JPS63119850A - Catalyst for cleaning up exhaust combustion gas - Google Patents

Catalyst for cleaning up exhaust combustion gas

Info

Publication number
JPS63119850A
JPS63119850A JP61266951A JP26695186A JPS63119850A JP S63119850 A JPS63119850 A JP S63119850A JP 61266951 A JP61266951 A JP 61266951A JP 26695186 A JP26695186 A JP 26695186A JP S63119850 A JPS63119850 A JP S63119850A
Authority
JP
Japan
Prior art keywords
metal
catalyst
cleaning
exhaust gas
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61266951A
Other languages
Japanese (ja)
Inventor
Yoshitaka Kawasaki
良隆 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61266951A priority Critical patent/JPS63119850A/en
Publication of JPS63119850A publication Critical patent/JPS63119850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently remove CO, hydrocarbon, NOX, etc., in exhaust combustion gas by depositing a metal, metal oxide or metal salt on a carrier essentially consisting of zeolite thereby forming a catalyst for cleaning up the exhaust gas. CONSTITUTION:The metal or metal oxide or metal salt is deposited on the carrier essentially consisting of the zeolite of type A or X consisting of the sodium salt of alumino silicate (alumina silicate) to form the catalyst for cleaning up the exhaust combustion gas. The more specific example of the metal salt, etc., to be deposited includes simple substance metals such as Cu, Ni and Cr, metal oxides such as Fe2O3 and CuO or metal salts such as CuSO4, CuCl2 and LiCl. The catalyst permits dry NO2 cleaning-up of high activity simultaneously with the oxidation cleaning-up of CO and HC which are harmful components in the exhaust combustion gas of the atmosphere where oxygen exists.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素が共存する燃焼排ガス中に含まれる窒素
酸化物、−酸化炭素、未燃焼の炭化水素等を浄化する乾
式の燃焼排ガス浄化用触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dry combustion exhaust gas purification catalyst that purifies nitrogen oxides, carbon oxides, unburned hydrocarbons, etc. contained in combustion exhaust gas in which oxygen coexists. It is related to.

従来の技術 燃焼機器から排出される排ガスの中には、二酸化炭素(
co□)や水(N20 )、窒素(N2)、酸素(0□
)などと共に、−酸化炭素(CO)や未燃焼の炭化水素
(燃料およびその分解生成物)、あるい・は窒素酸化物
(NoおよびNO□:これらを総称してNOx (ノッ
クス)と呼ばれる)が含まれている。
Conventional technology The exhaust gas emitted from combustion equipment contains carbon dioxide (
co□), water (N20), nitrogen (N2), oxygen (0□
), -carbon oxides (CO), unburned hydrocarbons (fuel and its decomposition products), or nitrogen oxides (No and NO□: collectively called NOx) It is included.

COは極めて有毒であり、数百ppmの濃度で死に至る
影響を与える。また窒素酸化物は、特にNo2が人体に
有害であり、種々の呼吸器系の疾患を引き起こす要因に
なっていると言われている。
CO is extremely toxic, with lethal effects at concentrations of several hundred ppm. Further, nitrogen oxides, especially No2, are harmful to the human body and are said to be a factor causing various respiratory diseases.

ところがこの雨音を同時に無害化しようとすると、CO
は酸化してCO2にしなければならないから02過剰の
雰囲気でなければならず、一方NO□は還元してNo 
(iに好ましくはN2まで)とするために02 のない
雰囲気が要求される。この相反する条件に対して、実際
の燃焼排ガスでは数%から10数%の0゜を含むのが普
通であり、ここに金属あるいは金寓塩等の触媒を介在さ
せてもCOや未燃焼炭化水素の完全酸化は比較的容易に
行なわれるものの、NO□の還元には全くの逆効果とな
ってしまう。この課題を解決するために従来は、例えば
自動車用の三元触媒に見られるように、燃焼条件を空気
比=1付近に制御して余剰の02が殆どない状態とし、
ここでNOXをCOや炭化水素と反応させる方法が採ら
れていた(例えば干鯛真信、市用勝; 「均一触媒と不
均一触媒」丸善(1983)P、 183〜184)。
However, if we try to make this rain sound harmless at the same time, CO
must be oxidized to CO2, so the atmosphere must be in excess of 02, while NO□ must be reduced to CO2.
(preferably up to N2), a 02-free atmosphere is required. In contrast to these contradictory conditions, actual combustion exhaust gas usually contains a few percent to ten-odd percent of 0°, and even if a catalyst such as a metal or metal salt is used, CO and unburned carbonization are present. Although complete oxidation of hydrogen is relatively easy, it has a completely opposite effect on the reduction of NO□. In order to solve this problem, conventionally, for example, as seen in three-way catalysts for automobiles, combustion conditions are controlled to an air ratio of around 1 so that there is almost no surplus 02,
Here, a method was adopted in which NOX was reacted with CO or hydrocarbons (for example, Masanobu Hoshita, Masaru Ichiyo; "Homogeneous Catalyst and Heterogeneous Catalyst" Maruzen (1983) P, 183-184).

