. Therefore, by creating a temperature difference between the two, making the first catalyst layer high and the second catalyst layer low, a more highly active catalytic action can be exhibited. Although this temperature difference has a slight distribution depending on the type of oxidation catalyst used in the first catalyst layer, since the oxidation activity peak due to the above metals or metal oxides/halides is between 300 and 450 degrees Celsius, it is not practical and extreme. It is difficult to control the temperature to provide a large temperature difference, and it is not necessary to provide sufficient activity in the second catalyst layer, and a temperature difference of 50 to 100° C. can provide a satisfactory activity.

両者の温度制御は夫々単独に行なうことも可能であるが
、燃焼排ガスの流路内に備える場合には。
Although it is possible to control the temperature of both independently, if they are provided in the combustion exhaust gas flow path.

適当な温度条件の位置に第1触媒層を設置し、第2触媒
層はそれから適宜距離の断熱空間を介在させてやること
によって所定の温度差を確保した低温領域に位置させる
ことができ、特殊な温度制御手段を必要とせずに目的を
達成できる。
By installing the first catalyst layer at a position with appropriate temperature conditions and interposing a heat insulating space at an appropriate distance from the second catalyst layer, it is possible to position the second catalyst layer in a low temperature region with a predetermined temperature difference. This objective can be achieved without the need for additional temperature control means.

実施例 以下本発明の実施例を示す。反応ガスはいずれも灯油燃
焼器から排出される燃焼排ガスを用いており、その組成
ばCo2=1o% 、02=’y%、N○工=140p
pm(NO=135ppm、No2=5ppm) 、残
部がN2である。t タ2fa’bi[(SV )は2
0000hとして反応させた。生成ガスの測定値は、反
応ガスを1時間通過させて安定した後の値である。
Examples Examples of the present invention will be shown below. The reaction gas used was combustion exhaust gas discharged from a kerosene combustor, and its composition was as follows: CO2 = 1o%, 02 = 'y%, NO = 140p.
pm (NO=135ppm, No2=5ppm), and the remainder is N2. t ta2fa'bi [(SV) is 2
The reaction was carried out at 0000 h. The measured value of the product gas is the value after the reaction gas has been allowed to pass for 1 hour and stabilized.

〔実施例1〕 酸化@(Cu O)を担持させた粒状アルミナ1oOr
nl(酸化銅の含量約81)を第1触媒層とし、市販の
モレキュラーシープ5A(A型ゼオライト/Na−Ca
型)1/16“ペレット100ゴを第2触媒層として反
応させた。第1触媒層通過後のガス濃度は第1図に示す
ように約450℃をピークにしてNO2が増加し、一方
NOxのmA(NO+N02)は500″C以上で反応
ガス中の濃度(14oppm)より増加している。次に
第1触媒層の温度を450’Cに固定しく従って第2触
媒層への入口濃度は、NO=66ppm、No□=84
ppmとなっている)、第2触媒層の温度のみ変化させ
て排出ガスを分析すると、第2図のようになった。第1
触媒層と同じ温度の450℃にすると、NO2は約24
ppm残シ、NOxの除去率は約4Q%である。ところ
が第2触媒層の温度を350’Cまで下げるとNo2は
6ppm まで減少し、No工の総量も約60ppmと
なっている。更に低温とすると逆に効果は低下して、こ
こでは第1触媒層を450℃1第2触媒層を350″C
にすれば、最も高率のNO工除去が可能になる。
[Example 1] Granular alumina 1oOr supported with oxide @(CuO)
nl (copper oxide content about 81) as the first catalyst layer, commercially available Molecular Sheep 5A (A-type zeolite/Na-Ca
The reaction was carried out using 100 1/16" pellets as the second catalyst layer. As shown in Figure 1, the gas concentration after passing through the first catalyst layer peaked at approximately 450°C, and NO2 increased, while NOx mA(NO+N02) increases from the concentration in the reaction gas (14 oppm) above 500''C. Next, the temperature of the first catalyst layer is fixed at 450'C, so the concentration at the entrance to the second catalyst layer is NO = 66 ppm, No□ = 84
When the exhaust gas was analyzed by changing only the temperature of the second catalyst layer, the result was as shown in Fig. 2. 1st
At 450℃, the same temperature as the catalyst layer, NO2 is approximately 24
The removal rate of ppm residue and NOx is approximately 4Q%. However, when the temperature of the second catalyst layer was lowered to 350'C, No.2 decreased to 6 ppm, and the total amount of No. 2 was also about 60 ppm. If the temperature is lowered further, the effect decreases, and here, the first catalyst layer is heated to 450℃, and the second catalyst layer is heated to 350''C.
If this is done, the highest rate of NO removal will be possible.

