JPS6349087B2 - - Google Patents

Info

Publication number
JPS6349087B2
JPS6349087B2 JP58192539A JP19253983A JPS6349087B2 JP S6349087 B2 JPS6349087 B2 JP S6349087B2 JP 58192539 A JP58192539 A JP 58192539A JP 19253983 A JP19253983 A JP 19253983A JP S6349087 B2 JPS6349087 B2 JP S6349087B2
Authority
JP
Japan
Prior art keywords
bearing
sliding
segment
shaft
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58192539A
Other languages
Japanese (ja)
Other versions
JPS6084423A (en
Inventor
Shotaro Mizobuchi
Katsuhiro Ogawara
Seiichi Tsuji
Shikuo Koide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP19253983A priority Critical patent/JPS6084423A/en
Priority to AU32968/84A priority patent/AU579834B2/en
Priority to US06/651,039 priority patent/US4664595A/en
Priority to DE3435821A priority patent/DE3435821C2/en
Priority to KR1019840006058A priority patent/KR930002055B1/en
Publication of JPS6084423A publication Critical patent/JPS6084423A/en
Publication of JPS6349087B2 publication Critical patent/JPS6349087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/0465Ceramic bearing designs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/26Brasses; Bushes; Linings made from wire coils; made from a number of discs, rings, rods, or other members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、摺動材をセグメント状に分割して固
定側ケースに取り付けたすべり軸受に関し、特
に、起動時及び停止時に気体中におかれて無潤滑
条件下で運転され、定常運転時に水中又はスラリ
液中で運転される立軸ポンプ又は斜軸ポンプ等に
使用されるすべり軸受に関する。 従来、立軸ポンプや斜軸ポンプ等の水中軸受と
して使用されていたゴム軸受、鉛青銅軸受等は、
気体中、即ち無潤滑条件下でポンプを始動すると
き、摺動部から激しく発熱し軸受部が速やかに破
損されるので、そのままの状態では起動できず、
そのため、軸受摺動部へ潤滑油や潤滑水を供給し
て水中軸受を保護するための手段、即ち回転軸及
び水中軸受部の外側に保護管を設け、該保護管の
内部を通して軸受部に注水していた。 第1図は、従来の立軸ポンプの縦断面図であつ
て、1は外水位であり、羽根車2は、この外水位
に水没する位置に設置され、駆動用モータ3によ
り軸継手4、軸5,5′、中間軸継手6を介して
駆動される。水は吸込ベル7から吸い込まれ、吐
出ボウル8、吊下げ管9,10を経て吐出エルボ
11から吐出される。12,13は、軸5,5′
を保護し、上部注水口20より上下の水中軸受1
4,15へ潤滑水を導くための保護管であり、こ
れらの水中軸受14及び15は、水中軸受支え1
6及びリブ17,17′によりそれぞれ支持され
ている。ところが、上記のような立軸ポンプで
は、軸の長さが数10mにも及ぶことがあり、この
場合には、多数の水中軸受が用いられ、その間の
軸を保護管で保護しているので、ポンプ始動時に
おける水中軸受保護のために多大の設備費を強い
られる欠点があつた。 そこで、上記のような無潤滑条件下での起動及
びスラリ液中での定常運転などの悪条件下でも使
用できる軸受材料として、超硬合金やセラミツク
ス等が考えられるが、セラミツクスや超硬合金な
ど、圧縮強度の高い摺動部材を軸受の固定側ケー
スに取り付ける場合、第3図に示すように、これ
ら摺動部材を円筒リング摺動材21とし、該円筒
リング摺動材21を軸受側の金属ケース22の内
側に焼嵌めによつて取り付けるのが一般的であつ
た。しかしこの方法では、軸径φDが異なるごと
に多種サイズの円筒リング摺動材21が必要にな
り、それに伴つて金型費用が高価になるばかりで
なく、大きいサイズのものは製造上も困難であつ
た。そのため、円筒リング摺動材をセグメント状
に分割することが望まれるが、セラミツクスや超
硬合金などは硬度が極めて高く、ビス等で機械的
に固定する方法は価格的、技術的に問題があつ
た。 本発明の目的は、上記した従来技術の欠点を除
去することができ、清水中のみならずスラリ液中
においても、また気体中即ちポンプ始動時等にお
けるような無潤滑条件下でも、安定した摺動特性
をもち、しかも製作が容易で精度がよく、大型軸
受にも容易に適用できるすべり軸受を提供するこ
とにある。 この目的を達成するために、本発明は、回転軸
部材を超硬合金で、また固定側ケースに分割して
取り付けられる各セグメントとセラミツクスでそ
れぞれ構成すると共に、これらの各セグメントを
円柱体で形成し、孔溝を固定側ケース内面の半径
方向外方に設けた孔ぐりピツチサークル上に間隔
を隔てて穿設し、該孔溝に前記セグメントを滑り
面を残して焼嵌めによつて固定したことを特徴と
している。 以下、本発明を実施例によつて詳しく説明す
る。 先ず、本発明の特徴の一つとする、すべり軸受
の回転側及び固定側に使用される材料について説
明すると、立軸ポンプ又は斜軸ポンプ等の水中軸
受として使用されるすべり軸受における摺動部材
の組合せについて、各種材料の軸受/軸を各環境
下における実験により比較検討した結果、前記の
ような本発明のすべり軸受に使用される材料が最
も優れていることを見い出した。上記実験の結果
得られたデータを第1表に示す。
The present invention relates to a sliding bearing in which a sliding material is divided into segments and attached to a stationary case, and in particular, it is operated under non-lubricated conditions by being immersed in gas during startup and stopping, and submerged or submerged during steady operation. This invention relates to a sliding bearing used in a vertical shaft pump or a diagonal shaft pump operated in slurry liquid. Rubber bearings, lead bronze bearings, etc. that were conventionally used as submersible bearings in vertical shaft pumps, inclined shaft pumps, etc.
When starting a pump in gas, that is, without lubrication, the sliding parts generate intense heat and the bearings are quickly damaged, so the pump cannot be started in that state.