その反応は 2GO+ 2NO= 2GO□十N2 4GO+2NO= 4C0□+N2 NOx + He −) N  + CO2+H20(
HC:炭化水素) 等で表わされる。触媒としてはアルミナ(ム1□0.)
を担体としてこれに白金(pt )、パラジウム(Pd
)、ロジウム(Rh)等を担持させたものが多く用いら
れている(例えば山中龍雄;「触媒による窒素酸化物の
処理法」、別冊化学工業17−14、化学工業社(19
73) P、 177〜208 )。
The reaction is 2GO+ 2NO= 2GO□10N2 4GO+2NO= 4C0□+N2 NOx + He −) N + CO2+H20(
HC: Hydrocarbon) etc. Alumina (Mu1□0.) is used as a catalyst.
Platinum (pt) and palladium (Pd) were added to this as a carrier.
), rhodium (Rh), etc. are often used (for example, Tatsuo Yamanaka; “Method for treating nitrogen oxides using catalysts”, Bessatsu Kagaku Kogyo 17-14, Kagaku Kogyosha (19
73) P, 177-208).

あるいは工業的には還元剤としてアンモニア(NH3)
等を用いたNOxの接触還元法があり。
Alternatively, industrially, ammonia (NH3) is used as a reducing agent.
There is a catalytic reduction method of NOx using etc.

eNo + 4NH= 5N  +1H206NO+8
NH=7N  +12H202S        2 といった反応をさせる方法が広く実用化されており、触
媒としては種々の金属、金属酸化物が提案されている(
例えば大気汚染研究協会編;゛「大気汚染ハンドブック
(4)燃焼器」(昭和64年)P、258〜266)。
eNo + 4NH= 5N +1H206NO+8
Methods of causing reactions such as NH=7N +12H202S 2 have been widely put into practical use, and various metals and metal oxides have been proposed as catalysts (
For example, edited by the Air Pollution Research Association; ``Air Pollution Handbook (4) Combustors'' (1988), p. 258-266).

発明が解決しようとする問題点 上記従来の方法において、前者(三元触媒法)では有効
な反応を生じ得る条件は極めて狭い範囲に限られており
、この条件を満足させるために燃焼における空気と燃料
の比を厳密に制御する必要がある。自動車の場合には実
際にその制御を行なっており、当量比燃焼(空気比=1
)をさせているが、一般の燃焼器では空気過剰の状態で
あるから、排ガス中には0□が多量に残っており、この
触媒をもってしても有害ガスの処理は完遂し得ないもの
であった。一方後者(還元法)では、供給された還元剤
がNOxと反応してこれを無害化する。
Problems to be Solved by the Invention In the above conventional method, the conditions under which an effective reaction can occur are limited to an extremely narrow range in the former (three-way catalyst method), and in order to satisfy this condition, the air and air during combustion are The fuel ratio needs to be tightly controlled. In the case of automobiles, this is actually controlled using equivalence ratio combustion (air ratio = 1
) However, since there is an excess of air in a general combustor, a large amount of 0□ remains in the exhaust gas, and even with this catalyst, it is impossible to completely process harmful gases. there were. On the other hand, in the latter (reduction method), the supplied reducing agent reacts with NOx to render it harmless.

排ガス中に含まれるCOや炭化水素も同時に還元剤とし
て作用し浄化され得るものの、還元剤の供給を必要とし
、有効に反応させるためには還元剤を過剰に供給しなけ
ればならないから、この還元剤のリークが生じて二次公
害のおそれがある。あるいはNOxに対してGOやHe
が過剰に存在する場合には、これらが直接排出されて排
ガスの浄化は完遂され得ない。還元剤がN H,の場合
には02が共存する雰囲気であっても供給されたNH,
が選択的にNOxと反応しこれを無害化するが、NH,
の場合を除き一般に還元剤は排ガス中の酸素と優先的に
反応するから、酸素濃度が数%もある燃焼排ガスの処理
には膨大な量の還元剤が必要となる。
Although CO and hydrocarbons contained in the exhaust gas can also be purified by acting as a reducing agent, it is necessary to supply the reducing agent, and in order to cause an effective reaction, the reducing agent must be supplied in excess. There is a risk of secondary pollution due to chemical leakage. Or GO or He for NOx
If they are present in excess, they are directly exhausted and purification of the exhaust gas cannot be completed. When the reducing agent is NH, even in an atmosphere where 02 coexists, the supplied NH,
selectively reacts with NOx and renders it harmless, but NH,
In general, reducing agents preferentially react with oxygen in the exhaust gas, except in cases where the reducing agent reacts preferentially with the oxygen in the exhaust gas, so a huge amount of reducing agent is required to treat combustion exhaust gas with an oxygen concentration of several percent.

また装置も還元剤供給手段を付加して大きくなり。Furthermore, the equipment also becomes larger due to the addition of a reducing agent supply means.

小型の排ガス発生機器(例えば家庭用の燃焼機器)に対
しては不向きである。
It is not suitable for small exhaust gas generating equipment (for example, household combustion equipment).

本発明は上記従来の欠点を解消し、還元剤の供給や燃焼
条件の厳密な制御を必要とせず、乾式のままで酸素存在
下での排ガス中のGO1炭化水素。
The present invention overcomes the above-mentioned conventional drawbacks, and eliminates the need for supply of reducing agent or strict control of combustion conditions, and allows the production of GO1 hydrocarbons in exhaust gas in the presence of oxygen in a dry process.

NOx等の有害動程の除去を可能ならしめる触媒を提供
するものである。
The present invention provides a catalyst that makes it possible to remove harmful motions such as NOx.

問題点を解決するための手段 上記従来の問題点を解決するために本発明で用いる技術
的手段は、金属または金属酸化物もしくは金属塩をゼオ
ライトに担持させた燃焼排ガス浄化用触媒を構成するも
のである。
Means for Solving the Problems The technical means used in the present invention to solve the above-mentioned conventional problems consists of a combustion exhaust gas purifying catalyst in which a metal, a metal oxide, or a metal salt is supported on zeolite. It is.

作用 本発明は上記手段により、担体であるゼオライトに選択
的に吸着されるNOx (特にNO□)およびaO1炭
化水素(HCj)を、担持させた金属塩等の作用により
夫々還元または酸化させて浄化するものである。即ちゼ
オライトは結晶アルミノシリケート含水金属塩からなり
、基本売M2.nO・ム120.・xsio□・7H2
0で表わされ、例えば合成ゼオライトであるモレキュラ
ーシープ4ム、同13Xは夫々次のような示性式で示さ
れる。
Function The present invention purifies NOx (particularly NO□) and aO1 hydrocarbons (HCj) that are selectively adsorbed on the zeolite carrier by reducing or oxidizing them, respectively, by the action of supported metal salts, etc., by the above-mentioned means. It is something to do. That is, zeolite is composed of crystalline aluminosilicate hydrated metal salt, and has a basic composition of M2. nO・mu120.・xsio□・7H2
For example, synthetic zeolites Molecular Sheep 4M and Molecular Sheep 13X are represented by the following formulas.

4ム:Na1□〔cム102)、2(SiO□)、2〕
・2TH2013X : Na、6((ム10゜)、6
(Sin□)、。6) a276 H2Oここで結晶格
子内に存在する金属カチオン(ここではNaイオン)が
、極性分子の負端末を静電気的に引きつける作用をし、
いずれの分子も細孔内に入り得る多成分系ではより極性
の強い(双極子モーメントの大きい)分子がより強く吸
着されることになる。主な分子の双極子モーメントは0
□=0であるのに対しCo =Q、112、N0=0.
158.No2=0.316と与えられておりC単位:
 (115b76 、 日本化学金線;「化学便覧 基
礎編■′」、丸善(1968)、P、1227)、これ
らの値から明らかなように、ゼオライトの吸着表面はN
oやCo、No□が0□を押し退けて吸着されるよう作
用し、従って0□共存の排ガスであるにも拘らずゼオラ
イト表面ではあたかも0□不在の雰囲気であるかの如く
保たれる。ここで金属あるいは金属塩等を介在させると
、その触媒作用により一部は前記の三元触媒のようにC
OやHeとNOxとの酸化/還元反応により両者を夫々
浄化し、あるいはNOx過剰の雰囲気にあってもより強
く吸着されるNO2から吸着力の弱いNOと02に分解
され排出されるという反応が可能になる。斯くして0□
が過剰に存在する排ガス中において、有害ガステあるG
o 、 H(、NOx (特にNo2)が何れもCo 
  HO、No (またはN2.0□ まで)浄化され
ることになるものである。
4m: Na1□ [cm102), 2 (SiO□), 2]
・2TH2013X: Na, 6 ((mu10°), 6
(Sin□),. 6) a276 H2O The metal cations (here, Na ions) present in the crystal lattice act to electrostatically attract the negative terminals of polar molecules,
In a multicomponent system in which any molecule can enter the pores, molecules with stronger polarity (larger dipole moment) will be more strongly adsorbed. The dipole moment of the main molecules is 0
□=0, whereas Co=Q, 112, N0=0.
158. No2=0.316 is given and C unit:
(115b76, Nippon Kagaku Kinsen; "Chemical Handbook Basic Edition ■'", Maruzen (1968), P, 1227).As is clear from these values, the adsorption surface of zeolite is
O, Co, and No□ act to displace 0□ and are adsorbed, and therefore, even though the exhaust gas coexists with 0□, an atmosphere is maintained on the zeolite surface as if 0□ were absent. If a metal or a metal salt is used here, due to its catalytic action, some of the carbon is
An oxidation/reduction reaction between O or He and NOx purifies both of them, or even in an atmosphere with excess NOx, a reaction occurs in which NO2, which is more strongly adsorbed, is decomposed into NO and 02, which have weaker adsorption power, and is discharged. It becomes possible. Thus 0□
In the exhaust gas where there is an excessive amount of G
o, H(, NOx (especially No2) are both Co
HO, No (or up to N2.0□) will be purified.

実施例 以下本発明の実施例を示す。反応ガスは乾き混合ガスを
用い、燃焼排ガスに合わせて0□=6に。
Examples Examples of the present invention will be shown below. A dry mixed gas was used as the reaction gas, and the ratio was set to 0□=6 to match the combustion exhaust gas.

GO□=10%とし、CO= O〜200ppm 、N
GO□=10%, CO=O~200ppm, N
.

二〇〜1100pp 、NO□=o〜10opp!11
の範囲で変化させて、残部がN2である。空間速度(s
v)は2000011”で反応させた。
20~1100pp, NO□=o~10opp! 11
The balance is N2. Space velocity (s
v) was reacted at 2000011''.

実施例1 市販のモレキュラーシープ6ム(ム型ゼオライ)/Na
−Ca型)1/16インチ(直径)ベレットに酸化鋼(
CuO)を6重量%担持させた触媒に、GO=100p
pII 、 No =50ppml 、  go2=8
0ppmとした混合ガスを通して500℃で反応させた
Example 1 Commercially available Molecular Sheep 6mu (Mu type zeolite)/Na
-Ca type) 1/16 inch (diameter) pellet with oxidized steel (
GO=100p on a catalyst supporting 6% by weight of CuO)
pII, No = 50 ppml, go2 = 8
The reaction was carried out at 500° C. by passing a mixed gas of 0 ppm.

実施例2 市販のモレキュラーシープ4ム(ム型ゼオライト/N&
型)1/16インチ(直径)ベレットに酸化鋼(CuO
)を6重量%担持させた触媒に、実施例1と同じ組成の
ガスを通してsoo℃で反応させた。
Example 2 Commercially available Molecular Sheep 4M (Mu type zeolite/N&
mold) 1/16 inch (diameter) pellet with oxidized steel (CuO
A gas having the same composition as in Example 1 was passed through a catalyst supporting 6% by weight of ) to react at soo°C.

実施例3 市販のモレキュラーシープ13x(X型ゼオライト/N
a型)1/16インチ(直径)ベレット酸化銅(CuO
)を5重重%担持させた触媒に、実施例1と同じ組成の
ガスを通してts o o ’Cで反応させた。
Example 3 Commercially available Molecular Sheep 13x (X-type zeolite/N
a type) 1/16 inch (diameter) pellet copper oxide (CuO
A gas having the same composition as in Example 1 was passed through a catalyst carrying 5% by weight of 5% by weight of 20% by weight, and the reaction was carried out at tso o'C.

実施例4 市販のモレキュラーシープ13X(X型ゼオライト/N
a型)1/16インチ(直径)ベレットに塩化第二銅(
CuC1□)を6重畳%担持させた触媒に、実施例1と
同じ組成のガスを通して500°Cで反応させた。
Example 4 Commercially available Molecular Sheep 13X (X type zeolite/N
type a) 1/16 inch (diameter) pellet with cupric chloride (
A gas having the same composition as in Example 1 was passed through a catalyst supporting 6% by weight of CuC1□) to react at 500°C.

実施例6 上記実施例4のCurl□ に代えて塩化クロム(0r
C1,)を6重量%担持させ、実施例4と同条件で反応
させた。
Example 6 Chromium chloride (0r
C1,) was supported at 6% by weight, and the reaction was carried out under the same conditions as in Example 4.

実施例6 上記実施例4のCurl□ に代えて塩化リチウム(L
iC1)を6重量%担持させ、実施例4と同条件で反応
させた。
Example 6 Lithium chloride (L
iC1) was supported at 6% by weight and reacted under the same conditions as in Example 4.

実施例7 実施例4の触媒(CuCl2/モレキュラーシープ13
x)を用い、GO=o、NO二〇としてNO□=1oO
pp!lとした混合ガスを通して、soo’cで反応さ
せた。
Example 7 Catalyst of Example 4 (CuCl2/Molecular Sheep 13
x), GO=o, NO20, NO□=1oO
pp! A mixed gas of 1.0 liters was passed through the reactor, and the reaction was carried out at soo'c.

実施例8 上記実施例6において、GO=100ppI11とし、
No =O,No2=Oとした混合ガスを接触させて5
00’Cで反応させた。
Example 8 In the above Example 6, GO=100ppI11,
5 by contacting the mixed gas with No = O and No2 = O.
The reaction was carried out at 00'C.

実施例9 上記実施例4と同じ反応条件で、担体のみモレキュラ−
シープから活性アルミナ(ム1□03)に代えた触媒を
使用して反応させた。
Example 9 Under the same reaction conditions as in Example 4 above, only the carrier was
The reaction was carried out using a catalyst substituted with activated alumina (Mu1□03) from sheep.

以上の8実施例に対してその反応結果を下表に示す。各
反応での転化率は1時間通過後め安定値である。
The reaction results for the above 8 Examples are shown in the table below. The conversion rate in each reaction is a stable value after passing for 1 hour.

(以下余 白) 上記の表に示した結果に見られるように、0□が6%共
存する酸化雰囲気にあって、酸化活性を示す金属塩を用
いた場合には1例えば実施例9のようにGoの酸化反応
は比較的容易に進むものの、NO□の浄化は期待できな
い。ところがこれをゼオライトに担持させると前記の選
択的吸着作用の影響を受けて、COの酸化反応と同時に
N02の還元反応も進行し、有害ガスの同時浄化が可能
となる。
(Left space below) As seen in the results shown in the table above, when a metal salt exhibiting oxidizing activity is used in an oxidizing atmosphere in which 6% 0□ coexists, Although the oxidation reaction of Go proceeds relatively easily, purification of NO□ cannot be expected. However, when this is supported on zeolite, under the influence of the selective adsorption effect described above, the oxidation reaction of CO and the reduction reaction of N02 proceed simultaneously, making it possible to simultaneously purify harmful gases.

しかも従来の三元触媒やアンモニア還元法と異なり、実
施例7および実施例8のように、夫々単独°に存在する
GoおよびNO□に対しても有効に作用し、活性を損な
うことはない。従って排ガス中のGo (およびHC)
とNO2の存在比に係わりなく、しかも600℃という
比較的低温において、有害成分を高率的に浄化できる触
媒を提供できるものである。
Moreover, unlike conventional three-way catalysts and ammonia reduction methods, as in Examples 7 and 8, it effectively acts on Go and NO□, each of which exists singly, without impairing the activity. Therefore, Go (and HC) in exhaust gas
Therefore, it is possible to provide a catalyst that can purify harmful components at a high efficiency at a relatively low temperature of 600°C, regardless of the abundance ratio of NO2 and NO2.

ここで担体であるゼオライトは、格子中の金属イオンが
カルシウム(Ca)置換型のモレキュラーシープ5ムよ
りもナトリウム型の4ムや13Xの方がより高活性であ
ることは実施例1〜3(および表示していない他の実験
結果)から明らかであり、これは極性分子の電気的吸着
能力がアルカリ土類金属よりアルカリ金属の方が強いこ
とに起因するものである。従って有害分子の電気的選択
吸着を利用する本方式においては、ナトリウム型のゼオ
ライトであるモレキュラーシープ4入あるいは13xを
用いることは高活性を可能にするものである。
In Examples 1 to 3, the zeolite used as a carrier has a higher activity in the sodium type 4M and 13X than in the calcium (Ca) substituted type molecular sheep 5M. This is clear from the results (and other experimental results not shown), and this is due to the fact that the electrical adsorption ability of polar molecules is stronger in alkali metals than in alkaline earth metals. Therefore, in this method that utilizes electroselective adsorption of harmful molecules, high activity can be achieved by using Molecular Sheep 4 or 13x, which are sodium type zeolites.

また担持させる金属塩等では、銅(Cu)やニッケル(
Ni )、クロム(Or)等の金属単体、あるいは三酸
化二鉄(Fe2O,)や実施例1〜3に用いた酸化鋼(
Cub)等の金属酸化物、更に硫酸鋼(Cu5O4)や
上記実施例に用いた各種塩化剤(Curl□。
In addition, the supported metal salts include copper (Cu) and nickel (
Metals such as Ni ), chromium (Or), diiron trioxide (Fe2O, ), and the oxidized steel used in Examples 1 to 3 (
Metal oxides such as sulfuric acid steel (Cu5O4) and various chlorinating agents (Curl□) used in the above examples.

0ral、 、LiC1)等の金属塩など種々前えられ
、また使用可能であるが、低温での活性が高い遷移金属
のハロゲン化物がより好ましいと言える。特にCuC1
□はCOの酸化活性は600°Cで100%に達し、か
つNO□の還元活性も93〜に至っており(実施例4)
、極めて優れた性能を示している。
Although various metal salts such as 0ral, , LiC1) can be prepared and used, transition metal halides, which have high activity at low temperatures, are more preferred. Especially CuC1
In □, the oxidation activity of CO reaches 100% at 600°C, and the reduction activity of NO□ also reaches 93~ (Example 4)
, has shown extremely excellent performance.

しかもCu C1□単体では融点498℃の高温不安定
な物質であるが、ゼオライトに担持させることにより安
定化されている。即ちゼオライト格子中の金属イオンが
ここでも電気的にCuC1□へ作用し。
Moreover, although Cu C1□ alone is an unstable substance at high temperatures with a melting point of 498°C, it is stabilized by being supported on zeolite. That is, the metal ions in the zeolite lattice act electrically on CuC1□ here as well.

空気気流中a o o ’cに加熱しても蒸発や酸化等
の変化を生じずに維持される。
Even when heated to a temperature of 100°C in an air stream, it is maintained without causing any changes such as evaporation or oxidation.

かくして担体のゼオライトは、単に有害ガスの区名への
寄与のみならず、担持金属塩の安定化にも効果があり、
従来にない選択性、活性、安定性を可能ならしめるもの
である。
In this way, the zeolite carrier not only contributes to the zoning of harmful gases, but also has the effect of stabilizing the supported metal salts.
This enables unprecedented selectivity, activity, and stability.

発明の効果 以上のように本発明は、酸素が共存する雰囲気の燃焼排
ガスにおいて、有害成分であるCOやHCの酸化浄化と
同時に、従来得られなかった還元剤不要で高活性の乾式
No2浄化を可能ならしめるものであり、しかも高温暴
露にも安定である。
Effects of the Invention As described above, the present invention enables oxidative purification of CO and HC, which are harmful components, in combustion exhaust gas in an atmosphere where oxygen coexists, as well as highly active dry NO2 purification that does not require a reducing agent, which was previously not possible. Moreover, it is stable even when exposed to high temperatures.

大気汚染の防止に極めて効果的かつ容易に実用可能な燃
焼排ガス浄化用触媒を提供し得るものである。
It is possible to provide a catalyst for purifying combustion exhaust gas that is extremely effective in preventing air pollution and can be easily put to practical use.

Claims (3)

【特許請求の範囲】[Claims] (1)ゼオライトを主成分とする担体に金属または金属
酸化物もしくは金属塩を担持させた燃焼排ガス浄化用触
媒。
(1) A combustion exhaust gas purifying catalyst in which a metal, metal oxide, or metal salt is supported on a carrier mainly composed of zeolite.
(2)担体はアルミノシリケート(硅酸アルミナ)のナ
トリウム(Na)塩からなるA型またはX型のゼオライ
トを主成分とした特許請求の範囲第1項記載の燃焼排ガ
ス浄化用触媒。
(2) The catalyst for purifying combustion exhaust gas according to claim 1, wherein the carrier is mainly composed of A-type or X-type zeolite made of sodium (Na) salt of aluminosilicate (alumina silicate).
(3)金属塩には遷移金属のハロゲン化物を用いた特許
請求の範囲第1項または第2項記載の燃焼排ガス浄化用
触媒。
(3) The combustion exhaust gas purifying catalyst according to claim 1 or 2, wherein a transition metal halide is used as the metal salt.
JP61266951A 1986-11-10 1986-11-10 Catalyst for cleaning up exhaust combustion gas Pending JPS63119850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61266951A JPS63119850A (en) 1986-11-10 1986-11-10 Catalyst for cleaning up exhaust combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61266951A JPS63119850A (en) 1986-11-10 1986-11-10 Catalyst for cleaning up exhaust combustion gas

Publications (1)

Publication Number Publication Date
JPS63119850A true JPS63119850A (en) 1988-05-24

Family

ID=17437953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61266951A Pending JPS63119850A (en) 1986-11-10 1986-11-10 Catalyst for cleaning up exhaust combustion gas

Country Status (1)

Country Link
JP (1) JPS63119850A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120695A (en) * 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
US5149512A (en) * 1991-08-01 1992-09-22 Air Products And Chemicals, Inc. Catalytic reduction of NOx using methane in the presence of oxygen
US5154902A (en) * 1988-10-03 1992-10-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Exhaust gas purifying catalyst and exhaust gas purifying process
US5270024A (en) * 1989-08-31 1993-12-14 Tosoh Corporation Process for reducing nitrogen oxides from exhaust gas
KR20150145717A (en) 2014-06-20 2015-12-30 가부시키가이샤 에바라 세이사꾸쇼 Exhaust gas treatment apparatus
DE102015215083A1 (en) 2015-08-06 2017-02-09 Elringklinger Ag Cylinder head gasket

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154902A (en) * 1988-10-03 1992-10-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Exhaust gas purifying catalyst and exhaust gas purifying process
US5120695A (en) * 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
US5270024A (en) * 1989-08-31 1993-12-14 Tosoh Corporation Process for reducing nitrogen oxides from exhaust gas
US5149512A (en) * 1991-08-01 1992-09-22 Air Products And Chemicals, Inc. Catalytic reduction of NOx using methane in the presence of oxygen
KR20150145717A (en) 2014-06-20 2015-12-30 가부시키가이샤 에바라 세이사꾸쇼 Exhaust gas treatment apparatus
DE102015215083A1 (en) 2015-08-06 2017-02-09 Elringklinger Ag Cylinder head gasket

Similar Documents

Publication Publication Date Title
WO1997004855A1 (en) Emission control catalyst and emission control method using the same
JPS63119850A (en) Catalyst for cleaning up exhaust combustion gas
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPS62298451A (en) Selective catalytic reduction catalyst
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2605956B2 (en) Exhaust gas purification catalyst
JPH044045A (en) Catalyst for processing exhaust gas
JP3271802B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides
JPH05154349A (en) Method and catalyst for removing nitrogen oxide in combustion exhaust gas
JP2601018B2 (en) Exhaust gas purification catalyst
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPS63119849A (en) Production of catalyst for cleaning up exhaust combustion gas
JP3110921B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH0838907A (en) Catalyst for purification of nox containing exhaust gas
JPH0679140A (en) Method for purifying combustion exhaust gas and catalyst using the method
JPH04244235A (en) Catalyst and method for purifying exhaust gas
JPH06210171A (en) Denitration catalyst
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH04193348A (en) Catalyst for purification of exhaust gas
JPH04367739A (en) Catalyst and method for decontaminating exhaust gas
JPH0386213A (en) Method for catalytically decomposing nitrogen oxide
JPS6349234A (en) Method for removing nitrogen oxides
JPH05200298A (en) Preparation of catalyst for cleaning exhaust gas
JPH07222914A (en) Purification of exhaust gas containing nox