JPS6349133A - Electronic hemomanometer - Google Patents

Electronic hemomanometer

Info

Publication number
JPS6349133A
JPS6349133A JP61193268A JP19326886A JPS6349133A JP S6349133 A JPS6349133 A JP S6349133A JP 61193268 A JP61193268 A JP 61193268A JP 19326886 A JP19326886 A JP 19326886A JP S6349133 A JPS6349133 A JP S6349133A
Authority
JP
Japan
Prior art keywords
pressure
value
digital
difference
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61193268A
Other languages
Japanese (ja)
Other versions
JPH0761316B2 (en
Inventor
吉武 秀樹
木下 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61193268A priority Critical patent/JPH0761316B2/en
Publication of JPS6349133A publication Critical patent/JPS6349133A/en
Publication of JPH0761316B2 publication Critical patent/JPH0761316B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子血圧計に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to an electronic blood pressure monitor.

従来の技術 電子血圧計の構成を第4図に示す。従来の測定原理を第
5,6図に基づいて説明する。まず腕帯1を人体の上腕
に装着する。次にゴム球2でゴム管3を通して腕帯1内
に送気して一定圧まで加圧する。ゴム球2による送気を
停止するとゴム球2に内蔵された微排弁から微排され、
腕帯1内の圧力は徐々に低下する。また腕帯1内の圧力
はゴム管3に接続された圧力センサ4で検出され、圧力
センサ4の出力ばA/D変換器5でデジタル圧力信号に
変換されCPU eの入力となる。
The configuration of a conventional electronic blood pressure monitor is shown in FIG. The conventional measurement principle will be explained based on FIGS. 5 and 6. First, the arm cuff 1 is attached to the upper arm of a human body. Next, air is blown into the cuff 1 through the rubber tube 3 using the rubber bulb 2 to pressurize it to a constant pressure. When the air supply by the rubber bulb 2 is stopped, a small amount of air is discharged from the micro-exhaust valve built into the rubber bulb 2,
The pressure within the cuff 1 gradually decreases. Further, the pressure inside the cuff 1 is detected by a pressure sensor 4 connected to a rubber tube 3, and the output of the pressure sensor 4 is converted into a digital pressure signal by an A/D converter 5 and becomes an input to the CPU e.

次にCPU eによって検出されたデジタル圧力信号の
処理方法を説明する。加圧が完了してから測定が完了す
るまでを測定モードと称し、その後、排気が完了するま
でを排気モードと称す。
Next, a method of processing the digital pressure signal detected by the CPU e will be explained. The period from the completion of pressurization to the completion of measurement is referred to as the measurement mode, and the period thereafter until the completion of exhaustion is referred to as the exhaust mode.

測定モードにおいて、まず初期値を設定しくステップ3
3)、微排中の圧力信号P、を一定時間に毎に検出する
(ステップ34.35)。次に測定した圧力信号P、と
前回値Pi−1とを比較し、p、>p、、  となった
時、次のステップへ進む(ステップ36)。圧力値Pi
−1を圧力振動が発生した時の圧力PNとして記憶させ
、その時の時刻をTN = (i −i ) kとして
記憶する(ステップ37)。
In the measurement mode, first set the initial values in step 3.
3) The pressure signal P during slight evacuation is detected at fixed time intervals (steps 34 and 35). Next, the measured pressure signal P, is compared with the previous value Pi-1, and when p,>p, . . ., the process proceeds to the next step (step 36). Pressure value Pi
-1 is stored as the pressure PN when the pressure vibration occurs, and the time at that time is stored as TN = (i - i) k (step 37).

引き続き圧力信号Pi を一定時間に毎に検出しくステ
ップ38.39)、P、のり大値を判定する(ステップ
4(1)。求まったP工の極太値P。
Subsequently, the pressure signal Pi is detected at regular intervals (Steps 38 and 39), and the maximum value of P and glue is determined (Step 4 (1). The extremely thick value P of P is determined.

とPNの差をQNとし、圧力振動の大きさとして記憶す
る(ステップ41)。次にN22の時、圧力振動の大き
さの排気速度による補正値RNをRN=(PN−1”N
)×”O/(”N−TN−1)’1として算出する(ス
テップ42)。ここでT。はTN から極大値Pmに達
するまでの平均時間をまし、klはT。間の基準排気量
であり、基準排気量と異なる場合のみ補正することをま
す。
The difference between and PN is set as QN and is stored as the magnitude of pressure vibration (step 41). Next, for N22, the correction value RN for the magnitude of pressure vibration depending on the pumping speed is RN=(PN-1”N
) x "O/("N-TN-1)'1 (step 42). T here. is the average time from TN to reaching the maximum value Pm, and kl is T. This is the standard displacement between the two, and it is corrected only if it differs from the standard displacement.

