JPH0339616Y2 - - Google Patents

Info

Publication number
JPH0339616Y2
JPH0339616Y2 JP1986191087U JP19108786U JPH0339616Y2 JP H0339616 Y2 JPH0339616 Y2 JP H0339616Y2 JP 1986191087 U JP1986191087 U JP 1986191087U JP 19108786 U JP19108786 U JP 19108786U JP H0339616 Y2 JPH0339616 Y2 JP H0339616Y2
Authority
JP
Japan
Prior art keywords
ceramic piece
bearing device
main shaft
bearing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986191087U
Other languages
Japanese (ja)
Other versions
JPS6394320U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986191087U priority Critical patent/JPH0339616Y2/ja
Publication of JPS6394320U publication Critical patent/JPS6394320U/ja
Application granted granted Critical
Publication of JPH0339616Y2 publication Critical patent/JPH0339616Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【考案の詳細な説明】 〔考案の目的〕 (産業上の利用分野) 本考案は水力機械の軸受装置に係り、特に水
車、ポンプ等の水力機械の主軸の軸振れを抑える
のに好適な水力機械の軸受装置に関する。
[Detailed description of the invention] [Purpose of the invention] (Field of industrial application) The present invention relates to a bearing device for hydraulic machinery, and is particularly suitable for hydraulic bearings suitable for suppressing shaft vibration of the main shaft of hydraulic machinery such as water turbines and pumps. Concerning bearing devices for machines.

(従来の技術) 一般に、水車、ポンプ等の水力機械はランナや
主軸等の回転による軸振れを防止するために軸受
装置を備えるとともに回転軸とケーシング等の固
定部材との封水を行なうために軸封装置を備えて
いる。
(Prior Art) In general, hydraulic machines such as water turbines and pumps are equipped with bearing devices to prevent shaft vibration due to rotation of the runner, main shaft, etc., and to provide a water seal between the rotating shaft and fixed members such as the casing. Equipped with a shaft sealing device.

第10図はポンプ水車の軸受装置および軸封装
置を示したもので、図においてうず巻ケーシング
1内の圧力水はガイドベーン2を通してランナ3
に向かつて流れ、ランナ3を回転させたのち図示
しない吸出管を経て放水路へ吐き出される。上記
ランナ3に直結された主軸4の外周部には、軸受
装置Bとして、主軸4と一体に形成されたスカー
ト状の回転支承部5と摺動する軸受メタル6およ
びこの軸受メタル6を支持する軸受台7が配設さ
れており、回転支承部5の下端部、軸受メタル6
および軸受台7は油槽8に貯留された潤滑油9中
に浸漬されている。そして、この潤滑油9の油膜
による剛性により主軸4の軸振れを防止してい
る。また、油槽8内には複数の冷却管からなる冷
却装置10が配設されており、この冷却管に通水
することによつて潤滑油9の冷却を行なってい
る。ところが、ポンプ水車の運転中に上記冷却装
置10の給水系統が故障すると軸受メタル6の焼
付き等大事故につながる恐れがあり、さらに後述
するように軸受装置Bの下方に軸封装置Sが配設
されているので、軸受装置Bによる主軸4の支点
位置がランナ3から遠くなり、軸受装置Bを中心
としたランナ3の振れ回りが大きくなり軸系全体
の軸振れを抑制する上で不利であつた。また、上
記潤滑油9が何らかの理由で外部へ漏れた場合に
は公害問題等の原因になり、さらに潤滑油9の温
度の上昇を抑えるためには相当量の潤滑油が必要
となり軸受装置B全体が大型化するという問題が
あつた。
Figure 10 shows the bearing device and shaft sealing device of a pump-turbine.
After rotating the runner 3, it is discharged into the waterway through a suction pipe (not shown). On the outer periphery of the main shaft 4 directly connected to the runner 3, a bearing device B includes a bearing metal 6 that slides on a skirt-shaped rotary support portion 5 formed integrally with the main shaft 4, and supports this bearing metal 6. A bearing stand 7 is arranged at the lower end of the rotation support part 5, and a bearing metal 6
The bearing stand 7 is immersed in lubricating oil 9 stored in an oil tank 8. The rigidity created by the oil film of the lubricating oil 9 prevents the spindle 4 from wobbling. A cooling device 10 consisting of a plurality of cooling pipes is disposed within the oil tank 8, and the lubricating oil 9 is cooled by passing water through the cooling pipes. However, if the water supply system of the cooling device 10 breaks down during operation of the pump-turbine, it may lead to a serious accident such as seizing of the bearing metal 6. Furthermore, as will be described later, the shaft sealing device S is disposed below the bearing device B. As a result, the fulcrum position of the main shaft 4 by the bearing device B becomes far from the runner 3, and the swing of the runner 3 around the bearing device B increases, which is disadvantageous in suppressing the shaft runout of the entire shaft system. It was hot. In addition, if the lubricating oil 9 leaks to the outside for some reason, it may cause pollution problems, and furthermore, a considerable amount of lubricating oil is required to suppress the temperature rise of the lubricating oil 9, and the entire bearing device B There was a problem that the size of the

