JPS6349231A - Oxidation control device for absorbing liquid in wet type stack gas desulfurization apparatus - Google Patents
Oxidation control device for absorbing liquid in wet type stack gas desulfurization apparatusInfo
- Publication number
- JPS6349231A JPS6349231A JP61192372A JP19237286A JPS6349231A JP S6349231 A JPS6349231 A JP S6349231A JP 61192372 A JP61192372 A JP 61192372A JP 19237286 A JP19237286 A JP 19237286A JP S6349231 A JPS6349231 A JP S6349231A
- Authority
- JP
- Japan
- Prior art keywords
- oxidation
- dissolved oxygen
- amount
- flue gas
- absorption liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 60
- 230000003647 oxidation Effects 0.000 title claims abstract description 55
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 41
- 230000023556 desulfurization Effects 0.000 title claims abstract description 41
- 239000007788 liquid Substances 0.000 title claims abstract description 40
- 239000007789 gas Substances 0.000 claims abstract description 44
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 43
- 239000001301 oxygen Substances 0.000 claims abstract description 43
- 230000002745 absorbent Effects 0.000 claims abstract description 22
- 239000002250 absorbent Substances 0.000 claims abstract description 22
- 239000007921 spray Substances 0.000 claims abstract description 6
- 238000010521 absorption reaction Methods 0.000 claims description 54
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 20
- 239000003546 flue gas Substances 0.000 claims description 20
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 10
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 6
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 4
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims 1
- 239000002002 slurry Substances 0.000 abstract description 31
- 230000001590 oxidative effect Effects 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 15
- 239000000428 dust Substances 0.000 description 8
- 239000010440 gypsum Substances 0.000 description 8
- 229910052602 gypsum Inorganic materials 0.000 description 8
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 235000019738 Limestone Nutrition 0.000 description 5
- 239000006028 limestone Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 3
- GBAOBIBJACZTNA-UHFFFAOYSA-L calcium sulfite Chemical compound [Ca+2].[O-]S([O-])=O GBAOBIBJACZTNA-UHFFFAOYSA-L 0.000 description 3
- 235000010261 calcium sulphite Nutrition 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005273 aeration Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は湿式排煙脱硫装置の吸収液酸化制御装置に係り
、特に、吸収液を用いて排ガス中の硫黄酸化物を吸収除
去して生成される亜硫酸塩の酸化を行うに好適な湿式排
煙脱硫装置の吸収液酸化制御装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an absorption liquid oxidation control device for a wet flue gas desulfurization equipment, and particularly relates to an absorption liquid oxidation control device for a wet flue gas desulfurization equipment, and in particular, sulfur oxides generated by absorbing and removing sulfur oxides from exhaust gas using an absorption liquid. The present invention relates to an absorption liquid oxidation control device for a wet flue gas desulfurization device suitable for oxidizing sulfites.
第5図は従来の湿式排煙脱硫システムを示す構成図であ
り、排ガス101が導入される除塵塔1、この除塵塔1
と塔中段で連通されると共に底部に吸収剤スラリ102
を貯留する吸収塔循環タンク3が設けられた吸収塔2を
主体に構成されている。FIG. 5 is a configuration diagram showing a conventional wet flue gas desulfurization system, including a dust removal tower 1 into which flue gas 101 is introduced, and a dust removal tower 1.
The absorbent slurry 102 is communicated with the tower at the middle stage and at the bottom of the tower.
The main structure is an absorption tower 2 equipped with an absorption tower circulation tank 3 for storing the water.
除塵塔1の下部には除塵塔循環スラリ103が貯留され
る除塵塔循環タンク4が連結され、この循環タンク4内
には攪拌機6が設けられている。また、吸収塔循環タン
ク3内にも撹拌機5が設けられている。A dust removal tower circulation tank 4 in which a dust removal tower circulating slurry 103 is stored is connected to the lower part of the dust removal tower 1, and a stirrer 6 is provided in this circulation tank 4. A stirrer 5 is also provided within the absorption tower circulation tank 3.
吸収塔2の上部にはノズル16が配設され、このノズル
16に吸収液を供給するための吸収塔循環ポンプ7が連
結されている。同様に除塵塔1の上部に設けられたノズ
ル17にスラリ103を供給するための除塵塔循環ポン
プ8が設けられている。さらに吸収塔循環タンク3には
吸収塔ブリード、Iミンプ9が接続され、このポンプ9
に硫酸105を貯留する酸化塔供給タンク10が接続さ
れている。ポンプ18を介してタンク10には酸化塔1
)が接続され、この酸化塔1)に対してシフフナ12及
び遠心分離機13が順次接続される。A nozzle 16 is provided in the upper part of the absorption tower 2, and an absorption tower circulation pump 7 for supplying absorption liquid to the nozzle 16 is connected to the nozzle 16. Similarly, a dust removal tower circulation pump 8 is provided for supplying slurry 103 to a nozzle 17 provided at the upper part of the dust removal tower 1. Further, an absorption tower bleed, I-min pump 9 is connected to the absorption tower circulation tank 3, and this pump 9
An oxidation tower supply tank 10 storing sulfuric acid 105 is connected to the oxidation tower supply tank 10 . Oxidation tower 1 is supplied to tank 10 via pump 18.
) is connected to the oxidation tower 1), and a sifter 12 and a centrifugal separator 13 are sequentially connected to this oxidation tower 1).
次に、上記のように構成される湿式排煙脱硫システムの
作用について説明する。Next, the operation of the wet flue gas desulfurization system configured as described above will be explained.
ボイラ等の排ガス101は除塵塔1で除塵、冷却される
(あるいは、直接吸収塔2に供給される)。そして、吸
収塔2内で排ガス101中の硫黄酸化物が吸収、除去さ
れる。ここで排ガス101中の硫黄酸化物を吸収、除去
するために使用された吸収剤スラリは一旦、吸収塔循環
タンク3に保持され、循環して硫黄酸化物の除去が行わ
れる。Exhaust gas 101 from a boiler or the like is removed and cooled in a dust removal tower 1 (or directly supplied to an absorption tower 2). Then, sulfur oxides in the exhaust gas 101 are absorbed and removed within the absorption tower 2. The absorbent slurry used here to absorb and remove sulfur oxides in the exhaust gas 101 is temporarily held in the absorption tower circulation tank 3, and is circulated to remove sulfur oxides.
