JPS6349201B2 - - Google Patents

Info

Publication number
JPS6349201B2
JPS6349201B2 JP769878A JP769878A JPS6349201B2 JP S6349201 B2 JPS6349201 B2 JP S6349201B2 JP 769878 A JP769878 A JP 769878A JP 769878 A JP769878 A JP 769878A JP S6349201 B2 JPS6349201 B2 JP S6349201B2
Authority
JP
Japan
Prior art keywords
optical
fiber cable
processing
transmission fiber
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP769878A
Other languages
Japanese (ja)
Other versions
JPS54100753A (en
Inventor
Osamu Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP769878A priority Critical patent/JPS54100753A/en
Publication of JPS54100753A publication Critical patent/JPS54100753A/en
Publication of JPS6349201B2 publication Critical patent/JPS6349201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3843Means for centering or aligning the light guide within the ferrule with auxiliary facilities for movably aligning or adjusting the fibre within its ferrule, e.g. measuring position or eccentricity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【発明の詳細な説明】 本発明は光伝送用フアイバケーブルを光学的に
接続することを容易にする光伝送用フアイバケー
ブルの接続用端部の加工装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a processing device for a connecting end of an optical transmission fiber cable, which facilitates optical connection of the optical transmission fiber cable.

光伝送用フアイバケーブルの無調整で着脱容易
なコネクタに関しては、種々の構造が提案されて
いるが、それらの基本的な考え方は光伝送用フア
イバケーブルの端部に多数回の繰り返し着脱に耐
える機械的に堅牢な材質でかつ接続時の光軸の一
致を保証するため、光伝送用フアイバケーブルの
光軸と高精度で一致した中心軸を持つ円筒外形部
を有するプラグ状の成形処理を施すことである。
Various structures have been proposed for connectors that can be easily connected and disconnected without adjustment for optical transmission fiber cables, but the basic idea behind these is to create a mechanical connector that can withstand repeated connection and disconnection at the end of an optical transmission fiber cable. In order to ensure that the material is physically robust and that the optical axes match when connected, it is molded into a plug-like shape that has a cylindrical outer shape with a central axis that precisely matches the optical axis of the optical transmission fiber cable. It is.

上記の処理を施すための有力な一方法として、
光伝送用フアイバケーブルの端部にスリーブ状部
材を固着した後、端面における光軸の位置を顕微
鏡等で確認し、これを基準にしてスリーブ状部材
の外周を円筒加工する方法がある。この方法は成
形処理過程で生じる種々の形状ないし位置誤差を
最終的な円筒加工により取り除くため特に光伝送
用フアイバケーブルと円筒外形部の同心度に関し
て高精度を期待できる。
As a powerful method for carrying out the above processing,
There is a method of fixing a sleeve-like member to the end of an optical transmission fiber cable, then confirming the position of the optical axis on the end face using a microscope, etc., and processing the outer periphery of the sleeve-like member into a cylinder using this as a reference. This method eliminates various shape and positional errors that occur during the molding process through the final cylindrical processing, so high accuracy can be expected, especially with regard to the concentricity of the optical transmission fiber cable and the cylindrical outer portion.