一方、上記軸受装置Bの下方には、軸封装置S
として、主軸4と摺動するパツキング11が軸方
向に複数段設けられており、このパツキング11
によりランナ3の上方を流れ主軸4と上カバー1
2との間を流れ出ようとする圧力水をシールして
いる。ところが、上記パツキング11の摺動面の
焼付きとランナ3側からパツキング摺動面への土
砂の混入を防止するために、パツキング11の間
に給水孔13を介して清水を給水する必要があ
り、また上記軸封装置Sは軸受装置Bの下方に配
設されているので、長期使用によつてパツキング
11が摩耗した場合には軸受装置Bを分解するか
さもなければ軸受装置Bを装着した状態の非常に
狭い空間でパツキングを交換しなければならず、
作業性が非常に悪いという問題があつた。
On the other hand, below the bearing device B, a shaft sealing device S
As shown in FIG.
The flow flows above the runner 3 through the main shaft 4 and the upper cover 1.
It seals the pressure water that tries to flow out between the two. However, in order to prevent the sliding surface of the packing 11 from seizing and to prevent dirt from entering the packing sliding surface from the runner 3 side, it is necessary to supply fresh water through the water supply hole 13 between the packings 11. Also, since the shaft sealing device S is disposed below the bearing device B, if the packing 11 becomes worn due to long-term use, the bearing device B must be disassembled or the bearing device B must be installed. The packing had to be replaced in a very narrow space,
There was a problem that the workability was very poor.

また、第11図はカプラン水車の軸受装置およ
び軸封装置を示し、カプラン水車は比較的軸振れ
が小さいので上記ポンプ水車と比べて軸受装置B
の構成が簡単となつており、主軸4と摺動する水
中メタル14が軸受ハウジング15の内周面に配
設されているだけの構成となつている。ところ
が、上記水中メタル14はフエノール樹脂系で形
成されているので高荷重を負担することができ
ず、また主軸4と水中メタル14との間に土砂等
の異物が混入すると急激に摩耗が加速されるので
清水を給水する必要があり、この清水を給水する
ための保守管理が繁雑であるという問題があつ
た。
In addition, Fig. 11 shows the bearing device and shaft sealing device of the Kaplan water turbine.Since the Kaplan water turbine has relatively small shaft runout, the bearing device B
The structure is simple, and the submersible metal 14 that slides on the main shaft 4 is simply disposed on the inner circumferential surface of the bearing housing 15. However, since the underwater metal 14 is made of phenolic resin, it cannot bear a high load, and if foreign matter such as dirt gets between the main shaft 4 and the underwater metal 14, wear will be rapidly accelerated. Therefore, it was necessary to supply fresh water, and there was a problem that maintenance and management for supplying this fresh water was complicated.

また、上記軸受装置Bの直下にも軸封装置Sと
して主軸4と摺動するパツキング16が複数段配
設されており、パツキング16の間に給水孔17
を介して清水が給水されるようになつている。こ
の場合も前述のポンプ水車の軸封装置Sと同様の
理由で上記清水の給水が不可欠となつている。
Further, a plurality of packings 16 that slide on the main shaft 4 are arranged in multiple stages as a shaft sealing device S directly below the bearing device B, and between the packings 16 a water supply hole 17 is provided.
Fresh water is supplied through the In this case as well, the above-mentioned fresh water supply is essential for the same reason as in the shaft sealing device S of the pump-turbine described above.

(考案が解決しようとする問題点) このように従来の水車、ポンプ等の水力機械で
は、軸受装置Bにおいて冷却用または潤滑用の給
水を必要としており、また軸封装置Sにおいても
潤滑用の給水を必要としており、この給水系統の
ために軸受装置Bおよび軸封装置Sの構造が複雑
になるという問題があつた。また、軸受装置Bお
よび軸封装置Sがそれぞれ主軸の異なつた位置に
配設され、しかも軸封装置Sが軸受装置Bの下方
に配設されているので、軸受部がランナより離れ
た位置になり軸振れを防止するという軸受装置本
来の目的からみて好ましくない構造となつてい
た。
(Problems to be solved by the invention) As described above, in conventional hydraulic machines such as water turbines and pumps, the bearing device B requires water supply for cooling or lubrication, and the shaft seal device S also requires water supply for lubrication. A water supply is required, and this water supply system causes the problem that the structures of the bearing device B and the shaft seal device S become complicated. Furthermore, since the bearing device B and the shaft sealing device S are disposed at different positions on the main shaft, and the shaft sealing device S is disposed below the bearing device B, the bearing section is placed at a position distant from the runner. This structure is undesirable in view of the original purpose of the bearing device, which is to prevent shaft runout.

そこで、本考案は上述した従来技術が有する問
題点を解消し、軸受装置と軸封装置を一体化する
とともに清水の給水系統を省略して構造を簡素化
し、かつランナの近傍に設置することによつて主
軸の軸振れを抑えるようにした水力機械の軸受装
置を提供することを目的とする。
Therefore, the present invention solves the problems of the conventional technology mentioned above, integrates the bearing device and the shaft seal device, simplifies the structure by omitting the fresh water supply system, and installs it near the runner. Therefore, an object of the present invention is to provide a bearing device for a hydraulic machine that suppresses shaft runout of a main shaft.