ここで攪拌機5によって吸収剤が撹拌混合される。Here, the absorbent is stirred and mixed by the stirrer 5.
この吸収塔循環タンク3内においてSo2吸収性能の回
復を図った後、吸収塔循環ポンプ7によって、再び吸収
塔2に供給される。これを逐次繰返すことにより、吸収
剤スラリ中の石灰石(CaCOl)は亜硫酸カルシウム
(CaS○、)となり、その一部(あるいは条件によっ
ては全量)は排ガス中の酸素によって酸化されて硫酸カ
ルシウム(石膏)となる。このスラリは循環タンク3か
ら吸収塔ブリードポンプ9により抜出され、酸化塔供給
タンク10において硫酸(H2304)を添加すること
により未反応CaCO3の分解及び亜硫酸塩の酸化に好
適なpHに調整された後、酸化塔1)に供給される。酸
化塔1)において、塔底部からの空気106を空気微細
化用アトマイザで強制的に微細気泡を発生させ空気中の
酸素を溶解させることにより、溶解した酸素と亜硫酸カ
ルシウムが反応して硫酸カルシウム(石膏)となり、塔
底部から抜出される。酸化塔1)より抜出された石膏ス
ラリはシフフナ12に供給され濃縮された後、遠心分離
機13で付着水10%以下の石膏10日として濾過水1
07と分離回収される。After attempting to recover the So2 absorption performance in the absorption tower circulation tank 3, it is supplied to the absorption tower 2 again by the absorption tower circulation pump 7. By repeating this step by step, the limestone (CaCOl) in the absorbent slurry becomes calcium sulfite (CaS○, ), and a portion (or the entire amount depending on the conditions) is oxidized by oxygen in the exhaust gas and becomes calcium sulfate (gypsum). becomes. This slurry was extracted from the circulation tank 3 by the absorption tower bleed pump 9, and was adjusted to a pH suitable for decomposing unreacted CaCO3 and oxidizing sulfite by adding sulfuric acid (H2304) in the oxidation tower supply tank 10. Afterwards, it is supplied to the oxidation tower 1). In the oxidation tower 1), the air 106 from the bottom of the tower is forcibly generated with an air atomization atomizer to dissolve oxygen in the air, and the dissolved oxygen and calcium sulfite react to form calcium sulfate ( gypsum) and is extracted from the bottom of the tower. The gypsum slurry extracted from the oxidation tower 1) is supplied to the sifufuna 12 and concentrated, and then passed through the centrifugal separator 13 to remove the filtrated water 1 as 10 days of gypsum with less than 10% adhering water.
07 and will be separated and recovered.
しかし、第5図に示したシステムは、冷却、吸収及び酸
化工程がそれぞれ別個の塔でなされるため、プロセスが
複雑になると共に、設置スペースが広くなる不具合があ
った。そこで、これらの問題を解決すべく、発明者らは
、既に第6図に示す如く冷却、吸収及び酸化の工程を1
つの塔にまとめたl温式排煙脱硫装置を提案した。However, in the system shown in FIG. 5, the cooling, absorption, and oxidation steps are performed in separate towers, which makes the process complicated and requires a large installation space. Therefore, in order to solve these problems, the inventors have already combined the steps of cooling, absorption and oxidation into one as shown in FIG.
We proposed an l-temperature flue gas desulfurization system that is combined into two towers.
即ち、この装置は排ガス101の導入される脱硫塔31
の下部に循環スラリ102を貯留する循環タンク32を
設け、上部にデミスタ36を設けた1つの塔によって構
成されている。循環タンク32にはポンプ33が接続さ
れ、このポンプ33にシフフナ37、遠心分離機3日が
順次接続されている。また、脱硫塔31内には、ポンプ
33よりの循環スラリか供給されるスプレ部39が配設
されている。That is, this device includes a desulfurization tower 31 into which exhaust gas 101 is introduced.
A circulation tank 32 for storing circulating slurry 102 is provided at the bottom of the tower, and a demister 36 is provided at the top. A pump 33 is connected to the circulation tank 32, and a sifter 37 and a centrifugal separator are connected to this pump 33 in this order. Furthermore, a spray section 39 is provided within the desulfurization tower 31 to which the circulating slurry from the pump 33 is supplied.
この装置において、ボイラ等の排ガス101は脱硫塔3
1に導かれ、スプレされたカルシウム系吸収剤スラリと
接触し除塵、冷却及び脱硫された後、同伴ミストをデミ
タス36により除去し、脱硫塔31より出る。一方、吸
収剤である石灰石スラリ104は除去する802世に見
合って循環タンク102に供給され、排ガスと接触後の
スラリ中の水素イオン(H゛)を低減させ吸収スラリの
吸収性能回復を行わせる。尚、循環タンク32には固形
物沈降防止用及び空気微細化分散用(酸化用)攪拌R3
4及び35が設置されており、これらの空気撹拌により
排ガス中のSO2を吸収して生成される亜硫酸イオンの
酸化を行い安定な硫酸塩とし、吸収液中のS02平衡分
圧を低下させ吸収能力を高めると共に、吸収剤の沈降、
堆積を防ぐ。In this device, exhaust gas 101 from a boiler etc. is sent to a desulfurization tower 3
1 and comes into contact with the sprayed calcium-based absorbent slurry to be dedusted, cooled and desulfurized, and then the entrained mist is removed by a demitasse 36 and exits from the desulfurization tower 31. On the other hand, the limestone slurry 104, which is an absorbent, is supplied to the circulation tank 102 in proportion to the amount of 802 to be removed, reducing hydrogen ions (H') in the slurry after contact with the exhaust gas, and recovering the absorption performance of the absorption slurry. In addition, the circulation tank 32 has a stirring R3 for preventing solid matter settling and for air atomization and dispersion (for oxidation).
4 and 35 are installed, and these air agitation absorbs SO2 in the exhaust gas and oxidizes the sulfite ions generated to form stable sulfate salts, lowering the equilibrium partial pressure of SO2 in the absorption liquid and increasing the absorption capacity. As well as increasing the sedimentation of the absorbent,
Prevents buildup.