〔実施例2〕 実施例1の第1触媒層を酸化銅から塩化銅(CuC12
)に代え(塩化銅の含量約5.55’)、第また煤層を
モレキュラーシープ13X(X型ゼオライト/ Na型
、1/16”ペレット)とした。第1触媒層通過後のガ
ス濃度は第3図に示すように、350℃で酸化活性のピ
ークが現われ、No2=116ppmとなっている。同
時にNo工もやや増加し143ppmとなって、それ以
上の温度では更にNo工が増加していることがわかる。
[Example 2] The first catalyst layer of Example 1 was changed from copper oxide to copper chloride (CuC12
) (copper chloride content approximately 5.55'), the second soot layer was made of Molecular Sheep 13X (X type zeolite/Na type, 1/16" pellets). The gas concentration after passing through the first catalyst layer was As shown in Figure 3, the peak of oxidation activity appears at 350°C, with No2 = 116 ppm.At the same time, No. 2 increases slightly to 143 ppm, and at higher temperatures, No. 2 increases further. I understand that.

第1触媒層を350’OK固定したままで、1例と同様
に第2触媒層の温度のみ変化させると、第4図に示した
ようにやはシ低温側にNo工減少のピークが現われ、2
50〜300’Qで排出ガス中のNO工濃度は最低とな
る。ちなみにこの触媒組成で、第1および第2触媒層を
同一温度にした場合には、第5図のような結果となって
いる。
If only the temperature of the second catalyst layer is changed as in the first example while the first catalyst layer is fixed at 350'OK, a peak of No. reduction will appear on the low temperature side as shown in Figure 4. ,2
The NO concentration in the exhaust gas is at its lowest between 50 and 300'Q. Incidentally, with this catalyst composition, when the first and second catalyst layers are kept at the same temperature, the results are as shown in FIG. 5.

〔実施例3〕 実施例2の第1触媒層の担体を第2触媒層と同じモレキ
ュラーシーブ13Xとして、その1oornlに塩化銅
(Cu C12)を担持させた(塩化銅の含量約5.3
S’)。更に第2触媒層の温度を第1触媒層の温度より
約100℃低く(実際【は禽1層と第2層の間を遊離さ
せ、その間に放熱フィンを有する連結管を備えている)
している。その結果を第6図に示す。No工の除去率は
更に増大し、第1触媒層の温度300’C(即ち第2触
媒層の温度は約20Q0C)のピーク付近で、No工は
ほぼ1ooq6除去され、No2は勿論Noもほとんど
検出されず、従来にない高活性のNo工除去触媒となっ
ている。
[Example 3] The carrier of the first catalyst layer in Example 2 was the same molecular sieve 13X as the second catalyst layer, and copper chloride (CuC12) was supported on 1 oornl of the carrier (the content of copper chloride was about 5.3
S'). Furthermore, the temperature of the second catalyst layer is approximately 100°C lower than the temperature of the first catalyst layer (actually, the first layer and the second layer are separated, and a connecting pipe with heat radiation fins is provided between them).
are doing. The results are shown in FIG. The removal rate of No. process increased further, and around the peak of the temperature of the first catalyst layer of 300'C (that is, the temperature of the second catalyst layer was about 20Q0C), approximately 10q6 of No. It is not detected, making it an unprecedented highly active NO removal catalyst.

特に第1触媒層の担体にゼオライトを用いることによっ
て、第1触媒層のみにおいても僅がながら内部で同時に
N○工除去が行なわれており、活性の向上を図ることが
できる。
Particularly, by using zeolite as the carrier for the first catalyst layer, the N◯ process is simultaneously removed within the first catalyst layer, albeit slightly, and the activity can be improved.

発明の効果 以上のように本発明は、大部分がNoの状態であり、し
かも酸素が共存する雰囲気の燃焼排ガスにおいて、従来
得られなかった還元剤不要で高活性の乾式No8分解を
可能ならしめるもので、大気汚染の防止に極めて効果的
かつ容易に実用可能な窒素酸化物除去方法を提供し得る
ものである。
Effects of the Invention As described above, the present invention enables highly active dry No. 8 decomposition without the need for a reducing agent, which was previously unobtainable, in combustion exhaust gas in an atmosphere in which No. 8 is present and oxygen coexists. This provides an extremely effective and easily practical method for removing nitrogen oxides in the prevention of air pollution.

ス中のNo2およびN○工濃度の温度に対する変化を示
1将J1(2)である。
Figure 1 shows the changes in No2 and N○ concentration in the gas with respect to temperature.