しかしながら上記の円筒加工を行うに際して注
意すべきは、特に長尺の光伝送フアイバケーブル
や多芯ケーブル状の光伝送用フアイバケーブルの
端部を加工する場合は光伝送フアイバケーブルを
回転させられない点である。このため従来この円
筒加工を行うには、ジグ中ぐり盤等の高精度の工
具回転型式の工作機械を用いるが、前述の光伝送
フアイバケーブルの端面における光軸位置と工具
の回転軸を一致させる心出し作業に難点がある。
すなわち、光軸と回転軸を合わせるため、光伝送
フアイバケーブルの被加工側端面を他端から光を
照射した状態で、加工主軸に取り付けた心出し顕
微鏡で観測し心出し顕微鏡の基準線と光伝送フア
イバケーブルのコア像の中心が一致するように加
工主軸と光伝送フアイバケーブルの被加工側端部
を取り付けた載物台の相対位置を調節した後、心
出し顕微鏡を取り出し、中ぐりヘツドを加工主軸
に取り付け円筒加工を行うのであるが、心出し顕
微鏡の基準線の位置誤差、加工主軸と心出し顕微
鏡の取付誤差、作業性の悪さ等、種々の要因が重
なり高精度の心出しを行うことが非常に困難であ
り、かつ心出し顕微鏡を中ぐりヘツドの交換作業
等により加工に要する時間も長大になる等の欠点
がある。
However, when performing the above-mentioned cylindrical processing, it should be noted that the optical transmission fiber cable cannot be rotated, especially when processing the ends of long optical transmission fiber cables or multi-core optical transmission fiber cables. It is. For this reason, conventionally, to perform this cylindrical machining, a high-precision tool rotation type machine tool such as a jig boring machine is used, but the optical axis position on the end face of the optical transmission fiber cable mentioned above must match the rotation axis of the tool There is a difficulty in centering work.
In other words, in order to align the optical axis and the rotation axis, the end face of the optical transmission fiber cable to be processed is irradiated with light from the other end, and is observed with a centering microscope attached to the processing spindle, and the reference line of the centering microscope and the light are After adjusting the relative position of the processing spindle and the stage to which the end of the optical transmission fiber cable to be processed is attached so that the center of the core image of the transmission fiber cable is aligned, the centering microscope is taken out and the boring head is moved. It is attached to the machining spindle and performs cylindrical machining, but various factors such as positional error in the reference line of the centering microscope, installation error between the machining spindle and centering microscope, and poor workability result in high precision centering. It is very difficult to do this, and there are drawbacks such as the time required for machining due to the work of replacing the boring head of the centering microscope.

本発明は上述の欠点を除去し、作業性よく高精
度の心出しを行うことができ、かつ工具と心出し
顕微鏡の取換の必要がない光ケーブルの端末加工
装置を提供するものである。
The present invention eliminates the above-mentioned drawbacks, and provides an optical cable termination processing device that can perform highly accurate centering with good workability and eliminates the need to replace tools and centering microscopes.

本発明によれば、加工主軸と一体となつて回転
し、光学系と撮像素子からなる光伝送用フアイバ
ケーブル端面の検出系と該検出系からの信号を固
定点に導く信号伝達素子と検出系からの表示装置
を備えたことで作業性よく高精度の心出しができ
る光ケーブルの端末加工装置を得ることができ
る。
According to the present invention, a detection system for the end face of an optical transmission fiber cable that rotates together with the processing main shaft and includes an optical system and an image sensor, a signal transmission element that guides a signal from the detection system to a fixed point, and a detection system By being equipped with a display device from the above, it is possible to obtain an optical cable terminal processing device that is easy to work with and can perform highly accurate centering.

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す構成図で、1
は光伝送用フアイバケーブル、2は光伝送用フア
イバケーブル1の端部に固着されたスリーブ状部
材、3はスリーブ状部材2を保持するチヤツク、
4は加工主軸、5は切削工具、6は拡大光学系を
構成するレンズ、7は撮像素子、8は回転体から
固定体へ信号を伝達するスリツプリング、9は撮
像素子の信号を表示するモニター装置、10はチ
ヤツク3を加工主軸4の回転軸と平行に移動させ
る送りハンドル、11および12は加工主軸4の
回転軸と垂直な面内でチヤツク3を移動させる送
りつまみ、13は図示していない電動機の回転を
加工主軸に伝えるためのプーリー、14はベツド
である。
FIG. 1 is a configuration diagram showing one embodiment of the present invention.
1 is a fiber cable for optical transmission; 2 is a sleeve-shaped member fixed to the end of the fiber cable 1 for optical transmission; 3 is a chuck for holding the sleeve-shaped member 2;
4 is a machining spindle, 5 is a cutting tool, 6 is a lens constituting a magnifying optical system, 7 is an image sensor, 8 is a slip ring that transmits signals from the rotating body to the fixed body, and 9 is a monitor that displays signals from the image sensor 10 is a feed handle for moving the chuck 3 parallel to the rotation axis of the processing spindle 4; 11 and 12 are feed knobs for moving the chuck 3 in a plane perpendicular to the rotation axis of the processing spindle 4; 13 is not shown; A pulley 14 is a bed for transmitting the rotation of the electric motor to the processing main shaft.