このようにして再生された吸収スラリは循環ポンプ33
によりスプレ部39へ供給され排ガスと向流接触する。The absorption slurry regenerated in this way is transferred to the circulation pump 33.
The gas is supplied to the spray section 39 and comes into countercurrent contact with the exhaust gas.
吸収スラリの一部は循環タンク32より抜出されシソフ
ナ37でa縮され(あるいは直接)、遠心分離機38で
脱水され付着水10%以下の粉体石膏108として回収
される。尚、107は濾過水である。A portion of the absorbed slurry is extracted from the circulation tank 32, compressed (or directly) in a syringe 37, dehydrated in a centrifugal separator 38, and recovered as powdered gypsum 108 with adhering water of 10% or less. In addition, 107 is filtered water.
しかし、上記従来技術はユーザの要求する低ユーティリ
ティ化に対して配慮がされていない。即ち、脱硫装置の
低ユーティリティ化を目的として、(イ)吸収塔内圧力
を置火の低減(通風系動力の低減)及び(ロ)吸収塔循
環液量制御(循環ポンプ動力の低減)等が行われている
が、Ca5Ozを酸化して石膏とする工程に対しては具
体的な制御方法が確立されておらず、ボイラ負荷、排ガ
ス条件の変化に対し、常に一定の酸化用ユーティリティ
を費やしている。したがって、脱硫装置内において吸収
液中の亜硫酸カルシウムの酸化状態を把握する方法、並
びにこれをいかに利用して酸化用のユーティリティを低
減するかが問題となっていた。However, the above-mentioned conventional technology does not take into consideration the reduction in utility required by users. In other words, for the purpose of reducing the utility of the desulfurization equipment, (a) reducing the pressure inside the absorption tower by setting a fire (reducing the power of the ventilation system) and (b) controlling the amount of circulating liquid in the absorption tower (reducing the power of the circulation pump), etc. However, a specific control method has not been established for the process of oxidizing Ca5Oz to gypsum, and a certain amount of oxidation utility is always required to respond to changes in boiler load and exhaust gas conditions. There is. Therefore, the problem has been how to grasp the oxidation state of calcium sulfite in the absorption liquid in the desulfurization equipment, and how to utilize this to reduce the utility for oxidation.
本発明の目的は、上記した従来技術の問題点を解消し、
必要最小限のユーティリティで酸化反応を良好に行える
ようにした湿式排煙脱硫装置の吸収液酸化制御装置を提
供することにある。The purpose of the present invention is to solve the problems of the prior art described above,
It is an object of the present invention to provide an absorption liquid oxidation control device for a wet flue gas desulfurization device, which allows the oxidation reaction to be performed satisfactorily with the minimum necessary utilities.
上記目的を達成するために、本発明は、吸収液中の溶存
酸素濃度を溶存酸素針で計測し、この計測結果に基づい
て循環タンクの吸収液中に吹込む空気の供給状B(空気
量、攪拌状M)を制御する制御手段を設けるようにした
ものである。In order to achieve the above object, the present invention measures the dissolved oxygen concentration in the absorption liquid with a dissolved oxygen needle, and based on this measurement result, the air supply condition B (air amount , agitation M).
吸収液中の溶存酸素は、亜硫酸塩濃度が殆ど零の時に検
出される。それによって、脱硫装置循環タンク内スラリ
(吸収液)の酸化反応が良好に行われている場合には
、吸収液に浸漬された溶存酸素計は空気の飽和溶解度以
下の範囲でOより大の指示を示し、逆に酸化反応が不十
分な場合には、溶存酸素は見かけ上零の値を示すので、
これに応して酸化に必要な通気量、攪拌状態を制御する
ことにより、酸化状態は良好に保たれる。Dissolved oxygen in the absorption liquid is detected when the sulfite concentration is almost zero. As a result, if the oxidation reaction of the slurry (absorbing liquid) in the desulfurization equipment circulation tank is occurring well, the dissolved oxygen meter immersed in the absorbing liquid will indicate a value greater than O in the range below the saturated solubility of air. On the other hand, if the oxidation reaction is insufficient, the dissolved oxygen will appear to be zero, so
By controlling the aeration amount and stirring conditions necessary for oxidation accordingly, the oxidation state can be maintained in a good condition.
以下、図面に基づいて本発明の詳細な説明すスへ 第1図は本発明の一実施例を示す構成図である。 The following is a detailed explanation of the present invention based on the drawings. FIG. 1 is a block diagram showing an embodiment of the present invention.
なお、第1図においては、第6図と同一であるものには
同一符号を用いたので重複する説明は省略する。In FIG. 1, the same reference numerals are used for the same parts as in FIG. 6, so redundant explanation will be omitted.
排ガス供給管には、排ガス101中のSO2及び0□を
分析する分析計40及び排ガス>t ffl計41が設
けられている。さらにポンプ33の出側と脱硫塔31間
に溶存酸素計42が設けられる。このほか循エスクンク
32内に供給する空気106の空気量を調整するバルブ
43a、43bが設けられる。更に、これらバルブ43
a、43bi<いは酸化用攪拌機35を溶存酸素計42
によって運転制御するために制御部44が設けられてい
る。The exhaust gas supply pipe is provided with an analyzer 40 for analyzing SO2 and 0□ in the exhaust gas 101 and an exhaust gas>t ffl meter 41. Further, a dissolved oxygen meter 42 is provided between the outlet side of the pump 33 and the desulfurization tower 31. In addition, valves 43a and 43b are provided to adjust the amount of air 106 supplied into the circulating air pump 32. Furthermore, these valves 43
a, 43bi<or the oxidation stirrer 35 is connected to the dissolved oxygen meter 42
A control section 44 is provided to control the operation.
次に、以上の構成による酸化制御′I′ll装置の(Y
用効果について説明する。Next, (Y
I will explain the effects of using it.