次にN22の場合は圧力振動の大きさONに補正値RN
を加えて圧力振動の大きさQN′とじて記憶する。N=
1の場合はQl′=01+R2として記憶する(ステッ
プ43)。
Next, in the case of N22, the correction value RN is set to the magnitude of pressure vibration ON.
is added and stored as the magnitude of pressure vibration QN'. N=
If it is 1, it is stored as Ql'=01+R2 (step 43).

次にQi が最大値に達したか否か判定する(ステップ
46)。Q、の最大値が決まらない場合はNをインクリ
メントして、ステップ34〜45までを繰り返す。Q、
の最大値がQNma工に決定すると、k2QNmaxで
決まる検出レベルとなる最初の00 の時の圧力値PN
を最高血圧とし、k3QN、?1ax以下となる最初の
Qi の時の圧力値PNを最低血圧と決定する(ステッ
プ46)。条件を満たさない時はステップ34〜46を
繰り返す。決定した血圧値を表示器7で表示する(ステ
ップ47)。
Next, it is determined whether Qi has reached the maximum value (step 46). If the maximum value of Q is not determined, N is incremented and steps 34 to 45 are repeated. Q,
When the maximum value of QNmax is determined, the pressure value PN at the first 00, which is the detection level determined by k2QNmax.
Let be the systolic blood pressure, k3QN, ? The pressure value PN at the first Qi below 1ax is determined to be the diastolic blood pressure (step 46). If the conditions are not met, steps 34 to 46 are repeated. The determined blood pressure value is displayed on the display 7 (step 47).

発明が解決しようとする問題点 」二記従来の電子血圧計では、圧力振動の検出において
、圧力信号の増加を検出しなければならない。従って、
圧力の微排速度が大きい場合、或いは圧力振動が小さい
場合に圧力振動が検出できない事があった。また、圧力
の降下速度による圧力振動の補正に於いて、降下速度に
、ある固定の時間を掛けた値を補正量としていたので、
補正値が不正確であった。
Problems to be Solved by the Invention (2) In the conventional electronic blood pressure monitor, an increase in the pressure signal must be detected when detecting pressure vibrations. Therefore,
Pressure oscillations could not be detected when the pressure discharge speed was high or when the pressure oscillations were small. In addition, when correcting pressure oscillations due to pressure drop speed, the correction amount was the value obtained by multiplying the fall speed by a certain fixed time.
The correction value was incorrect.

問題点を解決するための手段 本発明は上記問題点を解決するため、人体の上腕に装着
される腕帯と、前記腕帯に送気して人体の上腕を阻血す
るまで加圧する加圧手段と、徐々に微排する微排手段と
、前記腕帯内の圧力を一定のサンプリング時間毎に検出
する圧力検出手段と。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an arm cuff to be worn on the upper arm of a human body, and a pressurizing means for supplying air to the arm cuff to pressurize the upper arm of the human body until blood ischemia is achieved. , a slight evacuation means for gradually evacuation, and a pressure detection means for detecting the pressure within the cuff at regular sampling times.

前記圧力検出手段の出力をデジタル圧力信号に変換する
変換手段と、前記デジタル圧力信号の現在値と前回値と
の差を演算する第1の演算手段と、前記デジタル圧力信
号の差が微排中に増加し始めた事を検出する第1の検出
手段と、前記デジタル圧力信号の差の増加点の圧力値を
記憶する第1の記憶手段と、前記デジタル圧力信号の降
下速度を演算する第2の演算手段と、前記デジタル圧力
信号の現在と前記降下速度から微排中に発生する圧力振
動の瞬時値を演算する第3の演算手段と、前記圧力振動
の瞬時値の極大値を微排中に発生する圧力振動の大きさ
として記憶する第2の記憶手段と、前記圧力振動の最大
値を検出する第2の検出手段と、前記圧力振動の大きさ
とその最大値から血圧値を判定する判定手段と、前記血
圧値を表示する表示手段とで構成してなるものである。
a conversion means for converting the output of the pressure detection means into a digital pressure signal; a first calculation means for calculating the difference between the current value and the previous value of the digital pressure signal; a first detection means for detecting that the digital pressure signal has started to increase; a first storage means for storing the pressure value at the point of increase in the difference between the digital pressure signals; and a second storage means for calculating the rate of decline of the digital pressure signal. a third calculating means for calculating the instantaneous value of the pressure oscillation occurring during the minute evacuation from the current value of the digital pressure signal and the rate of descent; a second storage means for storing the magnitude of the pressure oscillations generated in the pressure oscillation, a second detection means for detecting the maximum value of the pressure oscillation, and a determination for determining the blood pressure value from the magnitude of the pressure oscillation and its maximum value. and display means for displaying the blood pressure value.