次に本実施例により円筒加工を行う手順を説明
する。
Next, a procedure for machining a cylinder according to this embodiment will be explained.

チヤツク3で固定された光伝送用フアイバケー
ブルの被加工側端面から他端から光が照射され、
拡大光学系6により撮像素子7の表面に光伝送用
フアイバケーブル1の被加工側端面におけるコア
部が明かるく結像する。このとき、コア像が正し
く結像するようにハンドル10により位置を調節
する。このコア像は撮像素子7より検出され、出
力信号はスリツプリング8を介してモニター装置
9に送られコア像が表示される。
Light is irradiated from the other end of the processed side end face of the optical transmission fiber cable fixed with chuck 3,
The enlarging optical system 6 forms a bright image of the core portion of the processed side end face of the optical transmission fiber cable 1 on the surface of the imaging device 7 . At this time, the position is adjusted using the handle 10 so that the core image is correctly formed. This core image is detected by the image sensor 7, and an output signal is sent to a monitor device 9 via a slip ring 8, where the core image is displayed.

次に加工主軸4を比較的低速で回転させながら
コア像を観察し、モニター装置9上でコア像の公
転が無くなるようにつまみ11,12によつてス
リーブ部材2の位置を調節する。
Next, the core image is observed while rotating the machining spindle 4 at a relatively low speed, and the position of the sleeve member 2 is adjusted using the knobs 11 and 12 so that the core image does not revolve on the monitor device 9.

この後加工主軸4を適当な切削速度が得られる
速度で回転させ、ハンドル10によつてスリーブ
部材2を切削工具5に向かつて送りスリーブ2の
外周を切削加工すればよい。
Thereafter, the machining spindle 4 is rotated at a speed that provides an appropriate cutting speed, and the sleeve member 2 is directed toward the cutting tool 5 using the handle 10 to cut the outer periphery of the feed sleeve 2.

加工主軸4、光学系6、撮像素子7は一体とな
つて回転するため、モニター装置9上では相対的
にコア像が加工主軸4の回転軸を中心として回転
することになり、コア像の公転が無くなるように
スリーブ部材2の位置を調節すれば、光伝送用フ
アイバケーブル1の被加工側端面におけるコア中
心従つて光軸位置と加工中心が一致することは明
らかであるが、このことを第2図によつてより詳
しく説明する。
Since the main processing shaft 4, the optical system 6, and the image sensor 7 rotate together, the core image on the monitor device 9 rotates relatively around the rotation axis of the main processing shaft 4, and the revolution of the core image It is clear that if the position of the sleeve member 2 is adjusted so as to eliminate this, the core center and the optical axis position on the end surface of the optical transmission fiber cable 1 to be processed will coincide with the processing center. This will be explained in more detail with reference to FIG.

第2図において21は加工主軸4の回転軸、2
2,22′は拡大光学系6の光軸で拡大光学系6
の光軸は回転軸21に対してずれている場合を示
しており、22,22′は回転軸21に関して互
いに180゜回転した位置にある。また矢印23は物
体で第1図の実施例における光伝送用フアイバケ
ーブル1の被加工側端面におけるコアに相当す
る。矢印24,24′はそれぞれ22,22′に対
応する物体の拡大光学系6による像、25,2
5′はそれぞれ光軸22,22′に対応する撮像素
子7の位置を表わす。像24,24′と撮像素子
25,25′はほぼ同一面上にあるが図では便宜
上離して表わした。第2図によつて明らかなよう
に物体23が回転軸上にあれば、撮像素子25,
25′上の像24,24′の位置は変動せず自転す
るのみである。また光軸が回転軸と一致する場合
も全く同様に、物体が回転軸上にあるときのみ撮
像素子上の像の位置が変動せず自転するのみであ
る。
In Fig. 2, 21 is the rotation axis of the machining spindle 4;
2 and 22' are the optical axes of the magnifying optical system 6.
22 and 22' are at positions rotated by 180 degrees relative to the rotation axis 21. Further, an arrow 23 is an object and corresponds to the core at the end surface of the optical transmission fiber cable 1 on the processed side in the embodiment shown in FIG. Arrows 24 and 24' indicate images of objects corresponding to 22 and 22' by the magnifying optical system 6, and 25 and 2
5' represents the position of the image sensor 7 corresponding to the optical axes 22 and 22', respectively. Although the images 24, 24' and the image pickup elements 25, 25' are substantially on the same plane, they are shown separated from each other in the figure for convenience. As is clear from FIG. 2, if the object 23 is on the rotation axis, the image sensor 25,
The positions of the images 24, 24' on 25' do not change and only rotate. Similarly, when the optical axis coincides with the rotation axis, the position of the image on the image sensor does not change and only rotates when the object is on the rotation axis.