ボイラ等の排ガス101は脱硫塔31に導かれスプレさ
れたカルシウム系吸収剤スラリと接触し除代、冷却及び
脱硫された後、デミスタ36により同伴ミストを除去さ
れ脱硫塔31より排出される。一方、吸収剤である石灰
石スラリ104は除去するso、1に見合って循環タン
ク32に供給され、排ガス101と接触してpHの低下
した吸収スラリ中の水素イオン(H゛)を低減させる。Exhaust gas 101 from a boiler or the like is led to a desulfurization tower 31 and comes into contact with the sprayed calcium-based absorbent slurry to be removed, cooled, and desulfurized, and then entrained mist is removed by a demister 36 and discharged from the desulfurization tower 31. On the other hand, the limestone slurry 104, which is an absorbent, is supplied to the circulation tank 32 in proportion to the removal so,1, and comes into contact with the exhaust gas 101 to reduce hydrogen ions (H') in the absorption slurry whose pH has decreased.
循環タンク32には複数台の酸化用(空気微細化分散用
)攪拌8135が設置されており、S02を吸収してS
Oz分圧の高くなったスラリの亜硫酸イオン(So”
−1)を酸化し分圧を低下させ、S02吸収性能の回復
を図るとともに、硫酸カルシウム(石膏)を得る。こう
して再生された吸収剤スラリは循環ポンプ33によりス
プレ部39へ供給され排ガス101と向流接触しながら
循環タンク32へ落下する。なお、吸収剤スラリ中の溶
存酸素濃度は、吸収液中に浸漬された溶存酸素計42に
より連続的に測定され、その測定値が零となると酸化用
攪拌R35の運転台数を増加させる。A plurality of oxidation (air atomization and dispersion) agitators 8135 are installed in the circulation tank 32, which absorbs S02 and converts it into S
Sulfite ions (So”) in the slurry with high Oz partial pressure
-1) to reduce the partial pressure, recover the S02 absorption performance, and obtain calcium sulfate (gypsum). The absorbent slurry thus regenerated is supplied to the spray section 39 by the circulation pump 33 and falls into the circulation tank 32 while being in countercurrent contact with the exhaust gas 101. The dissolved oxygen concentration in the absorbent slurry is continuously measured by a dissolved oxygen meter 42 immersed in the absorbent liquid, and when the measured value becomes zero, the number of oxidizing stirring R35 in operation is increased.
また、これとは別に、脱硫塔入口の排ガス量を排ガス流
量計41で、SO□濃度を50202分析計40でそれ
ぞれ計測しその信号を制御部44に取込み排ガス条件か
ら間接的に酸化に必要な攪拌機35の運転台数を決定し
、オン・オフ制御をする。(なお、攪拌機35の台数制
御のみならず、循環流量、ガス中の0tfH度をも制御
部44によって処理することが望ましい。このガス側か
らの酸化用攪拌機35の稼動要求値及び1容存酸素計4
2による液側の実測値からの信号により必要最低限の酸
化用ユーティリティで目的が達成される。Separately, the amount of exhaust gas at the inlet of the desulfurization tower is measured with an exhaust gas flow meter 41, and the SO□ concentration is measured with a 50202 analyzer 40, and the signals are taken into the control unit 44 and indirectly calculated from the exhaust gas conditions necessary for oxidation. The number of stirrers 35 to be operated is determined and on/off control is performed. (In addition, it is desirable that the control unit 44 not only control the number of stirrers 35, but also handle the circulation flow rate and 0 tfH degree in the gas.The operation request value of the oxidation stirrer 35 from the gas side and the 1 volume oxygen Total 4
The purpose is achieved with the minimum necessary oxidation utility by the signal from the actual measured value on the liquid side according to 2.
脱硫塔31で循環使用される吸収スラリの一部は循環タ
ンク32より抜出されシフフナ37で濃縮され、最終的
に遠心分離機38で脱水され付着水10%以下の石膏1
08として回収される(場合によっては、シラフナ37
を省略し直接遠心分離fi3Bに供給することも可能で
ある)。A portion of the absorption slurry that is circulated in the desulfurization tower 31 is extracted from the circulation tank 32, concentrated in the sifter 37, and finally dehydrated in the centrifuge 38 to form gypsum 1 with less than 10% adhering water.
08 (in some cases, Shirafuna 37
It is also possible to omit the step and directly feed the sample to the centrifugal separation fi3B).
このように、脱硫性能決定因子として重要な亜硫酸イオ
ン濃度を必要最低限のユーティリティで殆ど雰に維持す
るために溶存酸素計42を用いて溶存酸素の有無を連続
的に監視している。この溶存酸素計42の測定結果に基
づいて、吸収能力の商い吸収液を循環タンク32内に常
時保持することができる。しかも、このために吸収液の
化学分析を行う必要がない。In this manner, the dissolved oxygen meter 42 is used to continuously monitor the presence or absence of dissolved oxygen in order to maintain the sulfite ion concentration, which is important as a factor determining desulfurization performance, at almost atmospheric level with the minimum necessary utility. Based on the measurement result of the dissolved oxygen meter 42, the absorption liquid can be constantly held in the circulation tank 32 depending on the absorption capacity. Moreover, there is no need to carry out chemical analysis of the absorption liquid for this purpose.
内、溶存酸素計の指示値が零を示す場合には、その時点
の酸化性能では不十分であることを示唆しているわけで
あるが、その場合の方法として、(1)酸化用空気量を
増加する。If the reading on the dissolved oxygen meter shows zero, it suggests that the oxidation performance at that point is insufficient. increase.
(2)酸化用攪拌機の回転数を高める(これによって酸
化用空気の気泡を一層微細化できる。)
(3)酸化用攪拌機?機の運転台数を増加する。(2) Increase the rotational speed of the oxidation stirrer (this makes the oxidation air bubbles even finer.) (3) Oxidation stirrer? Increase the number of machines in operation.
等の手段があるが、いずれの方法でも目的は達成される
。しかしながら、最も簡単で効果的なのは(3)の方法
である。There are several methods available, but either method will achieve the goal. However, method (3) is the simplest and most effective.
次に溶存酸素濃度の測定によって亜硫酸塩の酸化状態が
把握できることの原理について説明する。Next, the principle behind how the oxidation state of sulfite can be determined by measuring the dissolved oxygen concentration will be explained.