Therefore, there is a means to protect the underwater bearing by supplying lubricating oil or lubricating water to the sliding parts of the bearing. In other words, a protection tube is provided outside the rotating shaft and the underwater bearing, and water is injected into the bearing through the inside of the protection tube. Was. FIG. 1 is a vertical cross-sectional view of a conventional vertical shaft pump, in which 1 is the outside water level, the impeller 2 is installed at a position submerged in this outside water level, and the drive motor 3 drives the shaft coupling 4 and the shaft. 5, 5', and an intermediate shaft joint 6. Water is sucked in through the suction bell 7, passes through the discharge bowl 8, hanging pipes 9 and 10, and is discharged from the discharge elbow 11. 12 and 13 are shafts 5 and 5'
The underwater bearings 1 above and below the upper water inlet 20
4 and 15, and these underwater bearings 14 and 15 are connected to the underwater bearing support 1.
6 and ribs 17, 17', respectively. However, in the vertical shaft pumps mentioned above, the length of the shaft can reach several tens of meters, and in this case, many submersible bearings are used, and the shafts between them are protected by protective tubes. The disadvantage was that a large amount of equipment was required to protect the underwater bearings when the pump was started. Therefore, cemented carbide and ceramics can be considered as bearing materials that can be used even under adverse conditions such as startup under non-lubricated conditions and steady operation in slurry liquid as described above. When attaching sliding members with high compressive strength to the fixed side case of a bearing, as shown in FIG. It was common to attach it to the inside of the metal case 22 by shrink fitting. However, with this method, various sizes of cylindrical ring sliding members 21 are required for different shaft diameters φD, which not only increases the mold cost but also makes it difficult to manufacture large sizes. It was hot. Therefore, it is desirable to divide the cylindrical ring sliding material into segments, but ceramics, cemented carbide, etc. have extremely high hardness, and the method of mechanically fixing them with screws, etc. is problematic in terms of cost and technology. Ta. An object of the present invention is to be able to eliminate the above-mentioned drawbacks of the prior art, and to provide stable sliding properties not only in fresh water but also in slurry liquid, and even under non-lubricated conditions such as in gas, ie, when starting a pump. The object of the present invention is to provide a sliding bearing that has dynamic characteristics, is easy to manufacture, has good precision, and can be easily applied to large bearings. In order to achieve this object, the present invention consists of a rotating shaft member made of cemented carbide, each segment that is separately attached to the stationary side case, and ceramics, and each segment formed of a cylindrical body. Then, hole grooves were bored at intervals on the hole pitch circle provided radially outward on the inner surface of the case on the fixed side, and the segments were fixed in the hole grooves by shrink fitting, leaving a sliding surface. It is characterized by Hereinafter, the present invention will be explained in detail with reference to Examples. First, to explain the materials used for the rotating and stationary sides of a sliding bearing, which is one of the features of the present invention, this is a combination of sliding members in a sliding bearing used as a submersible bearing for a vertical shaft pump or a diagonal shaft pump. As a result of comparing bearings/shafts made of various materials through experiments under various environments, it was found that the material used for the sliding bearing of the present invention as described above is the most excellent. Table 1 shows the data obtained as a result of the above experiment.