さらに上述のように光軸22,22′と回転軸
21の誤差は位置合わせの精度に影響を及ぼすこ
とがないため、第1図の装置を構成する場合に光
学系6の光軸と加工主軸4の回転軸を高精度で一
致させる必要がなく、精密な調整が不要であり、
かつ経年変化等による光軸のわずかなずれも心出
し精度に影響を及ぼさないため、装置の保守も容
易である。
Furthermore, as mentioned above, since the error between the optical axes 22, 22' and the rotation axis 21 does not affect the accuracy of alignment, when configuring the apparatus shown in FIG. It is not necessary to match the rotation axes of 4 with high precision, and there is no need for precise adjustment.
In addition, even slight deviations in the optical axis due to aging, etc. do not affect the centering accuracy, so maintenance of the device is easy.

なお撮像素子7は必ずしも2次元素子である必
要はなく、1次元素子でも同様の効果が得られる
ことは明らかである。
Note that the image sensor 7 does not necessarily have to be a secondary element, and it is clear that the same effect can be obtained even if it is a primary element.

以上述べたように本発明によれば、高精度の心
出しを作業性よく行え、加工に要する時間が短縮
でき、かつ装置構成に際して精密な調整を必要と
しない光ケーブルの端末加工装置が得られる。
As described above, according to the present invention, it is possible to obtain an optical cable terminal processing device that can perform highly accurate centering with good workability, can shorten the time required for processing, and does not require precise adjustment in the device configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図は本発明の心出し原理の説明図であり、1は光
伝送フアイバケーブル、2はスリーブ状部材、4
は加工主軸、5は切削工具、6は拡大光学系、7
は撮像素子、8はスリツプリング、9はモニター
装置、21は加工主軸4の回転軸、22および2
2′は光学系6の光軸、23は物体、24および
24′は物体23の像、25および25′は撮像素
子7の位置を表わす。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the centering principle of the present invention, in which 1 is an optical transmission fiber cable, 2 is a sleeve-shaped member, 4
is the processing spindle, 5 is the cutting tool, 6 is the magnifying optical system, 7
8 is an image pickup device, 8 is a slip ring, 9 is a monitor device, 21 is a rotation axis of the processing spindle 4, 22 and 2
2' is the optical axis of the optical system 6, 23 is the object, 24 and 24' are images of the object 23, and 25 and 25' are the positions of the image pickup device 7.

Claims (1)