作  用 本発明は上記した構成により、圧力の微排速度が大きい
、又は圧力振動が小さくて、圧力信号の増加しない場合
でも圧力振動を検出する事ができる。
Function: With the above-described configuration, the present invention can detect pressure oscillations even when the pressure signal does not increase due to a large pressure discharge speed or a small pressure oscillation.

また微排速度により圧力振動を補正する事により、正確
な圧力振動を得る事ができ、微排速度に無間係に正確な
血圧を決定することができる。
Furthermore, by correcting pressure oscillations using the minute drainage speed, accurate pressure oscillations can be obtained, and blood pressure can be determined accurately regardless of the minute drainage speed.

実施例 以下、本発明の実施例を第1図〜第4図に沿って詳細に
説明する。本実施例の電子血圧計の基本的構成は前述の
第4図に示した通りであり、まず腕帯1を人体の上腕に
装着する。次にゴム球2でゴム管3を通して腕帯1内に
送気し、一定圧まで加圧する。この間を加圧モードと称
する。次にゴム球2に内蔵された微排弁を通じて微排し
、徐々に圧力を低下させる。また腕帯1内の圧力はゴム
管3に接続された圧力センサ4で検出され、圧力センサ
4の出力はA/D 変換器5でデジタル圧力信号に変換
してCPU eの入力となる。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4. The basic configuration of the electronic blood pressure monitor of this embodiment is as shown in FIG. 4 described above, and first, the cuff 1 is worn on the upper arm of a human body. Next, air is blown into the cuff 1 through the rubber tube 3 using the rubber bulb 2, and the pressure is increased to a certain level. This period is called pressurization mode. Next, the pressure is gradually reduced by evacuation through a micro-exhaust valve built into the rubber bulb 2. Further, the pressure within the cuff 1 is detected by a pressure sensor 4 connected to a rubber tube 3, and the output of the pressure sensor 4 is converted into a digital pressure signal by an A/D converter 5, which is input to the CPU e.

次にCPU eで検出したデジタル圧力信号の処理方法
を第1図〜第3図に沿って説明する。加圧が完了してか
ら測定が完了するまでを測定モードと称し、その後、排
気が完了するまでを排気モードと称す。
Next, a method of processing the digital pressure signal detected by the CPU e will be explained with reference to FIGS. 1 to 3. The period from the completion of pressurization to the completion of measurement is referred to as the measurement mode, and the period thereafter until the completion of exhaustion is referred to as the exhaust mode.

測定モードに於いて、まず最初設定を行い(ステップ8
)、微排中の圧力信号P、を一定のサップリング時間毎
に検出する(ステップ9.1(1)。
In measurement mode, first make settings (step 8).
), the pressure signal P during slight evacuation is detected at every fixed sampling time (step 9.1(1)).

次に測定した圧力信号P□ と前回値P1−1との差Δ
Pi””1−Pi−1を取り(ステップ11)、JP。
The difference Δ between the next measured pressure signal P□ and the previous value P1-1
Take Pi""1-Pi-1 (step 11) and JP.

01回目の増加検出中(M=o)か否か判定する(ステ
ップ12)。M=oの場合はJP・七前回のΔPi−1
とを比較しくステップ73)、ΔP亡ΔP1−1の時は
再度圧力測定(ステップ9)に戻る。
It is determined whether the 01st increase is being detected (M=o) (step 12). If M=o, JP/7th previous ΔPi-1
(step 73), and when ΔP is ΔP1-1, the process returns to pressure measurement (step 9).