【表】 ステンレス鋼……SuS304ステンレス鋼 超硬合金……90%以上のWCを含有するJIS
H550 G種3号品 硬質肉盛材……35%のWCを含む スラリー水……平均粒径80μ・最大粒径100μの
SiO2を0.3重量%含む水 スラリー河川水……川砂0.3重量%+0.3重量%
Al2O3(max100μ・av80μ)を含む水 海水+スラリ……av80μ、max100μのSiO2を0.3
重量%を含む海水 第1表中No.1,2が本発明のすべり軸受の構成
材料(その中の二つ)であり、No.3〜9が従来の
軸受材料の組合せ及び比較試験のための軸受材料
の組合せである。 なお、評価の欄の記号は、それぞれ ◎…充分な耐久性がある。(16000時間以上) 〇…実用上使用可能(8000時間以上) △…条件により使用可能 ×…使用不能 を意味し、摩擦係数、耐摩耗性、耐焼付性等の諸
因子を総合的に評価した結果を示すものである。 また第2図は、横軸に運転時間、縦軸に摩擦係
数をとつた軸受の摺動特性を示す線図であつて、
摺動速度2.5m/s、面圧はゴム軸受―ステンレ
ス鋼SUS304については6.3Kgf/cm2(×印の記号
で表わす)、窒化珪素セラミツクス軸受―超硬合
金(90%WC)については67Kgf/cm2(〇印の記
号で表わされた本発明1)、炭化珪素セラミツク
ス軸受―超硬合金(90%WC)については67Kg
f/cm2(本発明2)及び42Kgf/cm2(本発明2′)
をそれぞれとつている。 前記の第1表及び第2図から明らかなように、
本発明のすべり軸受における回転軸部材と固定側
ケースをそれぞれタングステンカーバイドを含む
超硬合金と窒化珪素セラミツクス又は炭化珪素セ
ラミツクスとした摺動面は、空気中、清水中、或
いは珪砂、アルミナ粒子を含むスラリ液中におい
ても極めて安定した摺動特性を示すものであるこ
とが分かる。そして、この種のすべり軸受におい
ては、軸スリーブの外周面と軸受部材の内周面と
が僅かの隙間をもつて支持されており、回転によ
つて生じる軸の半径方向の振れを、軸スリーブの
外周面を軸受内周面に摺接させることによつて制
限するものであるので、実際に摺接する個所は部
分的であり、したがつて、上記本考案の軸受側セ
ラミツクス材をセグメント状に分割しても摺動特
性上特に差異はみられない。また、窒化又は炭化
珪素セラミツクスは、引張強度、もろさ、線膨脹
率などの機械的性質から、できるだけ取付け容易
なしかも固定側の摺動面に用いられる。なお、本
発明の回転軸部材に使用される超硬合金は、90重
量%以上のタングステンカーバイド(WC)を含
むものであれば、第1表及び第2図に示される良
好で且つ安定した摺動特性をもつものであり、ま
た上記タングステンカーバイドに代えてチタンカ
ーバイド(TiC)、クロームカーバイド(Cr3C2
が主成分の超硬合金でも、同様の効果が奏され
る。 次に、上記して軸受材料を用いた本発明のすべ
り軸受の実施例を図面と共に説明する。 第4a図は、本発明の一実施例のすべり軸受の
要部断面図であり、第4b図は第4a図の―
線断面図であつて、軸受ハウジング内側に取り付
けられる金属ケース22の内面(直径φD)の半
径方向外方に設けた孔ぐりピツチサークル(直径
P.C.D)上に間隔を隔てて等間隔に断面円弧(全
円周の半分より大きい優弧をなしている。)状の
孔溝(直径φd)23が穿設されており、これら
の孔溝23内には、窒化珪素又は炭化珪素等のセ
ラミツクスからなる円柱セグメント摺動材24が
滑り面を残して焼嵌めによつて固定されている。 この実施例によれば、前記セラミツクスからな
るセグメント24を円柱状に形成しているので、
例えば、第5図に示すように該セグメントを断面
長方形に形成したもの、或いは第6図に示すよう
に断面台形に形成したものが何れも(i)締代に必要
な精度を出す金属ケース22の溝加工が難しく加
工費用が高価になり、(ii)内径公差を設計寸法内に
するための金属ケース22の加工が難しく、内径
の再研磨が必要な場合があるなどの欠点がみられ
るのに対して、上記本発明の実施例のものでは、
次のような効果が奏される。 (i) セグメントの断面形状が円であるため、焼嵌
めの締代精度が容易に得られる。 (ii) セグメント断面形状が円であるため、軸受内
径公差をおさえるために金属ケース22の孔ぐ
りピツチサークル径P、C、Dをおさえればよ
く、したがつて製作が容易で内径再研摩も不要
である。 (iii) 精度が良く、信頼性の高いセグメント構造を
少ない加工工数で提供できる。 (iv) セラミツクス製の各円柱体セグメントは軸側
外周面25と線接触に近い状態で摺動するの
で、該軸受装置が、例えばポンプ始動時、無潤
滑下で運転される時の、即ち気中運転時の発熱
を低下させる効果がある。このことは軸側に超
硬合金をまた軸受側にセラミツクス材を使用し
て、線接触により部分的に非常に高くなつた面
圧に十分耐えることができるようになつたから
である。 (v) セラミツクス製円柱体セグメントを孔溝に焼
嵌めによつて固定するようにしたことにより、
例えば気中運転時の発熱が仮りにセグメントに
伝わつたとしても、固定側ケースとセラミツク
ス製セグメントとの接触面での熱膨脹差による
すべりの自由度が、接着剤で固定した場合より
大きくとれるので、該セラミツクス製セグメン
トの破損の恐れが少なく従つて、固定側ケース
とセラミツクス製セグメントとの熱膨脹係数の
差などによる使用温度範囲の制限がなくなる。 (vi) 該軸受装置を第7図に示すような水中軸受に
使用した場合、円柱セグメント状に分割された
各セラミツクス片間の比較的広い間隙にポンプ
揚水が流れるため、取扱液中の異物が軸方向に
流れ摺動面へのかみ込みが減少し、前記軸受構
成材料と相俟つて耐摩耗性が更に向上する。 (vi) セグメント状に分割することにより、セラミ
ツクス単体としては小さなものですむので、大
型の軸受にも適用でき、信頼性を高め、しかも
コストを下げることができる。 第7図は、第1図に示した従来の立軸ポンプに
本発明のすべり軸受を適用した場合の縦断面図で
あつて、第1図における保護管12,13、注水
口20と図示していない注水装置及び下部水中軸
受15を支えるリブ17等が不要となつたので設
けられておらず、極めて簡単な構造となつてお
り、しかも上下の両水中軸受14,15が従来の
ものと比べて極めて小型になつていることが分か
る。このことは、第2図からも明らかなように、
本発明のすべり軸受材料は極めて高い面圧荷重
(従来の10倍以上)にも耐えることから、摺動面
積を小さくすることが可能になつたからである。 第8a図は、第7図A部の水中軸受部の拡大断
面図、第8b図は第8a図の―線断面図であ
つて、図中、30は軸5′に固着された超硬合金
製軸スリーブ、22は軸受支え16に取り付けら
れた金属ケースを示している。 以上は、主として立軸ポンプの水中軸受に本発
明を適用した例について述べたが、斜軸ポンプや
その他の水力機械のすべり軸受として利用しても
同様の作用効果を奏するものである。 以上説明したように、本発明は前述した構成か
らなつているので、清水中のみならず、スラリ液
中においてもまた気体中即ちポンプ始動時等にお
けるような無潤滑条件下でも安定した摺動特性を
もち、またセラミツクスは高絶縁性を有するので
軸とケーシングの電位差腐食をこの軸受の採用で
防ぐことが可能となつて耐食性が向上し、しかも
製作が容易で精度がよく、大型軸受にも容易に適
用することができる。
[Table] Stainless steel...SuS304 stainless steel cemented carbide...JIS containing 90% or more WC