第2図(a)、(b)は亜硫酸塩の酸化状態と溶存酸素
の関係を示し、本発明者らが亜硫酸塩の酸化状態を把握
することを目的に実験を行ったものの一例である。この
結果によれば液中に亜硫酸塩が存在すると溶存酸素計4
2の指示値は零となり、酸化反応がほぼ完了すると溶存
酸素は検出されるようになる。この関係を利用すれば吸
収液中の亜硫酸塩濃度を化学分析で求めるよりも簡単か
つ連続的にタンク32内の酸化状態を把握することがで
きる。FIGS. 2(a) and 2(b) show the relationship between the oxidation state of sulfite and dissolved oxygen, and are an example of experiments conducted by the present inventors for the purpose of understanding the oxidation state of sulfite. According to this result, if sulfite is present in the liquid, the dissolved oxygen meter 4
The indicated value of 2 becomes zero, and dissolved oxygen comes to be detected when the oxidation reaction is almost completed. By utilizing this relationship, the oxidation state within the tank 32 can be more easily and continuously determined than by determining the sulfite concentration in the absorption liquid by chemical analysis.
次に、溶存酸素計42の測定結果に基づいて冷却液10
2の酸化を行う具体的手段について説明する。Next, based on the measurement results of the dissolved oxygen meter 42, the coolant 10
A specific means for oxidizing No. 2 will be explained.
1)ノズル或いはスパージャリングをタンク32内に配
置して酸化を行う方法。1) A method in which a nozzle or sparger ring is placed inside the tank 32 to perform oxidation.
この場合、バルブ43a、43bを制御して空気供給量
を増減することにより目的を達成することが可能である
が、この変化幅が大きいとノズル、噴出孔等に詰まりを
生ずるので注意を要する。In this case, it is possible to achieve the objective by controlling the valves 43a and 43b to increase or decrease the amount of air supplied, but care must be taken because if the range of change is large, the nozzle, ejection hole, etc. will be clogged.
2)攪拌翼、回転体等で空気を機械的に微細化して効率
良く酸化を行う方法。2) A method of efficiently oxidizing air by mechanically atomizing the air using stirring blades, rotating bodies, etc.
この場合には、酸化性能に関係する因子として■空気供
給量、■回転数、■運転台数がある。In this case, factors related to oxidation performance include: (1) air supply amount, (2) rotation speed, and (2) number of operating units.
これら因子について説明すれば次の如くである。These factors will be explained as follows.
■ 空気供給量を変化させる方法。■ Method of changing the air supply amount.
空気空気量を変化させることによって、成る程度の目的
は達成されるのであるが、次のような問題点を併せ持っ
ている。すなわち、高速回転体で空気を遮断する場合、
この回転体回りの液の見掛は上の密度は小さくなってお
り、空気を吹込まないで回転させた場合の消費動力の数
分の1となる。Although the objective can be achieved to a certain degree by changing the amount of air, it also has the following problems. In other words, when blocking air with a high-speed rotating body,
The apparent density of the liquid around this rotating body is low, and the power consumption is a fraction of the power consumed when rotating without blowing air.
それに対し空気供給量を定格よりも増やす場合は、動力
が下がる傾向にあるから問題はない、しかし、空気量を
減らす場合には消費動力が逆に増加し、場合によっては
モータトリップ等を引き起こすので空気供給量を減らす
場合にはその配慮が必要である。On the other hand, if you increase the air supply amount above the rated value, there is no problem because the power tends to decrease. However, if you decrease the air amount, the power consumption will increase, and in some cases, it may cause motor trip etc. Consideration must be given when reducing the air supply amount.
この空気供給量制御を行うための制御部44の具体的構
成を示したのが第3図ある。FIG. 3 shows a specific configuration of the control section 44 for controlling the air supply amount.
ベース信号Fを演算出力する演算器25は、排ガス流量
計41より出力される排ガス量信号B、入口排ガス中の
5Ota度検出器(分析針)22より出力される入ロ排
ガス中SO□濃度信号C1排ガス中Oz1度検出器(分
析針)23より出力される排ガス中6tR度信号り、循
環液IH!出器(流量計)24より出力される循環液量
信号E及びpH検出器29より出力されるpH値信号G
の各出力信号を入力とする。ベース信号Fと溶存酸素計
42の溶存酸素信号A及び溶存酸素設定値Sに基づいて
制御信号Hを演算出力する指示調節計26は、減算器(
Δ)26a、比例積分器(Pl)26b、加算器(Σ)
26c及び手動/自動切換器(H/A)26dより構成
される。この指示調節計26から出力される制御信号H
によってパルプ43の開度が調節される。The computing unit 25 that calculates and outputs the base signal F includes an exhaust gas amount signal B outputted from the exhaust gas flowmeter 41 and an SO□ concentration signal in the inlet exhaust gas outputted from the 5Ota degree detector (analysis needle) 22 in the inlet exhaust gas. C1 6tR degree signal in exhaust gas output from the 1 degree Oz detector (analysis needle) 23, circulating fluid IH! Circulating fluid amount signal E output from the output device (flow meter) 24 and pH value signal G output from the pH detector 29
Each output signal of is input. The indicating controller 26 calculates and outputs the control signal H based on the base signal F, the dissolved oxygen signal A of the dissolved oxygen meter 42, and the dissolved oxygen set value S.
Δ) 26a, proportional integrator (Pl) 26b, adder (Σ)
26c and a manual/automatic switch (H/A) 26d. Control signal H output from this indicating controller 26
The opening degree of the pulp 43 is adjusted by.
演算器25は、信号B−E及びGに基づいて排ガス10
1中の02により自然酸化率を(1)、(2)式により
演算する。The computing unit 25 calculates the exhaust gas 10 based on the signals B-E and G.
Using 02 in 1, the natural oxidation rate is calculated using equations (1) and (2).
自然酸化量QN =kX (L)・・・川・・・・・・
(1)必要酸化量Qa = CG)X (Sow )X
C・・・・・・・・・・・・(2)
これらに基づいてベース空気1)Vairを(3)式に
より求め、これを演算器25の出力信号Fとする。Natural oxidation amount QN = kX (L)...River...
(1) Required oxidation amount Qa = CG)X (Sow)X
C... (2) Based on these, the base air 1) Vair is determined by equation (3), and this is used as the output signal F of the calculator 25.