ΔPi〉ΔPi−1の時ばΔPi−1を圧力の差の増加
開始時点の圧力としてDPにストア(DP=Δp、−、
)する(ステップ14)。そしてJP工の増加回数Mを
インクリメントしくステップ15)、次の圧力測定(ス
テップ9)に戻る。M第0の場合ΔPiとDPを比較し
くステップ16)、ΔP1≦DPの場合はMをクリアし
てステップ9に戻る。以下ΔP1〉DPの場合はMが所
定回数Kに達したか否か判定しくステップ18)、達し
ていない場合はMをインクリメントして(ステップ16
)、再度ステソゲ9に戻る。M=にの場合は脈の開始を
検出したとしてMをクリアしくステップ19)、脈の開
始時点の圧力値及び時刻を各々PN = Pi−に、T
N= 1−1cとして記憶する(ステップ2(1)。次
に現在の拍が1拍目かどうか判定しくステップ21)、
2袖口以降の場合は次のステップ21〜27の処理にて
脈の振動成分を求める。まず、現在と前回の拍間の降下
速度をFtN=(pN−1−PN)A(TN −TN−
1)として求める(ステップ22)。次て次回の圧力測
定を行い(ステップ23 、24 )、脈の大きさの瞬
時値を降下速度RNで補正してqi= Pニー(PN−
RNk(i−TN))として求める(ステップ26)。
When ΔPi>ΔPi-1, ΔPi-1 is stored in DP as the pressure at the time when the pressure difference starts to increase (DP=Δp, -,
) (step 14). Then, increment the number M of JP machining (step 15) and return to the next pressure measurement (step 9). If ΔPi is 0, compare ΔPi and DP (step 16); if ΔP1≦DP, clear M and return to step 9. Below, if ΔP1>DP, it is determined whether M has reached the predetermined number of times K (step 18), and if not, M is incremented (step 16).
), return to Stesoge 9 again. If M = , the start of the pulse is detected and M is cleared (Step 19), the pressure value and time at the start of the pulse are set to PN = Pi-, and T
Store as N = 1-1c (step 2 (1). Next, determine whether the current beat is the 1st beat or not (step 21),
In the case of the second cuff or later, the vibration component of the pulse is determined in the next steps 21 to 27. First, the rate of descent between the current and previous beats is FtN = (pN-1-PN)A(TN -TN-
1) (step 22). Next, the next pressure measurement is performed (steps 23 and 24), and the instantaneous value of the pulse size is corrected by the descending speed RN, and qi=P knee (PN-
RNk(i-TN)) (step 26).

その後、q、が極大値に達したかどうか判定しくステッ
プ26)、達していない場合は次回圧力測定に戻る(ス
テップ23.24)。極大値が求まったら、qiの極大
値をONとしてストアする(ステップ27)。
Thereafter, it is determined whether q has reached the maximum value (step 26), and if it has not, the process returns to the next pressure measurement (step 23.24). Once the local maximum value is determined, the local maximum value of qi is stored as ON (step 27).

以上の圧力振動の検出方法の説明図を第3図に示す。次
に、現在の拍数がo(N=1)の場合は0N=01=O
とする(ステップ28)。次KQNが極大値に達したか
どうか判定しくステップ29)、達していない場合はN
をインクリメントして(ステップ3(1)、ONの極大
値が決定される才でステップ9〜30を繰り返す。QN
の最大値がQN ma xに決定すると、kI QNm
a工で決まる検出レベルなる最初のQNの時の圧力値P
Nを最高血圧とし、k2Qma工以下となる最初のQN
の時の圧力値PNを最低血圧と決定する(ステップ31
)。
An explanatory diagram of the above pressure vibration detection method is shown in FIG. Next, if the current number of beats is o (N=1), then 0N=01=O
(Step 28). Next, it is determined whether KQN has reached the maximum value (Step 29), and if it has not reached the maximum value, N
(step 3 (1), and repeat steps 9 to 30 until the maximum value of ON is determined. QN
When the maximum value of is determined to be QN max, kI QNm
Pressure value P at the first QN, which is the detection level determined by step a
Let N be the systolic blood pressure, and the first QN below k2Qma
The pressure value PN at the time of is determined to be the diastolic blood pressure (step 31
).

条件を漕たさない時はステップ9〜31をおαり返す。If the conditions are not met, repeat steps 9 to 31.

決定された血圧値を表示器7で表示する(ステップ32
)。
The determined blood pressure value is displayed on the display 7 (step 32
).