H550 G class No. 3 hardfacing material...Slurry water containing 35% WC...Average particle size 80μ, maximum particle size 100μ
Water slurry river water containing 0.3% by weight of SiO 2 ... River sand 0.3% by weight + 0.3% by weight
Water containing Al 2 O 3 (m a x100μ・av 80μ) Seawater + slurry... av80μ, max100μ SiO 2 0.3
Seawater containing % by weight In Table 1, Nos. 1 and 2 are the constituent materials (two of them) of the sliding bearing of the present invention, and Nos. 3 to 9 are for combinations and comparative tests of conventional bearing materials. This is a combination of bearing materials. Note that the symbols in the evaluation column are ◎...sufficient durability. (16,000 hours or more) 〇...Practically usable (8,000 hours or more) △...Can be used depending on conditions ×...Means unusable, and various factors such as friction coefficient, wear resistance, seizure resistance, etc. were comprehensively evaluated. This shows the results. FIG. 2 is a diagram showing the sliding characteristics of a bearing, with the operating time on the horizontal axis and the friction coefficient on the vertical axis.
The sliding speed is 2.5 m/s, and the surface pressure is 6.3 Kgf/cm 2 for rubber bearings - stainless steel SUS304 (represented by the symbol x), and 67 Kgf/cm 2 for silicon nitride ceramic bearings - cemented carbide (90% WC). cm 2 (invention 1 represented by the symbol ○), 67Kg for silicon carbide ceramic bearings - cemented carbide (90% WC)
f/cm 2 (invention 2) and 42Kgf/cm 2 (invention 2')
are taken respectively. As is clear from Table 1 and Figure 2 above,
In the sliding bearing of the present invention, the rotating shaft member and the stationary side case are each made of a cemented carbide containing tungsten carbide and silicon nitride ceramics or silicon carbide ceramics, and the sliding surfaces are in air, clean water, or contain silica sand or alumina particles. It can be seen that it exhibits extremely stable sliding characteristics even in slurry liquid. In this type of plain bearing, the outer circumferential surface of the shaft sleeve and the inner circumferential surface of the bearing member are supported with a slight gap between them, and the shaft sleeve absorbs the radial runout of the shaft caused by rotation. Since the outer circumferential surface of the bearing is limited by slidingly contacting the inner circumferential surface of the bearing, the actual sliding contact is only partial. Even when divided, there is no particular difference in sliding characteristics. In addition, nitride or silicon carbide ceramics are used for the sliding surface on the fixed side because of their mechanical properties such as tensile strength, fragility, and coefficient of linear expansion, so that they can be installed as easily as possible. The cemented carbide used in the rotating shaft member of the present invention has good and stable sliding properties as shown in Table 1 and Figure 2, as long as it contains 90% by weight or more of tungsten carbide (WC). It has dynamic properties, and titanium carbide (TiC) and chrome carbide (Cr 3 C 2 ) can be used instead of the tungsten carbide mentioned above.