【特許請求の範囲】[Claims] 1 光伝送用フアイバケーブルの端部に該光伝送
用フアイバケーブルと同軸的に固定されたスリー
ブ状部材の外周を、前記光伝送用フアイバケーブ
ルの光軸を回転軸として回転する加工工具により
加工する光ケーブルの端末加工装置において、前
記光伝送用フアイバケーブルの加工側端部とは反
対側の端面を照射する光源と、前記加工工具の回
転軸とはぼ同軸の光軸を有し、前記加工工具と一
体となつて回転し、前記光伝送用フアイバケーブ
ルの加工側端面を拡大投影する光学系と、該光学
系の像面に配置され、前記加工工具および前記光
学系と一体となつて回転する撮像素子と、該回転
する撮像素子からの出力信号を固定点に導くスリ
ツプリング状の信号伝達素子と、前記回転する撮
像素子から前記信号伝達素子により導かれた前記
出力信号を受けて前記光源により光伝送用フアイ
バケーブルの端面から照射され明るく結像したコ
ア像の回転軌跡を表示する表示装置を備えたこと
を特徴とする光ケーブルの端末加工装置。
1. Processing the outer periphery of a sleeve-shaped member coaxially fixed to the end of the optical transmission fiber cable with a processing tool that rotates with the optical axis of the optical transmission fiber cable as the rotation axis. The optical cable terminal processing device includes a light source that illuminates an end surface of the optical transmission fiber cable opposite to the processing side end, and an optical axis substantially coaxial with the rotation axis of the processing tool, and the processing tool an optical system that rotates together with the processing tool and the optical system to enlarge and project the processing side end face of the optical transmission fiber cable; and an optical system that is arranged on the image plane of the optical system and rotates together with the processing tool and the optical system. an image sensor; a slip-ring-shaped signal transmission element that guides an output signal from the rotating image sensor to a fixed point; 1. An optical cable terminal processing device comprising a display device that displays a rotation locus of a brightly formed core image irradiated from an end face of an optical transmission fiber cable.
JP769878A 1978-01-25 1978-01-25 Terminal end working machine for optical cable Granted JPS54100753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP769878A JPS54100753A (en) 1978-01-25 1978-01-25 Terminal end working machine for optical cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP769878A JPS54100753A (en) 1978-01-25 1978-01-25 Terminal end working machine for optical cable

Publications (2)

Publication Number Publication Date
JPS54100753A JPS54100753A (en) 1979-08-08
JPS6349201B2 true JPS6349201B2 (en) 1988-10-04

Family

ID=11672980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP769878A Granted JPS54100753A (en) 1978-01-25 1978-01-25 Terminal end working machine for optical cable

Country Status (1)

Country Link
JP (1) JPS54100753A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918402Y2 (en) * 1978-06-13 1984-05-28 日本電気株式会社 Optical cable terminal processing equipment
JPS5669608A (en) * 1979-11-13 1981-06-11 Nec Corp Terminal processing apparatus of optical cable
JPS63170809U (en) * 1987-10-01 1988-11-07

Also Published As

Publication number Publication date
JPS54100753A (en) 1979-08-08

Similar Documents

Publication Publication Date Title
EP0205984B1 (en) Terminated optical fiber and methods of making
EP0118980B1 (en) Methods of making optical fibre terminations
US5351334A (en) Rotation and alignment device for assembling of optical fiber connector with lower connection loss
EP0778957A2 (en) System and method for aligning and attaching optical fibers to optical waveguides, and products obtained thereby
US6273783B1 (en) Concentric machining device and method
JPH02131849A (en) Polishing device for cylinder
CN111174717B (en) Optical fiber geometric parameter testing system and method
JPH03156409A (en) Manufacture of interchangeable cable connector consisting of ribbon bonded optical fiber and its punch
CN111830724A (en) Method and system for precise adjustment and detection of Fery prism assembly
JPS6349201B2 (en)
JPS5918402Y2 (en) Optical cable terminal processing equipment
JPS62220909A (en) Optical connection of end of optical fiber to another optical element
KR0124372B1 (en) Photo-connector assembly apparatus and its control method
JP2001059705A (en) Measuring method and device
JPS6049307A (en) Fiber connecting device
JP2794258B2 (en) V groove measurement method
CN114693879B (en) Auxiliary alignment method for large-sized forging part based on three-dimensional reconstruction technology
CN103487073A (en) Universal type measurement device for cylindrical potentiometers
JP3506108B2 (en) Optical connector eccentricity measuring device and eccentricity measuring method
CN211717379U (en) Pipe assembly monitoring devices before welding
JPS63162142A (en) Centering device for working optical cable terminal
JP2695582B2 (en) Method and device for aligning optical fiber on V groove
US5454263A (en) Test piece manipulator and corresponding cylindrical test piece with standard defects for setting ultrasonic test equipment
JP2002131603A (en) Centering working machine for lens frame
JPH01225906A (en) Method for fusion-splicing constant-polarized wave optical fiber