発明の効果 以上のように本発明によれば、圧力の微排速度が大きい
、又は圧力撮動が小さくて、圧力信号が増加しない場合
でも圧力振動を検出する事ができる。また、微排速度に
より圧力振動を補正する事により、微排速度に無関係に
正確な血圧を決定することができる。
Effects of the Invention As described above, according to the present invention, pressure oscillations can be detected even when the pressure signal does not increase due to a high pressure discharge speed or a low pressure imaging. Furthermore, by correcting pressure oscillations using the minute drainage rate, accurate blood pressure can be determined regardless of the minute drainage rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す電子血圧計のCPUに
おける処理手順のフローチャート、第2図は同電子血圧
計による圧力波形図、第3図は第2図の要部を拡大した
圧力波形図、第4図は一般的な電子血圧計の基本的構成
を示すブロック図、第5図は従来の電子血圧計による圧
力波形図、第6図は従来の電子血圧計のCPUにおける
処理手順のフローチャートである。 1・・・・・・腕帯、2・・・・・・ゴム球、4・・・
・・・圧力センサ、5・・・・・・A/D変換器、6・
・・・・・CPU、7・・・・・・表示器。 第 3 図 第4図
Fig. 1 is a flowchart of the processing procedure in the CPU of an electronic blood pressure monitor showing an embodiment of the present invention, Fig. 2 is a pressure waveform diagram of the electronic blood pressure monitor, and Fig. 3 is an enlarged view of the main parts of Fig. 2. Waveform diagram, Figure 4 is a block diagram showing the basic configuration of a general electronic blood pressure monitor, Figure 5 is a pressure waveform diagram of a conventional electronic blood pressure monitor, and Figure 6 is a processing procedure in the CPU of a conventional electronic blood pressure monitor. This is a flowchart. 1... Bracelet, 2... Rubber ball, 4...
... Pressure sensor, 5 ... A/D converter, 6.
...CPU, 7...Display unit. Figure 3 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)人体の上腕に装着される腕帯と、前記腕帯に送気
して人体の上腕を阻血するまで加圧する加圧手段と、徐
々に微排する微排手段と、前記腕帯内の圧力を一定のサ
ンプリング時間毎に検出する圧力検出手段と、前記圧力
検出手段の出力をデジタル圧力信号に変換する変換手段
と、前記デジタル圧力信号の現在値と前回値との差を演
算する第1の演算手段と、前記デジタル圧力信号の差が
微排中に増加し始めた事を検出する第1の検出手段と、
前記デジタル圧力信号の差の増加点の圧力値を記憶する
第1の記憶手段と、前記デジタル圧力信号の降下速度を
演算する第2の演算手段と、前記デジタル圧力信号の現
在値と前記降下速度から微排中に発生する圧力振動の瞬
時値を演算する第3の演算手段と、前記圧力振動の瞬時
値の極大値を微排中に発生する圧力振動の大きさとして
記憶する第2の記憶手段と、前記圧力振動の最大値を検
出する第2の検出手段と、前記圧力振動の大きさとその
最大値から血圧値を判定する判定手段と、前記血圧値を
表示する表示手段とを具備した電子血圧計。
(1) An arm cuff to be attached to the upper arm of a human body, a pressurizing means for supplying air to the arm cuff and pressurizing the upper arm of the human body until blood ischemia, a micro evacuation means for gradually discharging air, and an air cuff inside the arm cuff. pressure detecting means for detecting the pressure at every fixed sampling time; converting means for converting the output of the pressure detecting means into a digital pressure signal; and a converting means for calculating the difference between the current value and the previous value of the digital pressure signal. 1 calculation means, and a first detection means for detecting that the difference between the digital pressure signals has started to increase during fine evacuation;
a first storage means for storing the pressure value at the point of increase in the difference between the digital pressure signals; a second calculation means for calculating the rate of fall of the digital pressure signal; and a current value of the digital pressure signal and the rate of fall. a third calculating means for calculating the instantaneous value of the pressure vibration generated during micro-evacuation, and a second memory for storing the maximum value of the instantaneous value of the pressure vibration as the magnitude of the pressure vibration generated during micro-evacuation. a second detection means for detecting the maximum value of the pressure vibration, a determination means for determining a blood pressure value from the magnitude of the pressure vibration and its maximum value, and a display means for displaying the blood pressure value. Electronic blood pressure monitor.
(2)第1の検出手段は、デジタル圧力信号の差の値が
ある時点の値より数回連続して大きい場合に前記デジタ
ル圧力信号の差が増加し始めたことを検出する構成とし
た特許請求の範囲第1項記載の電子血圧計。
(2) A patent in which the first detection means is configured to detect that the difference in the digital pressure signals has started to increase when the value of the difference in the digital pressure signals is consecutively larger than the value at a certain point in time. The electronic blood pressure monitor according to claim 1.
(3)第1の演算手段はデジタル圧力信号の差の増加点
の前回値と今回値の変化分及び時間間隔から前記デジタ
ル圧力信号の降下速度を演算する構成とした特許請求の
範囲第1項記載の電子血圧計。
(3) The first calculation means is configured to calculate the rate of decline of the digital pressure signal from the change in the previous value and the current value of the point of increase in the difference between the digital pressure signals and the time interval. The electronic blood pressure monitor described.
(4)第2の演算手段は、デジタル圧力信号の現在値か
ら、前記デジタル圧力信号の差の増加点と現時点までの
時間と前記降下速度との積を差し引いた値を血管音の瞬
時値とする構成とした特許請求の範囲第1項記載の電子
血圧計。
(4) The second calculation means calculates a value obtained by subtracting the product of the point of increase of the difference in the digital pressure signal, the time up to the present time, and the rate of descent from the current value of the digital pressure signal as an instantaneous value of the blood vessel sound. An electronic blood pressure monitor according to claim 1, which is configured to:
(5)判定手段は、圧力振動の大きさが腕帯内の圧力の
低下と共に増大し、前記圧力振動の最大値の所定比率以
上になった時の圧力を最高血圧とし、かつ前記腕帯内の
圧力の低下と共に減少し、前記圧力振動の最大値の所定
比率以下となった時の圧力を最低血圧として血圧値を判
定する構成とした特許請求の範囲第1項記載の電子血圧
計。
(5) The determination means determines that the pressure when the magnitude of the pressure oscillation increases as the pressure within the cuff decreases and exceeds a predetermined ratio of the maximum value of the pressure oscillation is the systolic blood pressure; 2. The electronic sphygmomanometer according to claim 1, wherein the blood pressure value is determined by using the pressure at which the pressure decreases as the pressure decreases and becomes equal to or less than a predetermined ratio of the maximum value of the pressure oscillation as the diastolic blood pressure.
JP61193268A 1986-08-19 1986-08-19 Electronic blood pressure monitor Expired - Lifetime JPH0761316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193268A JPH0761316B2 (en) 1986-08-19 1986-08-19 Electronic blood pressure monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193268A JPH0761316B2 (en) 1986-08-19 1986-08-19 Electronic blood pressure monitor