A similar effect can be achieved with cemented carbide whose main component is Next, an embodiment of the sliding bearing of the present invention using the above-mentioned bearing material will be described with reference to the drawings. Fig. 4a is a sectional view of a main part of a sliding bearing according to an embodiment of the present invention, and Fig. 4b is a -
This is a line cross-sectional view showing the hole pitch circle (diameter
Hole grooves (diameter φd) 23 having a circular arc cross section (forming an arc larger than half of the total circumference) are bored at equal intervals on the PCD), and these hole grooves 23 Inside, a cylindrical segment sliding member 24 made of ceramics such as silicon nitride or silicon carbide is fixed by shrink fitting with a sliding surface remaining. According to this embodiment, since the segment 24 made of ceramics is formed into a cylindrical shape,
For example, as shown in FIG. 5, the segment has a rectangular cross-section, or as shown in FIG. 6, it has a trapezoidal cross-section. (ii) It is difficult to process the metal case 22 to bring the inner diameter tolerance within the design dimensions, and the inner diameter may need to be re-ground. On the other hand, in the above embodiment of the present invention,
The following effects are produced. (i) Since the cross-sectional shape of the segment is circular, the tightness accuracy of shrink fitting can be easily obtained. (ii) Since the segment cross-sectional shape is circular, it is only necessary to suppress the hole pitch circle diameters P, C, and D of the metal case 22 in order to suppress the bearing inner diameter tolerance, so manufacturing is easy and there is no need to re-sharpen the inner diameter. It is. (iii) A highly accurate and reliable segment structure can be provided with fewer processing steps. (iv) Since each cylindrical body segment made of ceramics slides in a state close to line contact with the shaft side outer circumferential surface 25, the bearing device is operated without lubrication, such as when starting the pump, that is, when the bearing device is operated without lubrication, that is, when the bearing device is It has the effect of reducing heat generation during medium operation. This is because by using cemented carbide on the shaft side and ceramic material on the bearing side, it has become possible to sufficiently withstand the surface pressure that is locally extremely high due to line contact. (v) By fixing the ceramic cylindrical segment into the hole groove by shrink fitting,
For example, even if heat generated during air operation is transmitted to the segment, the degree of freedom of sliding due to the difference in thermal expansion at the contact surface between the fixed side case and the ceramic segment is greater than when fixed with adhesive. There is little risk of breakage of the ceramic segment, and there is no restriction on the operating temperature range due to the difference in coefficient of thermal expansion between the stationary case and the ceramic segment. (vi) When this bearing device is used in an underwater bearing as shown in Fig. 7, the pumped water flows through a relatively wide gap between each ceramic piece divided into cylindrical segments, so that foreign matter in the handled liquid is prevented. The flow in the axial direction is less likely to get caught in the sliding surface, and together