ベース空気量Va i r =ax [QR−QH)・
・・・・・・・・・・・(3)
但し、k:自然酸化係数でkcc (Ox ) 、p
Hα、C:定数
供給すべき空気量の殆どは演算器25によって決定され
、残りは溶存酸素計42の出力値に依存した実測値によ
って微調整される。したがって、応答性、連続性等の制
御性に優れた制御を行うことができる。因みに、信号F
を用いずに、信号へのみに依存した制御を行った場合に
は、可変範囲が広がるため、応答性が遅くなると共にハ
ンチング等を生じやすなる。バルブ43a、43bは指
示調節計26より出力される制御信号Hに応じて弁開度
が、0〜100%の範囲で調節される。Base air amount Va i r =ax [QR-QH)・
・・・・・・・・・・・・(3) However, k: natural oxidation coefficient kcc (Ox), p
Hα, C: Constant Most of the amount of air to be supplied is determined by the calculator 25, and the rest is finely adjusted by the actual measured value depending on the output value of the dissolved oxygen meter 42. Therefore, control with excellent controllability such as responsiveness and continuity can be performed. By the way, signal F
If control is performed solely depending on the signal without using the control, the variable range will be widened, resulting in slow response and a tendency to cause hunting and the like. The valve opening degrees of the valves 43a and 43b are adjusted in a range of 0 to 100% according to a control signal H output from the indicating controller 26.
■酸化用攪拌器35の回転数を変化させる方法。■Method of changing the rotation speed of the oxidation stirrer 35.
第4図に示す構成によって実現できる。第4図において
は、第3図の構成からpH検出器29を除去し、指示調
節計26と撹拌器35との間に回転数コントローラ27
を設けて構成される。したがって第3図と同様の動作を
なし、弁開度情報に代えて回転数情報が指示調節計26
より信号Iとして出力される。この信号■に応じて回転
数コントローラ27は攪拌器35の回転速度を制御する
。This can be realized by the configuration shown in FIG. In FIG. 4, the pH detector 29 is removed from the configuration of FIG.
It is configured by providing. Therefore, the operation is similar to that shown in FIG. 3, and instead of valve opening information, rotation speed information is sent to the indicating controller
It is output as signal I. The rotational speed controller 27 controls the rotational speed of the stirrer 35 in accordance with this signal (2).
■攪拌器35の運転台数を変化させる方法。■Method of changing the number of stirrers 35 in operation.
前記■及び■の方法に比べ、最も効果の上がる方法であ
る。−台の回転体の回転数及び空気供給量を一定として
、その運転を行うか否かにより制御が行える為、整備費
も比較的少な(済み可変範囲を0台から全台迄と幅広い
、この台数制御は、溶存酸素計42の出力値に基づいて
、第1図に示す制御部44によって実行する。This is the most effective method compared to methods (1) and (2) above. - Since the rotation speed and air supply amount of the rotating body of the machine are kept constant and can be controlled depending on whether or not to operate, maintenance costs are relatively low. The number control is executed by the control section 44 shown in FIG. 1 based on the output value of the dissolved oxygen meter 42.
以上の3つの制御形態に対応する現象と制御内容の関係
を示したのが第1表である。Table 1 shows the relationship between phenomena and control contents corresponding to the above three control forms.
第 1 表
〔実施例〕
処理ガス量51)1ONm”/h(定格)の吸収・酸化
1塔型排煙脱硫装置を用いて実験を行った。Table 1 [Example] Experiments were conducted using a single absorption/oxidation tower type flue gas desulfurization apparatus with a processing gas amount of 51) 1 ONm''/h (rated).
脱硫塔31は径がφ0.3m%高さ約9,5m、塔下部
の循環タンク32はφ1 0m、高さI。The desulfurization tower 31 has a diameter of 0.3 m and a height of about 9.5 m, and the circulation tank 32 at the bottom of the tower has a diameter of 10 m and a height of I.
5mであり、亜硫酸塩酸化用及びスラリ沈降防止用に側
面式攪拌器(翼としてφ120mの3枚プロペラ型を用
いた)を4台等分にタンク底より150mmの高さに取
付けた。この攪拌器35の回転数を150Orpmで一
定とし、1台当たりに供給する空気量を1.ONm’/
hとした。吸収剤として約20wt%の石灰石スラリを
循環タンク32に供給した。そして、iiタンク32に
はCa CO2及びCa5Oa ・2Hz○を主成分
とする吸収剤スラリか4101保持されており、循環ポ
ンプ33によりWi環タンク32から抜出され、8.7
t/hの流量で循環した。循環タンク32のpH設定値
を5.5とし石灰石流量を制御した。The length of the tank was 5 m, and four side-type stirrers (using a three-blade propeller type with a diameter of 120 m as blades) were installed at a height of 150 mm from the tank bottom for sulfite oxidation and slurry sedimentation prevention. The rotational speed of this agitator 35 is kept constant at 150 rpm, and the amount of air supplied per unit is 1. ONm'/
It was set as h. Approximately 20 wt % limestone slurry was supplied to the circulation tank 32 as an absorbent. The ii tank 32 holds an absorbent slurry 4101 mainly composed of CaCO2 and Ca5Oa 2 Hz○, which is extracted from the Wi ring tank 32 by the circulation pump 33.
It was circulated at a flow rate of t/h. The pH setting value of the circulation tank 32 was set to 5.5, and the limestone flow rate was controlled.
i理法の戻りラインの途中に小容量の液溜を設は溶存酸
素電極を浸漬しその計測値は制御盤に送られ、溶存酸素
設定値を雰とし、零となると順次No、1から4までの
酸化用攪拌機の運転及びそれに付随する空気遮断弁が開
となるように制御系を組んだ、溶存酸素の上限設定値を
sppmとして1)拌機の停止及び空気遮断弁を閉とし
た。A small-capacity liquid reservoir is set up in the middle of the return line of the i-method, and the dissolved oxygen electrode is immersed in it, and the measured value is sent to the control panel, and the dissolved oxygen set value is used as the atmosphere. A control system was set up so that the oxidation stirrer was operated and the associated air cutoff valve was opened, and the upper limit set value of dissolved oxygen was set to sppm. 1) The stirrer was stopped and the air cutoff valve was closed.