Publications (2)

Publication Number Publication Date
JPS6349133A true JPS6349133A (en) 1988-03-01
JPH0761316B2 JPH0761316B2 (en) 1995-07-05

Family

ID=16305112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193268A Expired - Lifetime JPH0761316B2 (en) 1986-08-19 1986-08-19 Electronic blood pressure monitor

Country Status (1)

Country Link
JP (1) JPH0761316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312420C (en) * 2002-04-04 2007-04-25 日本金属密封片株式会社 Metallic gasket

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312420C (en) * 2002-04-04 2007-04-25 日本金属密封片株式会社 Metallic gasket

Also Published As

Publication number Publication date
JPH0761316B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP3774396B2 (en) Oscillometric automatic blood pressure measuring device
JP2852340B2 (en) Blood pressure measurement method and device
JP3590613B2 (en) Amplitude increase index calculation device and arteriosclerosis test device
US5072736A (en) Non-invasive automatic blood pressure measuring apparatus
US20170325751A1 (en) Blood pressure measurement apparatus and blood pressure measurement method
US4735213A (en) Device and method for determining systolic blood pressure
JP5026542B2 (en) Electronic blood pressure monitor
US5868679A (en) Blood-pressure monitor apparatus
JPH0670894A (en) Electronic sphygmomanometer
JPH1133005A (en) Oscillometric type electronic sphygmomanometer
JPS6349133A (en) Electronic hemomanometer
JPH05329113A (en) Electronic sphygmomanometer
JP2690093B2 (en) Electronic sphygmomanometer
JPH0467852B2 (en)
JPH06319707A (en) Electronic hemomanometer
JP2506119B2 (en) Electronic blood pressure monitor
JPH0532053B2 (en)
JP2007135678A (en) Hemodynamics measurement apparatus
JPH09201341A (en) Electronic hemodynamometer
JPS63153042A (en) Electronic hemomanometer
JPH0616751B2 (en) Electronic blood pressure monitor
JP2894558B2 (en) Electronic sphygmomanometer
JP4398553B2 (en) Electronic blood pressure monitor
JPS6287130A (en) Electronic hemomanometer
JPH0226531A (en) Method for stable measurement in non-blood-observing hemadynamometer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term