with the bearing constituent material, the wear resistance is further improved. (vi) By dividing into segments, the ceramic itself can be small, so it can be applied to large bearings, improving reliability and reducing costs. FIG. 7 is a longitudinal cross-sectional view of the conventional vertical shaft pump shown in FIG. 1 in which the sliding bearing of the present invention is applied, and the protective tubes 12, 13 and water inlet 20 in FIG. The water injection device and the rib 17 that supports the lower underwater bearing 15 are no longer needed, so the structure is extremely simple, and both the upper and lower underwater bearings 14 and 15 are smaller than conventional ones. It can be seen that it has become extremely small. This is clear from Figure 2,
This is because the sliding bearing material of the present invention can withstand extremely high surface pressure loads (more than 10 times that of conventional bearings), making it possible to reduce the sliding area. Fig. 8a is an enlarged cross-sectional view of the submersible bearing part in part A of Fig. 7, and Fig. 8b is a cross-sectional view taken along the line - - in Fig. 8a, where 30 is a cemented carbide fixed to the shaft 5'. The shaft-making sleeve 22 indicates a metal case attached to the bearing support 16. The above description has mainly been about an example in which the present invention is applied to a submersible bearing for a vertical shaft pump, but similar effects can be obtained even when the invention is used as a sliding bearing for a diagonal shaft pump or other hydraulic machines. As explained above, since the present invention has the above-described structure, it has stable sliding characteristics not only in fresh water but also in slurry liquid and even in gas, that is, under non-lubricated conditions such as when starting the pump. In addition, since ceramics have high insulating properties, it is possible to prevent potential difference corrosion between the shaft and casing by using this bearing, improving corrosion resistance.In addition, it is easy to manufacture and has good precision, making it easy to manufacture large bearings. It can be applied to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の立軸ポンプの縦断面図、第2図
は軸受の摺動特性を示す線図、第3図は従来のす
べり軸受の横断面図、第4a図は本発明のすべり
軸受の一実施例の要部断面図、第4b図は第4a
図の―線断面図、第5図及び第6図は説明用
図面、第7図は本発明のすべり軸受を適用した立
軸ポンプの縦断面図、第8a図は第7図A部の拡
大断面図、第8b図は第8a図の―線断面図
である。 5′…回転軸、16…軸受支え、22…金属ケ
ース、23…セグメント用孔溝、24…円柱セグ
メント摺動材。
Fig. 1 is a longitudinal cross-sectional view of a conventional vertical shaft pump, Fig. 2 is a diagram showing the sliding characteristics of the bearing, Fig. 3 is a cross-sectional view of a conventional plain bearing, and Fig. 4a is a cross-sectional view of the plain bearing of the present invention. A sectional view of the main part of one embodiment, Fig. 4b is a sectional view of the main part of one embodiment.
5 and 6 are explanatory drawings, FIG. 7 is a vertical sectional view of a vertical shaft pump to which the sliding bearing of the present invention is applied, and FIG. 8a is an enlarged cross-sectional view of part A in FIG. 7. FIG. 8b is a sectional view taken along the line -- in FIG. 8a. 5'...Rotating shaft, 16...Bearing support, 22...Metal case, 23...Segment hole groove, 24...Cylindrical segment sliding material.