(問題点を解決するための手段) 上記目的を達成するために、主軸の外周面にセ
グメント状の内側セラミツク片を主軸に密接する
ように円環状にかつ軸方向に複数段固設するとと
もに上記内側セラミツク片と摺接するセグメント
状の外側セラミツク片を軸受ハウジングの内周面
に円環状にかつ内側セラミツク片と同数段固設
し、上記内側セラミツク片の外周面に形成したリ
ブと外側セラミツク片の内周面に形成した突部と
が摺接するように形成され、内周面に突起部が形
成されたセグメント状のシール部材を当該突起部
が上記内側セラミツク片のリブに対向して交互に
入り込むように上記外側セラミツク片の各段の間
に円環状に固設したことを特徴とするものであ
る。
(Means for solving the problem) In order to achieve the above object, segment-shaped inner ceramic pieces are fixed to the outer circumferential surface of the main shaft in a plurality of stages in an annular shape in close contact with the main shaft and in the axial direction. A segment-shaped outer ceramic piece that is in sliding contact with the inner ceramic piece is fixed to the inner peripheral surface of the bearing housing in an annular shape and in the same number of steps as the inner ceramic piece, and a rib formed on the outer peripheral surface of the inner ceramic piece and the outer ceramic piece The segment-shaped seal member is formed so as to be in sliding contact with the protrusions formed on the inner circumferential surface, and the protrusions are alternately inserted into the segment-shaped seal member having the protrusions formed on the inner circumferential surface, facing the ribs of the inner ceramic piece. It is characterized in that it is fixed in an annular shape between each stage of the outer ceramic pieces.

(作用) 上記構成に基づき作用を説明すると、主軸の回
転中に発生する軸振れ等の変動荷重は、内側セラ
ミツク片と外側セラミツク片との接触によつて支
持される。また外側セラミツク片の各段の間に組
込まれたシール部材がラビリンスシールとして働
くので、軸受部と軸封部を一体にすることがで
き、軸受装置をコンパクトに構成してランナの近
くに設置することにより主軸の軸振れを有効に抑
えることができる。
(Function) To explain the function based on the above configuration, fluctuating loads such as shaft vibration generated during rotation of the main shaft are supported by the contact between the inner ceramic piece and the outer ceramic piece. In addition, the sealing member incorporated between each stage of the outer ceramic piece acts as a labyrinth seal, so the bearing part and the shaft sealing part can be integrated, making the bearing device compact and installed near the runner. This makes it possible to effectively suppress the axial runout of the main spindle.

(実施例) 以下、本考案による水力機械の軸受装置の一実
施例について第1図乃至第9図を参照して説明す
る。なお、従来と同一部分には同一符号を用い、
その説明を省略する。
(Embodiment) Hereinafter, an embodiment of a bearing device for a hydraulic machine according to the present invention will be described with reference to FIGS. 1 to 9. In addition, the same symbols are used for parts that are the same as before,
The explanation will be omitted.

第1図において全体を符号21で示した軸受装
置は、上カバー12の内周側リング22と主軸4
との間に装着され、この軸受装置21の軸受ハウ
ジング23が上記内周側リング22上に固定ボル
ト24で固着されている。上記軸受ハウジング2
3で囲まれた主軸4の外周面には、軸受装置21
の回転側として第2図に示したように、セグメン
ト状の内側セラミツク片25が少なくとも2つ以
上円環状にかつこの円環状のセグメント片が軸方
向に少なくとも3段以上、皿ビス等の締結部材2
6で固定されている。ここで上記各内側セラミツ
ク片25は、窒化ケイ素(Si3N4)によるセラミ
ツクスまたはタングステンカーバイド(WC)に
よる超硬合金で形成されており、また第3図に示
したように主軸4の外周面に密接するように湾曲
した矩形状の切片として形成されている。上記切
片の隅部には上記締結部材26の頭部が収容され
る座部27が形成され、また切片の外周面には切
片の長手方向すなわち主軸4の周方向に延びるリ
ブ28が形成されている。しかして、上記内側セ
ラミツク片25が主軸4の外周面に固設されるこ
とにより主軸の外周部にはセラミツクスまたは超
硬合金で形成されたリブ28が少なくとも2列形
成されることになる。
In FIG. 1, the bearing device, which is designated as a whole by reference numeral 21, consists of an inner ring 22 of the upper cover 12 and a main shaft 4.
The bearing housing 23 of the bearing device 21 is fixed onto the inner ring 22 with fixing bolts 24. Above bearing housing 2
A bearing device 21 is provided on the outer circumferential surface of the main shaft 4 surrounded by 3.
As shown in FIG. 2, on the rotation side of the rotor, at least two segment-shaped inner ceramic pieces 25 are arranged in an annular shape, and these annular segment pieces are arranged in at least three stages in the axial direction to fasten members such as countersunk screws. 2
It is fixed at 6. Each of the inner ceramic pieces 25 is made of silicon nitride (Si 3 N 4 ) ceramic or tungsten carbide (WC) cemented carbide, and as shown in FIG. It is formed as a rectangular section curved so that it comes in close contact with the A seat 27 in which the head of the fastening member 26 is accommodated is formed at the corner of the section, and a rib 28 extending in the longitudinal direction of the section, that is, in the circumferential direction of the main shaft 4, is formed on the outer peripheral surface of the section. There is. By fixing the inner ceramic piece 25 to the outer circumferential surface of the main shaft 4, at least two rows of ribs 28 made of ceramic or cemented carbide are formed on the outer circumference of the main shaft.

また上記内側セラミツク片25が固設された主
軸4の外側には、軸受装置21の静止側として内
側セラミツク片25と摺接するセグメント状の外
側セラミツク片29が配設され、この外側セラミ
ツク片29は、第4図に示したように、軸受ハウ
ジング23の内周面に少なくとも2つ以上円環状
にかつこの円環状のセラミツクス片が軸方向に内
側セラミツク片25と同数段だけ皿ビス等の締結
部材26で固定されている。ここで上記各外側セ
ラミツク片29は、上記内側セラミツク片25よ
り機械的強度の劣るケイ素(Si)化合物によるセ
ラミツクスで形成されており、また第5図に示し
たように内側セラミツク片25と同じ湾曲した矩
形状の切片として形成されている。この切片の内
周面には、第5図に示したように、ほぼ中央部に
上記内側セラミツク片25のリブ28と摺接する
突部30が形成され、また切片の外周面には切片
の上端縁および下端縁に沿つて長手方向すなわち
主軸4の周方向に切欠かれた切欠き部31が形成
され、さらに切片の隅部には上記締結部材26が
収容される座部27が形成されている。しかし
て、上記外側セラミツク片29が内周面に固設さ
れた軸受ハウジング23内を外周面に内側セラミ
ツク片25が固設された主軸4が摺動することに
より主軸4は回転可能に支持され、この主軸4の
回転中の軸振れ等の変動荷重は外側セラミツク片
29の突部30と内側セラミツク片25のリブ2
8との摺接により効果的に支持される。
Further, on the outside of the main shaft 4 on which the inner ceramic piece 25 is fixedly installed, there is provided a segment-shaped outer ceramic piece 29 that is in sliding contact with the inner ceramic piece 25 as the stationary side of the bearing device 21. As shown in FIG. 4, at least two annular ceramic pieces are formed on the inner circumferential surface of the bearing housing 23, and these annular ceramic pieces are attached to fastening members such as countersunk screws in the same number of stages as the inner ceramic pieces 25 in the axial direction. It is fixed at 26. Each of the outer ceramic pieces 29 is made of a silicon (Si) compound ceramic having lower mechanical strength than the inner ceramic piece 25, and has the same curved shape as the inner ceramic piece 25, as shown in FIG. It is formed as a rectangular section. As shown in FIG. 5, the inner circumferential surface of this section is formed with a protrusion 30 approximately in the center that makes sliding contact with the rib 28 of the inner ceramic piece 25, and the outer circumferential surface of the section is formed at the upper end of the section. A notch 31 is formed along the edge and the lower edge in the longitudinal direction, that is, in the circumferential direction of the main shaft 4, and a seat 27 in which the fastening member 26 is accommodated is formed at the corner of the cut piece. . Thus, the main shaft 4, on which the inner ceramic piece 25 is fixed on the outer circumferential surface, slides inside the bearing housing 23, on which the outer ceramic piece 29 is fixed on the inner circumferential surface, so that the main shaft 4 is rotatably supported. , fluctuating loads such as shaft vibration during rotation of the main shaft 4 are applied to the protrusion 30 of the outer ceramic piece 29 and the rib 2 of the inner ceramic piece 25.
It is effectively supported by sliding contact with 8.

また上記軸方向に複数段配設された円環状の外
側セラミツク片29の各段の間にはセグメント状
のシール部材32が少なくとも2つ以上円環状に
配設され、このシール部材32は上記外側セラミ
ツク片29を固定するのと同じ締結部材26で外
側セラミツク片29とともに軸受ハウジング23
の内周面に固定されている。上記各シール部材3
2は、第6図に示したように、ゴム等の高分子化
合物あるいは不銹性の金属で形成された湾曲した
矩形状の切片で、この切片の内周面には切片の長
手方向すなわち主軸4の周方向に突起部33が延
設され、この突起部33の上側および下側の切片
は上記外側セラミツク片29の切欠き部31内に
組込まれるフランジ部34として形成されてい
る。このフランジ部34には上記締結部材26が
挿通する受孔35が形成されており、また上記突
起部33は上面33aすなわち発電機側が傾斜す
るとともに下面33bすなわちランナ側が水平と
なつた断面三角形状に形成されている。しかし
て、第4図に示したように円環状の外側セラミツ
ク片29の各段の間に上記シール部材32が組込
まれ、さらに最上段の外側セラミツク片29の上
側に組込まれるシール部材32の上側フランジ部
34が押え板36で軸受ハウジング23に固定さ
れることにより、軸受ハウジング23の内周面に
は上記シール部材32による有効なラビリンスシ
ールが形成される。
Furthermore, at least two segment-shaped seal members 32 are arranged in an annular manner between each stage of the annular outer ceramic pieces 29 arranged in multiple stages in the axial direction, and these seal members 32 The bearing housing 23 is secured together with the outer ceramic piece 29 by the same fastening member 26 that secures the ceramic piece 29.
is fixed to the inner circumferential surface of the Each of the above seal members 3
As shown in Fig. 6, 2 is a curved rectangular section made of a high molecular compound such as rubber or a non-rusting metal, and the inner circumferential surface of this section has a main axis in the longitudinal direction of the section. A protrusion 33 extends in the circumferential direction of the outer ceramic piece 29, and the upper and lower sections of the protrusion 33 are formed as a flange 34 to be incorporated into the notch 31 of the outer ceramic piece 29. This flange portion 34 is formed with a receiving hole 35 through which the fastening member 26 is inserted, and the protruding portion 33 has a triangular cross section with an upper surface 33a, that is, the generator side, being inclined, and a lower surface 33b, that is, the runner side, being horizontal. It is formed. As shown in FIG. 4, the sealing member 32 is installed between each stage of the annular outer ceramic piece 29, and the sealing member 32 is installed above the uppermost outer ceramic piece 29. By fixing the flange portion 34 to the bearing housing 23 with the presser plate 36, an effective labyrinth seal is formed by the seal member 32 on the inner peripheral surface of the bearing housing 23.

また上述のように回転側が主軸4の外周面に固
定された内側セラミツク片25、静止側が軸受ハ
ウジング23の内周面に固定された外側セラミツ
ク片29およびシール部材32から構成された軸
受装置21の各部寸法は、第2図および第7図に
示したように内側セラミツク片25の外周面に形
成されたリブ28の外径をD1、内側セラミツク
片25の外周面の外径をD3、外側セラミツク片
29の内周面に形成された突部30の内径をD2
シール部材32の内周面に形成された突起部33
の内径をD4とすれば、D3<D4<D1<D2の大小関
係を有するように決められており、またこれらの
寸法の差は主軸4の直径をDとすれば、 D2−D1=2/1000×D、 D4−D3=3/1000×D程度の小さな値となるよ
うに決められている。
Further, as described above, the bearing device 21 is composed of the inner ceramic piece 25 whose rotating side is fixed to the outer circumferential surface of the main shaft 4, the outer ceramic piece 29 whose stationary side is fixed to the inner circumferential surface of the bearing housing 23, and the seal member 32. As shown in FIGS. 2 and 7, the dimensions of each part are: D 1 is the outer diameter of the rib 28 formed on the outer peripheral surface of the inner ceramic piece 25; D 3 is the outer diameter of the outer peripheral surface of the inner ceramic piece 25; The inner diameter of the protrusion 30 formed on the inner peripheral surface of the outer ceramic piece 29 is D 2 ,
A protrusion 33 formed on the inner peripheral surface of the seal member 32
If the inner diameter of the main shaft 4 is D4, then the size relationship is determined as D3 < D4 < D1 < D2 , and the difference in these dimensions is D, if the diameter of the main shaft 4 is D. The values are determined to be small, such as 2 −D 1 =2/1000×D and D 4 −D 3 =3/1000×D.

なお、上記軸受ハウジング23は、第7図に示
したように、少なくとも2分割構造となつてお
り、合わせ面に形成されたフランジ部23aをボ
ルト等の締結部材で締めつけることにより一体の
組立てられるようになつている。また軸受ハウジ
ング23の外周部には補強用のリブ板37が放射
状に配設されており、さらに第1図に示したよう
に軸受ハウジング23の上端面と主軸4との間に
は封水カバー38が取付けられ、ランナ3と上カ
バー12との間を流れ主軸4と軸受装置21との
間を流れ出ようとする圧力水をシールしている。
As shown in FIG. 7, the bearing housing 23 has a structure in which it is divided into at least two parts, and can be assembled into one piece by tightening the flange part 23a formed on the mating surfaces with a fastening member such as a bolt. It's getting old. Furthermore, reinforcing rib plates 37 are arranged radially around the outer circumference of the bearing housing 23, and as shown in FIG. 38 is attached to seal pressure water that flows between the runner 3 and the upper cover 12 and tries to flow out between the main shaft 4 and the bearing device 21.

次に上述のように構成された軸受装置21の作
用を説明する。
Next, the operation of the bearing device 21 configured as described above will be explained.

主軸4の回転中に発生する軸振れ等の変動荷重
は、主軸4に固設された内側セラミツク片25の
リブ28の外周端部と軸受ハウジング23に固設
された外側セラミツク片29の突部30の内周端
部との接触によつて支持される。すなわち、上記
リブ28に負荷された荷重は、このリブ28が形
成されている内側セラミツク片25が主軸4に密
接するセグメント状になつているので主軸4の外
周部全体に分散され、また同様に上記突部30に
負荷された荷重は外側セラミツク片29を介して
軸受ハウジング23全体に分散されて伝達され、
さらに上記軸受ハウジング23に伝達された荷重
は固定ボルト24を介して上カバー12の剛体部
に伝達される。この場合、主軸4の軸方向に多段
に内側セラミツク片25、外側セラミツク片29
が設けられているので、特定の内側セラミツク片
25のリブ28、外側セラミツク片29の突部3
0に過大な応力が集中することが回避される。し
かも、その材質が負荷能力が大きく耐磨耗性が高
いセラミツクであり、リブ28と突部30は摺接
時の荷重に十分耐え得る。全体として内側セラミ
ツク片25と外側セラミツク片29の組み合わせ
により、従つて、軸受装置21の回転側および静
止側の両方の荷重分担率を低く抑えることができ
る。なお、第8図および第9図は、上記内側セラ
ミツク片の変形例を示し、負荷に応じて内側セラ
ミツク片のリブの形状を次のように選択してもよ
い。この場合、第8図の内側セラミツク片39は
外周面に形成されたリブ40が断面台形状となつ
ており、また第9図の内側セラミツク片41はリ
ブ42が断面半楕円状に形成されている。このよ
うな形状のリブを形成することで作用する応力の
集中を抑制することができる。
Variable loads such as shaft runout that occur during rotation of the main shaft 4 are absorbed by the outer peripheral end of the rib 28 of the inner ceramic piece 25 fixed to the main shaft 4 and the protrusion of the outer ceramic piece 29 fixed to the bearing housing 23. It is supported by contact with the inner circumferential end of 30. That is, the load applied to the rib 28 is distributed over the entire outer circumference of the main shaft 4 because the inner ceramic piece 25 on which the rib 28 is formed has a segment shape that closely contacts the main shaft 4. The load applied to the protrusion 30 is distributed and transmitted to the entire bearing housing 23 via the outer ceramic piece 29,
Furthermore, the load transmitted to the bearing housing 23 is transmitted to the rigid portion of the upper cover 12 via the fixing bolts 24. In this case, the inner ceramic piece 25 and the outer ceramic piece 29 are arranged in multiple stages in the axial direction of the main shaft 4.
are provided, so that the rib 28 of the specific inner ceramic piece 25 and the protrusion 3 of the outer ceramic piece 29
This prevents excessive stress from being concentrated at zero. Moreover, the material is ceramic, which has a large load capacity and high wear resistance, and the ribs 28 and the protrusions 30 can sufficiently withstand the load during sliding contact. Overall, the combination of the inner ceramic piece 25 and the outer ceramic piece 29 therefore makes it possible to keep the load share on both the rotating side and the stationary side of the bearing device 21 low. 8 and 9 show modifications of the inner ceramic piece, and the shape of the ribs of the inner ceramic piece may be selected as follows depending on the load. In this case, the inner ceramic piece 39 shown in FIG. 8 has a rib 40 formed on its outer peripheral surface with a trapezoidal cross section, and the inner ceramic piece 41 shown in FIG. 9 has a rib 42 formed with a semielliptical cross section. There is. By forming ribs having such a shape, concentration of stress can be suppressed.

また上記内側セラミツク片25のリブ28と上
記外側セラミツク片29の間に組込まれたシール
部材32の突起部33とが対向して交互に入り込
むように配設され、しかも上記突起部33の内径
D4と内側セラミツク片25の外周面の外径D3
の寸法差が主軸直径×3/1000程度となるように
決められているので、上記シール部材32は非常
に有効なラビリンスシールと作用し、ランナ3と
上カバー12との間を流れさらに主軸4と軸受装
置21との間を流れ出ようとする圧力水をシール
することができる。このため従来のような軸封装
置が不要となる。また軸受部である内側セラミツ
ク片25および外側セラミツク片29と軸封部で
あるシール部材32とを同軸的に一体に組合せて
軸受装置21をコンパクトに構成しているので、
軸受装置をランナ3の近くに設置することがで
き、ランナ3の振れ回りを低く抑えることができ
る。そして図示しない発電機側の軸受装置を含め
た主軸4全体の軸系振動モードの安定化を図るこ
とができる。
Further, the ribs 28 of the inner ceramic piece 25 and the protrusions 33 of the sealing member 32 assembled between the outer ceramic piece 29 are arranged so as to face each other and enter alternately, and the inner diameter of the protrusions 33 is
Since the dimensional difference between D 4 and the outer diameter D 3 of the outer peripheral surface of the inner ceramic piece 25 is determined to be approximately 3/1000 times the diameter of the main shaft, the seal member 32 functions as a very effective labyrinth seal. However, pressure water flowing between the runner 3 and the upper cover 12 and flowing between the main shaft 4 and the bearing device 21 can be sealed. This eliminates the need for a conventional shaft sealing device. Further, since the bearing device 21 is constructed compactly by coaxially combining the inner ceramic piece 25 and the outer ceramic piece 29, which are the bearing parts, and the seal member 32, which is the shaft seal part,
The bearing device can be installed near the runner 3, and the whirling of the runner 3 can be suppressed. Further, it is possible to stabilize the shaft system vibration mode of the entire main shaft 4 including the bearing device on the generator side (not shown).

また上述のように軸受装置21がランナ3の近
くに設置されているので軸受装置の回転側および
静止側の周囲には河川水が充満しており、内側セ
ラミツク片25と外側セラミツク片29との接触
による摩擦熱は河川水によつて冷される。このた
め従来のような潤滑用および冷却用の給水系統が
不要となり、軸受装置全体の構造が簡単になる。
また上記内側セラミツク片25および外側セラミ
ツク片29とも高硬度の材料で形成されているの
で土砂等の異物による摩耗が少なく長期間の使用
が可能であり、万一軸受装置21内に河川水とと
もに上記異物が混入しても上記シール部材32の
突起部33の上面33aがランナ3側に傾斜して
形成されているので、異物は傾斜面によつてラン
ナ3内に滑り落ち軸受装置21内に沈澱すること
はない。
Furthermore, as mentioned above, since the bearing device 21 is installed near the runner 3, the area around the rotating side and the stationary side of the bearing device is filled with river water, and the inner ceramic piece 25 and the outer ceramic piece 29 are Frictional heat from contact is cooled by river water. This eliminates the need for conventional water supply systems for lubrication and cooling, simplifying the overall structure of the bearing device.
In addition, since both the inner ceramic piece 25 and the outer ceramic piece 29 are made of a high-hardness material, there is little wear due to foreign matter such as earth and sand, and it can be used for a long period of time. Even if foreign matter gets mixed in, since the upper surface 33a of the protrusion 33 of the seal member 32 is formed to be inclined toward the runner 3, the foreign matter will slide down into the runner 3 due to the inclined surface and settle in the bearing device 21. There's nothing to do.

さらに上記内側セラミツク片25および外側セ
ラミツク片29とも皿ビス等の締結部材26で固
定されているので、着脱が可能となり、しかも軸
受ハウジング23を取外すだけで各構成部材の交
換を容易に行なうことができる。また軸受装置の
回転側を構成する内側セラミツク片25がセグメ
ント状に形成されているので1つの型で全てのセ
グメントを成形することができ、しかもセグメン
ト状でない一体成形ものと比較して格段に精度が
向上するので寸法公差が小さくなり軸受としての
安定性が向上する。
Furthermore, since both the inner ceramic piece 25 and the outer ceramic piece 29 are fixed with fastening members 26 such as countersunk screws, they can be attached and detached, and each component can be easily replaced by simply removing the bearing housing 23. can. In addition, since the inner ceramic piece 25 that constitutes the rotating side of the bearing device is formed in the shape of a segment, all the segments can be molded with one mold, and the accuracy is much higher than that of an integrally molded piece that is not shaped like a segment. This improves the dimensional tolerance and improves the stability of the bearing.

〔考案の効果〕[Effect of idea]

以上の説明から明らかなように、本考案によれ
ば、軸受装置の回転側として主軸の外周面にセグ
メント状の内側セラミツク片を軸方向に複数段固
設するとともにこの内側セラミツク片の外側に軸
受装置の静止側としてセグメント状の外側セラミ
ツク片とシール部材を軸方向に複数段固設した軸
受ハウジングを配設したから、シール部材が従来
の軸封装置としての作用を営み、軸受部と軸封部
とを同軸的に一体化したコンパクトな軸受装置と
することができ、また軸受部と軸封部の同軸的な
一体化により軸受装置をランナの近くに設置でき
るので主軸の軸振れを有効に抑えることができ
る。さらに、軸受装置がランナの近くに設置され
るので軸受装置の周囲に河川水が充満し、この河
川水で軸受装置を冷却するので潤滑用および冷却
用の給水系統が不要となり軸受装置全体の構造が
簡単になる等の効果を奏する。
As is clear from the above description, according to the present invention, a plurality of segment-shaped inner ceramic pieces are fixed in the axial direction on the outer peripheral surface of the main shaft as the rotating side of the bearing device, and the bearing is mounted on the outside of the inner ceramic pieces. As the stationary side of the device is provided with a bearing housing in which a segment-shaped outer ceramic piece and a sealing member are fixed in multiple stages in the axial direction, the sealing member functions as a conventional shaft sealing device, and the bearing part and shaft sealing By coaxially integrating the bearing and shaft sealing parts, the bearing can be installed close to the runner, effectively reducing the axial runout of the main shaft. It can be suppressed. Furthermore, since the bearing device is installed near the runner, the area around the bearing device is filled with river water, and this river water cools the bearing device, eliminating the need for a water supply system for lubrication and cooling, which improves the overall structure of the bearing device. This has the effect of simplifying the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による水力機械の軸受装置の一
実施例を示す縦断面図、第2図は上記軸受装置の
回転側を構成する内側セラミツク片の装着状態を
示す正面図、第3図は上記内側セラミツク片の1
セグメントを示す斜視図、第4図は上記軸受装置
の静止側を構成する外側セラミツク片およびシー
ル部材の装着状態を示す正面図、第5図は上記外
側セラミツク片の1セグメントを示す斜視図、第
6図は上記シール部材の1セグメントを示す斜視
図、第7図は上記軸受装置の静止側を示す平面
図、第8図および第9図は上記内側セラミツク片
の変形例を示す斜視図、第10図および第11図
は従来の水力機械の軸受装置を示す縦断面図であ
る。 3……ランナ、4……主軸、12……上カバ
ー、21……軸受装置、23……軸受ハウジン
グ、25,39,41……内側セラミツク片、2
8,40,42,……リブ、29……外側セラミ
ツク、32……シール部材、33……突起。
FIG. 1 is a longitudinal sectional view showing an embodiment of a bearing device for a hydraulic machine according to the present invention, FIG. 2 is a front view showing the state in which the inner ceramic piece constituting the rotating side of the bearing device is installed, and FIG. 1 of the inner ceramic pieces above
FIG. 4 is a perspective view showing a segment; FIG. 4 is a front view showing the mounting state of the outer ceramic piece and seal member constituting the stationary side of the bearing device; FIG. 5 is a perspective view showing one segment of the outer ceramic piece; 6 is a perspective view showing one segment of the sealing member, FIG. 7 is a plan view showing the stationary side of the bearing device, FIGS. 8 and 9 are perspective views showing modified examples of the inner ceramic piece, and FIG. 10 and 11 are longitudinal sectional views showing a conventional bearing device for a hydraulic machine. 3...Runner, 4...Main shaft, 12...Top cover, 21...Bearing device, 23...Bearing housing, 25, 39, 41...Inner ceramic piece, 2
8, 40, 42,... Rib, 29... Outer ceramic, 32... Seal member, 33... Protrusion.

Claims (1)

【実用新案登録請求の範囲】 1 回転する主軸の軸振れを抑えるようにした水
力機械の軸受装置において、上記主軸の外周面
にセグメント状の内側セラミツク片を主軸に密
接するように円環状にかつ軸方向に複数段固設
するとともに上記内側セラミツク片と摺接する
セグメント状の外側セラミツク片を軸受ハウジ
ングの内周面に円環状にかつ内側セラミツク片
と同数段固設し、上記内側セラミツク片の外周
面に形成したリブと外側セラミツク片の内周面
に形成した突部とが摺接するように形成され、
内周面に突起部が形成されたセグメント状のシ
ール部材を当該突起部が上記内側セラミツク片
のリブに対向して交互に入り込むように上記外
側セラミツク片の各段の間に円環状に固設した
ことを特徴とする水力機械の軸受装置。 2 上記内側セラミツク片、外側セラミツク片お
よびシール部材は締結部材で着脱自在に装着さ
れていることを特徴とする実用新案登録請求の
範囲第1項に記載の水力機械の軸受装置。 3 上記軸受ハウジングは少なくとも2分割でき
るように形成されていることを特徴とする実用
新案登録請求の範囲第1項に記載の水力機械の
軸受装置。
[Claims for Utility Model Registration] 1. In a bearing device for a hydraulic machine designed to suppress shaft runout of a rotating main shaft, a segment-shaped inner ceramic piece is arranged on the outer peripheral surface of the main shaft in an annular shape so as to be in close contact with the main shaft. Segment-shaped outer ceramic pieces are fixed in multiple stages in the axial direction and are in sliding contact with the inner ceramic pieces in an annular shape on the inner peripheral surface of the bearing housing in the same number of stages as the inner ceramic pieces. The rib formed on the surface and the protrusion formed on the inner peripheral surface of the outer ceramic piece are formed so as to come into sliding contact,
A segment-shaped sealing member having protrusions formed on the inner circumferential surface is fixed in an annular manner between each stage of the outer ceramic piece so that the protrusions face the ribs of the inner ceramic piece and alternately enter therein. A bearing device for hydraulic machinery characterized by: 2. The bearing device for a hydraulic machine according to claim 1, wherein the inner ceramic piece, the outer ceramic piece, and the sealing member are detachably attached by fastening members. 3. The bearing device for a hydraulic machine according to claim 1, wherein the bearing housing is formed so that it can be divided into at least two parts.
JP1986191087U 1986-12-11 1986-12-11 Expired JPH0339616Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986191087U JPH0339616Y2 (en) 1986-12-11 1986-12-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986191087U JPH0339616Y2 (en) 1986-12-11 1986-12-11

Publications (2)

Publication Number Publication Date
JPS6394320U JPS6394320U (en) 1988-06-17
JPH0339616Y2 true JPH0339616Y2 (en) 1991-08-21

Family

ID=31144906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986191087U Expired JPH0339616Y2 (en) 1986-12-11 1986-12-11

Country Status (1)

Country Link
JP (1) JPH0339616Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3627614B2 (en) * 1992-03-18 2005-03-09 株式会社日立製作所 Drainage pump
JP5167692B2 (en) * 2007-05-22 2013-03-21 吉泉産業株式会社 Food slicing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084423A (en) * 1983-10-17 1985-05-13 Ebara Corp Sliding bearing
JPS60205011A (en) * 1984-03-28 1985-10-16 Hitachi Ltd Self-lubricating bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084423A (en) * 1983-10-17 1985-05-13 Ebara Corp Sliding bearing
JPS60205011A (en) * 1984-03-28 1985-10-16 Hitachi Ltd Self-lubricating bearing

Also Published As

Publication number Publication date
JPS6394320U (en) 1988-06-17

Similar Documents

Publication Publication Date Title
KR101446578B1 (en) Submersible energy generating system, driven by a water flow
CA1188199A (en) Hydro-electric turbo-machine
KR950005843B1 (en) Lubricated bearing apparatus for hydraulic machinery
US2784936A (en) Runner for hydraulic machines having a center portion and an outer segmented portionsecured together to provide an assembled runner
JPS6125913B2 (en)
CN110397740B (en) High-speed spiral sealing device
JPH0339616Y2 (en)
FI74780C (en) AXIELLT INSTAELLBART PUMPHJUL VID CENTRIFUGALPUMP.
JPS61123795A (en) Centrifugal pump
JP4139568B2 (en) Vertical valve turbine
JP2006322342A (en) Shaft seal device of hydraulic machinery
JP4519820B2 (en) Method for assembling shaft seal water device for hydraulic machine
JPH01176814A (en) Underwater bearing device in hydraulic machine
CN207420888U (en) The main cooling water pump of used in nuclear power station
US1362304A (en) Hydromotive unit
CN219974878U (en) Pump bearing body
US3635582A (en) Seals for hydraulic machines
JPS62131979A (en) Water turbine
CN219412768U (en) Hydraulic turbine guide bearing rotating oil basin capable of preventing oil from being thrown
JP2011508144A (en) HYDRAULIC DEVICE, ENERGY CONVERSION EQUIPMENT PROVIDED WITH THE DEVICE, AND METHOD OF USING HYDRODYNAMIC LABYLINS BEARING
CN202176541U (en) Submerged pump sealing structure
CN215528762U (en) Double-stator permanent magnet synchronous motor end cover and motor
CN210919851U (en) Bearing seat assembly
JPH021498Y2 (en)
JPS5814271Y2 (en) sealing device