代理人の氏名 弁理士 中 尾 敏 男 はが1名菓 
1 図 第 。図     反応41゛り 反庭・5且浅(ac 、1 第3図 及〃芯渫度(0)
Name of agent: Patent attorney Toshio Nakao
Figure 1. Figure Reaction 41゛Antiwa・5〔Shallow (ac, 1 Figure 3 and Core control degree (0)

Claims (3)

【特許請求の範囲】[Claims] (1)金属またはその酸化物もしくはハロゲン化物を主
成分とする酸化触媒作用を呈する第1触媒層と、前記第
1触媒層の下流側に備えられたゼオライトを主成分とす
る第2触媒層とからなる触媒を有し、前記第2触媒層の
温度を前記第1触媒層の温度より低く制御した窒素酸化
物除去方法。
(1) A first catalyst layer that exhibits an oxidation catalytic action and whose main component is a metal or its oxide or halide, and a second catalyst layer which is provided downstream of the first catalyst layer and whose main component is zeolite. A method for removing nitrogen oxides, comprising: a catalyst comprising: a catalyst; the temperature of the second catalyst layer is controlled to be lower than the temperature of the first catalyst layer;
(2)第1触媒層の温度を300〜400℃にすると共
に、前記第2触媒層の温度は第1触媒層より50〜10
0℃低くした特許請求の範囲第1項記載の窒素酸化物除
去方法。
(2) The temperature of the first catalyst layer is set to 300 to 400°C, and the temperature of the second catalyst layer is set to 50 to 10°C higher than that of the first catalyst layer.
The method for removing nitrogen oxides according to claim 1, wherein the temperature is lowered by 0°C.
(3)第1触媒層と前記第2触媒層との間に断熱用の空
間を介在させて温度差を維持させた特許請求の範囲第1
項または第2項記載の窒素酸化物除去方法。
(3) A heat-insulating space is interposed between the first catalyst layer and the second catalyst layer to maintain a temperature difference.
The method for removing nitrogen oxides according to item 1 or 2.
JP61193299A 1986-08-19 1986-08-19 Method for removing nitrogen oxides Pending JPS6349234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193299A JPS6349234A (en) 1986-08-19 1986-08-19 Method for removing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193299A JPS6349234A (en) 1986-08-19 1986-08-19 Method for removing nitrogen oxides

Publications (1)

Publication Number Publication Date
JPS6349234A true JPS6349234A (en) 1988-03-02

Family

ID=16305603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193299A Pending JPS6349234A (en) 1986-08-19 1986-08-19 Method for removing nitrogen oxides

Country Status (1)

Country Link
JP (1) JPS6349234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427989A (en) * 1993-03-11 1995-06-27 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427989A (en) * 1993-03-11 1995-06-27 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas

Similar Documents

Publication Publication Date Title
AU693966B2 (en) Regeneration of catalyst/absorber
JP4357742B2 (en) Method and apparatus for reducing nitrogen oxide content in exhaust gas by appropriate addition of NH3
Iwamoto Chapter II. 3 catalytic decomposition of nitrogen monoxide
JP2002520136A (en) Method and catalyst / adsorbent for treating exhaust gas containing sulfur compounds
JPS62117620A (en) Method for removing nitrogen oxide contained in exhaust gas of gasoline engine
JPS5843224A (en) Dry type flue gas desulfurization and denitration method
CN102631838B (en) Method for removing NO (nitric oxide) in flue gas
Li et al. Inhibition mechanism of chlorobenzene on NH3-SCR side reactions over MnOx-CeO2 confined titania nanotubes
JPS6349234A (en) Method for removing nitrogen oxides
JPH01299642A (en) Adsorbent for nitrogen oxide having low concentration
JPS63119850A (en) Catalyst for cleaning up exhaust combustion gas
US6077493A (en) Method for removing nitrogen oxides
JP2529214B2 (en) Nitrogen oxide removal catalyst
JPS5926337B2 (en) carbon monoxide remover
JPS6120330B2 (en)
JP2002295241A (en) Purification method of marine structure exhaust gas and purifying device
JPH0673613B2 (en) Exhaust gas purification method
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JPH0663359A (en) Nitrogen oxides purifying method and waste gas treating device
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JPH08257351A (en) System and process for treating low concentration nox-containing gas
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity
CA2207275C (en) Regeneration of catalyst/absorber
JP2000246112A (en) CATALYST FOR CLEANING NOx-CONTAINING EXHAUST GAS, METHOD FOR CLEANING SAME AND ITS PRODUCTION