Claims (1)

【特許請求の範囲】 1 摺動部材をセグメント状に分割して固定側ケ
ースに取り付けたすべり軸受において、回転軸部
材を超硬合金で、また固定側ケースに分割して取
り付けられる各セグメントをセラミツクスでそれ
ぞれ構成すると共に、これらの各セグメントを円
柱体で形成し、孔溝を固定側ケース内面の半径方
向外方に設けた孔ぐりピツチサークル上に間隔を
隔てて穿設し、該孔溝に前記セグメントを滑り面
を残して焼嵌めによつて固定したことを特徴とす
るすべり軸受。 2 回転軸部材をタングステンカーバイドを含む
超硬合金で、また軸受側ケースに分割して取り付
けられる各セグメントを窒化珪素又は炭化珪素の
セラミツクスでそれぞれ構成した特許請求の範囲
第1項記載のすべり軸受。
[Claims] 1. In a sliding bearing in which a sliding member is divided into segments and attached to a stationary case, the rotating shaft member is made of cemented carbide, and each segment that is divided and attached to the stationary case is made of ceramic. Each of these segments is formed of a cylindrical body, and hole grooves are bored at intervals on a hole pitch circle provided radially outward on the inner surface of the fixed side case, and holes are formed in the hole grooves. A sliding bearing characterized in that the segments are fixed by shrink fitting, leaving a sliding surface. 2. The sliding bearing according to claim 1, wherein the rotating shaft member is made of a cemented carbide containing tungsten carbide, and each segment that is separately attached to the bearing side case is made of silicon nitride or silicon carbide ceramics.
JP19253983A 1983-09-30 1983-10-17 Sliding bearing Granted JPS6084423A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19253983A JPS6084423A (en) 1983-10-17 1983-10-17 Sliding bearing
AU32968/84A AU579834B2 (en) 1983-09-30 1984-09-12 Combination of slide members
US06/651,039 US4664595A (en) 1983-09-30 1984-09-14 Combination of slide members
DE3435821A DE3435821C2 (en) 1983-09-30 1984-09-28 Bearing for a pump
KR1019840006058A KR930002055B1 (en) 1983-09-30 1984-09-29 Active part combined structure of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19253983A JPS6084423A (en) 1983-10-17 1983-10-17 Sliding bearing