(例1)
排ガスl: 58ONm’ /h、人口Sow濃度ニア
40Ppmの排ガス条件において、自動運転を行ったと
ころ、酸化用撹拌機運転台数は3台で定常となりその際
の溶存酸素は2〜sppmに保たれた。この際、数度吸
収液をサンプリングし、So”−x濃度を化学分析(ヨ
ードメトリ法)したところ、2m moillIt未
満になっているのが確認された。また、脱硫率も90%
であった。(Example 1) When automatic operation was performed under the exhaust gas conditions of exhaust gas l: 58ONm'/h and population sow concentration near 40Ppm, the number of oxidation stirrers in operation was steady at 3, and the dissolved oxygen at that time was 2 to 2 sppm. was maintained. At this time, the absorption liquid was sampled several times and the So''-x concentration was chemically analyzed (iodometric method), and it was confirmed that it was less than 2mmoilIt.The desulfurization rate was also 90%.
Met.
(例2)
排ガスI:305Nmコ/h、人口S Oz 93度:
630ppm(ボイラ負荷として1/4負荷に相当)の
排ガス条件において、自動運転したところ運転台数は1
台で定常となり、吸収液中のSo”−3濃度も’1m
mo171未満に保たれた。この際の脱硫率は92%
であった。(Example 2) Exhaust gas I: 305Nm/h, population S Oz 93 degrees:
When automatically operated under exhaust gas conditions of 630 ppm (equivalent to 1/4 boiler load), the number of units in operation was 1.
It becomes steady at the stand, and the So''-3 concentration in the absorption liquid is also '1 m
It was kept below mo171. The desulfurization rate at this time was 92%
Met.
(参考例1)
例2と同様の排ガス条件で手動操作に切替え撹拌機運転
台数を4台としたところ、脱硫率は92%で、吸収液中
の5oz−z濃度は殆ど雰であった。(Reference Example 1) When the operation was changed to manual operation under the same exhaust gas conditions as in Example 2 and the number of stirrers in operation was set to four, the desulfurization rate was 92% and the 5oz-z concentration in the absorption liquid was almost at atmospheric pressure.
以上のように本発明によれば、酸化a能を有する脱硫装
置において、常に必要最小限のユーティリティで酸化反
応を良好に行うことが可能となる。As described above, according to the present invention, in a desulfurization apparatus having an oxidizing ability, it is possible to always perform an oxidation reaction satisfactorily with the minimum necessary utility.
特に、ボイラ等の低負荷時や3分の低い燃料を燃やした
場合塔には空気量、モータ動力等が低減できるので低ユ
ーティリティ化に対して顕著な効果がある。In particular, when the load of the boiler is low or when a low fuel of 3 minutes is burned, the amount of air in the tower, the motor power, etc. can be reduced, so there is a remarkable effect on reducing utility.
第1図は本発明の一実施例を示す構成図、第2図(a)
、(b)は亜硫酸イオン濃度と溶存酸素の関係を示す特
性図、第3図及び第4図は制御部44の詳細を示すブロ
ック図、第5図は従来の湿式排煙脱硫システムの一例を
示す構成図、第6図は一塔型の脱硫装置の一例を示す構
成図である。
22・・・・・・S○2?農度検出器、23・・・・・
・0□濃度検出器、24・・・・・・循環流量検出器、
25・・・・・・演算器、26・・・・・・指示調節計
、27・・・・・・回転数コントローラ、31・・・・
・・脱硫塔、32・・・・・・循環タンク、33・・・
・・・循環ポンプ、35・・・・・・攪拌機、36・・
・・・・デミスタ、37・・・・・・シソフナ、38・
・・・・・遠心分離機、39・・・・・・スプレ部、4
0・・・・・・分析計、41・・・・・・排ガス流量計
、43a、43b・・・・・・パルプ、44・・・・・
・制御部。
代理人 弁理士 西 元 勝 −
第1図
↑
第2図
時間(min)→
(b)
吟 間(min )→
第3図
第4図
第5図
合
第6図Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2(a)
, (b) is a characteristic diagram showing the relationship between sulfite ion concentration and dissolved oxygen, FIGS. 3 and 4 are block diagrams showing details of the control unit 44, and FIG. 5 is an example of a conventional wet flue gas desulfurization system. FIG. 6 is a block diagram showing an example of a one-tower type desulfurization apparatus. 22...S○2? Agriculture rate detector, 23...
・0□Concentration detector, 24... Circulation flow rate detector,
25... Arithmetic unit, 26... Indicating controller, 27... Rotation speed controller, 31...
...Desulfurization tower, 32...Circulation tank, 33...
... Circulation pump, 35... Stirrer, 36...
... Demister, 37 ... Shisovna, 38.
... Centrifugal separator, 39 ... Spray section, 4
0...Analyzer, 41...Exhaust gas flow meter, 43a, 43b...Pulp, 44...
・Control unit. Agent Patent Attorney Masaru Nishimoto - Figure 1 ↑ Figure 2 Time (min) → (b) Ginma (min) → Figure 3 Figure 4 Figure 5 Figure 6
Claims (6)
を接触させて排ガス中の硫黄酸化物を吸収・除去する脱
硫塔と該塔の下部に設けられて吸収液を貯留及び前記噴
霧のために循環させる循環タンクとを備え、該タンクの
吸収液中の亜流酸塩を該吸収液中に吹込んだ空気によっ
て強制的に酸化させる湿式排煙脱硫装置において、前記
吸収液中の溶存酸素濃度を計測する溶存酸素計と、該溶
存酸素計の計測値に基づいて前記吹込む空気の供給状態
を制御する制御手段とを設けたことを特徴とする湿式排
煙脱硫装置の吸収液酸化制御装置。(1) A desulfurization tower that absorbs and removes sulfur oxides from the flue gas by bringing the sprayed absorption liquid into contact with the flue gas from the introduced boiler, etc., and a desulfurization tower that is installed at the bottom of the tower to store the absorption liquid and remove the spray In a wet flue gas desulfurization equipment, the wet flue gas desulfurization equipment is equipped with a circulation tank that circulates dissolved oxygen in the absorption liquid in the tank, and forcibly oxidizes sulfite in the absorption liquid in the tank by air blown into the absorption liquid. Absorbent oxidation control for wet flue gas desulfurization equipment, characterized in that it is provided with a dissolved oxygen meter that measures the concentration, and a control means that controls the supply state of the air to be blown based on the measured value of the dissolved oxygen meter. Device.