Publications (2)

Publication Number Publication Date
JPS6084423A JPS6084423A (en) 1985-05-13
JPS6349087B2 true JPS6349087B2 (en) 1988-10-03

Family

ID=16292954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19253983A Granted JPS6084423A (en) 1983-09-30 1983-10-17 Sliding bearing

Country Status (1)

Country Link
JP (1) JPS6084423A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200017A (en) * 1986-02-28 1987-09-03 Toshiba Corp Sliding member
JPH0339616Y2 (en) * 1986-12-11 1991-08-21
KR100471553B1 (en) * 2002-03-28 2005-03-08 한국수력원자력 주식회사 A Segmented Pin Type Journal Bearing for Water Lubricated Canned Motor Pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081517A (en) * 1983-10-07 1985-05-09 Ebara Corp Submersible bearing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081517A (en) * 1983-10-07 1985-05-09 Ebara Corp Submersible bearing

Also Published As

Publication number Publication date
JPS6084423A (en) 1985-05-13

Similar Documents

Publication Publication Date Title
US4664595A (en) Combination of slide members
Karassik et al. Centrifugal pumps
RU2333397C2 (en) Submerged centrifugal pump stage
US3971606A (en) Water lubricated bearing device
US20130315517A1 (en) Abrasion resistance in well fluid wetted assemblies
US5873697A (en) Method of improving centrifugal pump efficiency
CA2109335A1 (en) Diamond bearing assembly
US7909090B2 (en) System, method and apparatus for scale resistant radial bearing for downhole rotating tool components and assemblies
CN107605793B (en) Vertical shaft pump
JP3970260B2 (en) pump
JP5974414B2 (en) Sliding bearing combined sliding member
JPS6349087B2 (en)
JPS6349086B2 (en)
JP5761560B2 (en) Thrust support device
US5006043A (en) Floating annular seal with thermal compensation
JP2001124070A (en) Water lubricated bearing device
JPS6073123A (en) Combined sliding member
JP2011007243A (en) Structure of thrust bearing for water lubrication
JPS6088215A (en) Ceramics bearing
JPS6367048B2 (en)
CN212028321U (en) PDC radial centralizing sliding bearing
US20210131488A1 (en) Corrosion resistant bearing elements, bearing assemblies, bearing apparatuses, and motor assemblies using the same
JPH08135653A (en) Underwater bearing device
JP2002303297A (en) Horizontal shaft type pump
JP2003343481A (en) Pump