ことを特徴とする特許請求の範囲の第(1)項記載の湿
式排煙脱硫装置の吸収液酸化制御装置。(2) The absorption liquid oxidation control device for a wet flue gas desulfurization device according to claim (1), wherein the control means is an increase or decrease in the amount of air blown into the device.
2濃度、吸収液循環流量及び吸収液pH値に基づいて推
定した自然酸化率によって基礎となる空気量を算出し、
この空気量に溶存酸素計測値に依存して算出した空気量
を加算して前記吹込み空気量とすることを特徴とする特
許請求の範囲第(2)項記載に記載の湿式排煙脱硫装置
の吸収液循環流量制御装置。(3) Inlet exhaust gas amount, SO_2 concentration in gas, O_ in gas
2 Calculate the basic air amount based on the natural oxidation rate estimated based on the concentration, absorption liquid circulation flow rate, and absorption liquid pH value,
The wet flue gas desulfurization apparatus according to claim (2), wherein the blown air amount is obtained by adding an air amount calculated depending on the dissolved oxygen measurement value to this air amount. absorption liquid circulation flow rate control device.
る攪拌機の回転数制御であることを特徴とする特許請求
の範囲第(1)項記載の湿式排煙脱硫装置の吸収液酸化
制御装置。(4) Absorbing liquid oxidation control of the wet flue gas desulfurization apparatus according to claim (1), wherein the control means is a rotation speed control of a stirrer that stirs the absorbing liquid in the tank. Device.
る攪拌機の運転台数の制御であることを特徴とする特許
請求の範囲第(1)項記載の湿式排煙脱硫装置の吸収液
酸化制御装置。(5) Absorbent liquid oxidation in the wet flue gas desulfurization apparatus according to claim (1), characterized in that the control means controls the number of agitators in operation that stir the absorbent in the tank. Control device.
中O_2濃度及び吸収液循環液量の信号に基づき排ガス
中の酸素による亜硫酸塩の酸化状態を演算し、その値と
溶存酸素値との偏差に基づいて前記撹拌機の回転数また
は運転台数を制御することを特徴とする特許請求の範囲
第(4)項又は記載の湿式排煙脱硫装置の吸収液酸化制
御装置。(6) Calculate the oxidation state of sulfite by oxygen in the exhaust gas based on the signals of the exhaust gas amount at the equipment inlet, the sulfur oxide concentration in the gas, the O_2 concentration in the gas, and the absorption liquid circulation amount, and combine that value with the dissolved oxygen value. An absorbing liquid oxidation control device for a wet flue gas desulfurization apparatus according to claim 4 or claim 4, wherein the rotational speed or the number of operating units of the stirrer is controlled based on the deviation of the agitator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61192372A JPH0741141B2 (en) | 1986-08-18 | 1986-08-18 | Wet flue gas desulfurization equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61192372A JPH0741141B2 (en) | 1986-08-18 | 1986-08-18 | Wet flue gas desulfurization equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6349231A true JPS6349231A (en) | 1988-03-02 |
JPH0741141B2 JPH0741141B2 (en) | 1995-05-10 |
Family
ID=16290189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61192372A Expired - Lifetime JPH0741141B2 (en) | 1986-08-18 | 1986-08-18 | Wet flue gas desulfurization equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0741141B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5945081A (en) * | 1994-05-11 | 1999-08-31 | Babcock-Hitachi Kabushiki Kaisha | Wet-type flue gas desulfurization plant and method making use of a solid desulfurizing agent |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62193630A (en) * | 1986-02-21 | 1987-08-25 | Babcock Hitachi Kk | Method and equipment for wet stack-gas desulfurization |
-
1986
- 1986-08-18 JP JP61192372A patent/JPH0741141B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62193630A (en) * | 1986-02-21 | 1987-08-25 | Babcock Hitachi Kk | Method and equipment for wet stack-gas desulfurization |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5945081A (en) * | 1994-05-11 | 1999-08-31 | Babcock-Hitachi Kabushiki Kaisha | Wet-type flue gas desulfurization plant and method making use of a solid desulfurizing agent |
Also Published As
Publication number | Publication date |
---|---|
JPH0741141B2 (en) | 1995-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3968457B2 (en) | Wet flue gas desulfurization method | |
JP3332678B2 (en) | Wet flue gas desulfurization equipment | |
JPS60226403A (en) | Method for adjusting sulfite concentration | |
JPS59150339A (en) | Continuous measurement of concentration of carbonate and sulfite in liquid | |
EP0518585B1 (en) | Flue gas desulfurization process | |
JPS6349231A (en) | Oxidation control device for absorbing liquid in wet type stack gas desulfurization apparatus | |
EP0915732B1 (en) | A method and apparatus for removing gaseous elementary mercury from a gas | |
JP3308590B2 (en) | Method and apparatus for removing sulfur dioxide from a gas stream | |
JPH1094714A (en) | Flue gas treatment | |
JP3337382B2 (en) | Exhaust gas treatment method | |
JP3337380B2 (en) | Exhaust gas treatment method | |
JPS62193630A (en) | Method and equipment for wet stack-gas desulfurization | |
JPS62225226A (en) | Wet stack-gas desulfurization facility | |
JP3068452B2 (en) | Wet flue gas desulfurization equipment | |
JPS62225227A (en) | Method for controlling operation of wet stack-gas desulfurization facility | |
JP3651918B2 (en) | Control method of wet flue gas desulfurization equipment | |
JP3504427B2 (en) | Exhaust gas desulfurization method | |
JPH08141347A (en) | Jet bubbling reaction tank and operation thereof | |
JPH0691940B2 (en) | Oxidizing air control method for wet flue gas desulfurization equipment | |
JPS62262728A (en) | Method for operating wet exhaust gas desulfurizer | |
JPS6265927A (en) | Method for controlling oxidation of calcium sulfite | |
JP3728000B2 (en) | Exhaust gas desulfurization method | |
JPH0159004B2 (en) | ||
JPH1157395A (en) | Treatment of stack gas and stack gas treating device | |
JPS63137735A (en) | Wet-type exhaust gas desulfurizing method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |