JPH021498Y2 - - Google Patents

Info

Publication number
JPH021498Y2
JPH021498Y2 JP1983160046U JP16004683U JPH021498Y2 JP H021498 Y2 JPH021498 Y2 JP H021498Y2 JP 1983160046 U JP1983160046 U JP 1983160046U JP 16004683 U JP16004683 U JP 16004683U JP H021498 Y2 JPH021498 Y2 JP H021498Y2
Authority
JP
Japan
Prior art keywords
back pressure
pressure chamber
pipe
oil
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983160046U
Other languages
Japanese (ja)
Other versions
JPS6069369U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983160046U priority Critical patent/JPS6069369U/en
Publication of JPS6069369U publication Critical patent/JPS6069369U/en
Application granted granted Critical
Publication of JPH021498Y2 publication Critical patent/JPH021498Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案はフランシス形水力機械の軸受冷却水装
置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a bearing cooling water system for a Francis-type hydraulic machine.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

水力発電所に設置される水車及びポンプ水車で
は、運転中にはランナは駆動水によりラジアル方
向に水力不平衡力を受けるが、これが原因となり
ランナに直結された主軸を含めた回転部に軸振れ
が発生する。この軸振れを抑制することを目的と
して通常、上カバに軸受装置が取り付けられ主軸
スカート部をラジアル方向から支持している。
In water turbines and pump turbines installed in hydroelectric power plants, during operation, the runners are subjected to a hydraulic unbalance force in the radial direction due to the driving water, which causes shaft runout in the rotating parts including the main shaft directly connected to the runners. occurs. In order to suppress this shaft runout, a bearing device is usually attached to the upper cover to support the main shaft skirt portion from the radial direction.

軸受装置は主軸受、軸受支持台、油槽及び油冷
却管等から構成されている。主機運転中は主軸ス
カート部と主軸受との間に介在する潤滑油膜に摩
擦損失が発生し、これが熱に変換するため油槽内
の油温は上昇するが、油温の上昇は潤滑油の粘度
を低下させこのことは主軸スカート部と主軸受と
の間に介在する潤滑油膜のバネ剛性を低下させる
ことになり、軸受としての性能を低下せしめる。
更に軸受性能低下が高じると軸振れが大きくなり
場合によつては主軸スカート外周面と主軸内周面
が金属接触を起こし主軸受内周面に鋳込まれたホ
ワイトメタルが金属接触の際の衝撃や高温のため
に剥離するなど大きな損傷を受けることがある。
この様な事態を避けるため、主機運転中は油槽内
の油冷却管には、冷却水を通水して油温の上昇を
防ぐようにしている。ところで、油冷却管への冷
却水給水は通常水車ピツトの外側に設置された給
水ポンプから行なわれるが、途中、屋内配管、コ
ンクリートバレル貫通の埋設管、水車基磁ピツト
内配管及び上カバ内配管といつた配管が必要不可
欠であり、また冷却水排水についても油冷却管か
ら排水ピツトまでの配管が必要であり、発電所建
屋内を配管が非常に輻奏するという難点がある。
The bearing device consists of a main bearing, a bearing support, an oil tank, an oil cooling pipe, etc. During main engine operation, friction loss occurs in the lubricating oil film interposed between the main shaft skirt and the main bearing, and this is converted into heat, causing the oil temperature in the oil tank to rise. This lowers the spring stiffness of the lubricating oil film interposed between the main shaft skirt and the main bearing, thereby reducing the performance of the bearing.
Furthermore, as bearing performance deterioration increases, shaft runout increases, and in some cases, the outer peripheral surface of the main shaft skirt and the inner peripheral surface of the main shaft may come into metal contact, and the white metal cast into the inner peripheral surface of the main bearing may be affected by the impact caused by metal contact. It may suffer severe damage such as peeling due to high temperatures.
To avoid such a situation, cooling water is passed through the oil cooling pipe in the oil tank to prevent the oil temperature from rising while the main engine is operating. By the way, cooling water is normally supplied to the oil cooling pipes from a water supply pump installed outside the water turbine pit. In addition, for cooling water drainage, piping from the oil cooling pipe to the drainage pit is necessary, and there is a problem in that the piping is very noisy inside the power plant building.

特に、近年水力資源の有効活用が見直されてき
ており、水力機械もコンパクト化され、部品や設
備機器の数は少なく、また保守点検の容易さを重
視した簡素な構造が指向されているが、前述の配
管の引き廻しや給水ポンプの設置スペースの確保
は発電所の狭小な建屋内ではまことに容易ではな
い。
In particular, in recent years, the effective use of hydraulic resources has been reconsidered, and hydraulic machinery has become more compact, has fewer parts and equipment, and has a simpler structure with an emphasis on ease of maintenance and inspection. Routing the aforementioned piping and securing space for installing the water supply pumps is not easy within the narrow building of the power plant.

また油冷却管に冷却水を供給するために、ラン
ナの背圧室と油冷却管を連通させ背圧室から取水
する装置が実開昭58−96063号に記載されている。
この装置は大気と背圧室との圧力差を利用して貯
水層に取水し、過剰分をオーバーフロー管からオ
ーバーフローさせるとともに油冷却管を通過後、
大気に放出させている。このためスピードリング
からランナへの水流における背圧室への漏れ流量
が増加するので水力機械の効率が低下するという
不都合があつた。
Further, in order to supply cooling water to the oil cooling pipe, a device for communicating the back pressure chamber of the runner with the oil cooling pipe and taking water from the back pressure chamber is described in Japanese Utility Model Application No. 58-96063.
This device uses the pressure difference between the atmosphere and the back pressure chamber to draw water into the reservoir, and allows the excess water to overflow from the overflow pipe and pass through the oil cooling pipe.
It is released into the atmosphere. For this reason, the leakage flow rate into the back pressure chamber in the water flow from the speed ring to the runner increases, resulting in a disadvantage that the efficiency of the hydraulic machine decreases.

〔考案の目的〕[Purpose of invention]

本考案の目的は水力機械の効率低下を防止する
とともに、基礎ピツト内に配設する冷却水用配管
を省略して簡単な構成で冷却可能な水力機械の軸
受冷却装置を提供することにある。
An object of the present invention is to provide a bearing cooling device for a hydraulic machine that can prevent a decrease in efficiency of the hydraulic machine and can be cooled with a simple configuration by omitting the cooling water piping disposed in the foundation pit.

〔考案の概要〕[Summary of the idea]

上記目的を達成するために、本考案においては
フランシス形ランナを有する水力機械の主軸を回
転自在に案内して支承する主軸受を上カバに固定
し、この主軸受を油冷却管を内蔵した油槽内の潤
滑油に浸し、この油冷却管の給水側と前記ランナ
の背圧室とを給水管で連通させて前記油冷却管に
冷却水が流入するようにした軸受冷却装置におい
て、前記油冷却管の排水側と前記ランナの背圧室
とを前記給水管より内側の背圧室に開口した排水
管によつて連通させたことを特徴とする水力機械
の軸受冷却装置を提供する。
In order to achieve the above object, in the present invention, a main bearing that rotatably guides and supports the main shaft of a hydraulic machine having a Francis-type runner is fixed to an upper cover, and this main bearing is connected to an oil tank with a built-in oil cooling pipe. In the bearing cooling device, the oil cooling pipe is immersed in lubricating oil, and the water supply side of the oil cooling pipe and the back pressure chamber of the runner are connected through a water supply pipe so that cooling water flows into the oil cooling pipe. There is provided a bearing cooling device for a hydraulic machine, characterized in that the drainage side of the pipe and the back pressure chamber of the runner are communicated by a drainage pipe opening into the back pressure chamber inside the water supply pipe.

〔考案の実施例〕[Example of idea]

以下本考案による軸受冷却装置の一実施例を図
面を参照して説明する。
An embodiment of a bearing cooling device according to the present invention will be described below with reference to the drawings.

第1図において主軸6を支承する主軸受7の油
冷却管11は油槽12から給水管10及び排水管
13を介して上カバ2に接続されている。上カバ
2にはフランシス形のランナ3の背圧室に通じる
穴が設けられており、外側背圧室14に開口する
穴は給水管10へ、内側背圧室15に開口する穴
は排水管13へそれぞれ連通している。
In FIG. 1, an oil cooling pipe 11 of a main bearing 7 that supports a main shaft 6 is connected from an oil tank 12 to an upper cover 2 via a water supply pipe 10 and a drain pipe 13. The upper cover 2 is provided with a hole that communicates with the back pressure chamber of the Francis-shaped runner 3. The hole that opens into the outer back pressure chamber 14 connects to the water supply pipe 10, and the hole that opens into the inner back pressure chamber 15 connects to the drain pipe. 13, respectively.

また第2図は中小水力発電所に多く見られる水
車であり、厚板1枚から成る上カバ2はスピード
リング1の主板に直接取り付けられている。第1
図と同様に主軸受7の油冷却管11は給水管10
及び排水管13を介して上カバ2に接続されてお
り、それぞれ外側背圧室14及び内側背圧室15
に上カバ2に明けられた穴を介して連通してい
る。
Further, FIG. 2 shows a water turbine often seen in small and medium-sized hydroelectric power plants, and an upper cover 2 made of one thick plate is directly attached to the main plate of the speed ring 1. 1st
As shown in the figure, the oil cooling pipe 11 of the main bearing 7 is connected to the water supply pipe 10.
and is connected to the upper cover 2 via a drain pipe 13, and an outer back pressure chamber 14 and an inner back pressure chamber 15, respectively.
The two are connected to each other through a hole made in the upper cover 2.

以上の様に構成された軸受冷却装置によれば下
記の作用効果が得られる。
According to the bearing cooling device configured as described above, the following effects can be obtained.

第1図及び第2図において主機停止中は内外背
圧室の圧力に差はないが運転中は第3図に示すよ
うに内側背圧P2は外側背圧P1に比らべ、背圧室
内の水の遠心力の違い、バランスホール3a及び
中間シール3bの効果によりかなり低い値とな
る。また、中間シール3bがない場合では第4図
に示すように、背圧室内外周の遠心力の差及びバ
ランスホール3aの効果によりランナ背圧は内周
面と外周部とではかなり差がある。
In Figures 1 and 2, when the main engine is stopped, there is no difference in pressure between the inside and outside back pressure chambers, but during operation, as shown in Figure 3, the inside back pressure P 2 is higher than the outside back pressure P 1 . The value is quite low due to the difference in the centrifugal force of the water in the pressure chamber and the effects of the balance hole 3a and the intermediate seal 3b. Furthermore, in the case where there is no intermediate seal 3b, as shown in FIG. 4, there is a considerable difference in runner back pressure between the inner circumference and the outer circumference due to the difference in centrifugal force between the outer and outer circumferences of the back pressure chamber and the effect of the balance hole 3a.

従つて、これらの背圧の差によりランナ背圧室
の流水は、高圧側の外側背圧室14あるいは背圧
室外周部より上カバ底板に明けられた穴及び給水
管10を介して油冷却管11の流入し、油槽内を
回流したあと排水管13及び上カバ底板の穴を介
して低圧側の内側背圧室14あるいは背圧室内周
部へ排出される。
Therefore, due to the difference in these back pressures, the water flowing in the runner back pressure chamber is cooled by oil through the outer back pressure chamber 14 on the high pressure side or the hole made in the bottom plate of the cover above the outer periphery of the back pressure chamber and the water supply pipe 10. The oil flows into the pipe 11, circulates in the oil tank, and then is discharged to the inner back pressure chamber 14 on the low pressure side or to the inner periphery of the back pressure chamber through the drain pipe 13 and the hole in the bottom plate of the upper cover.

したがつて、主軸受冷却水の配管は僅かに油槽
12と上カバ2に設けられた穴とを接続するだけ
で済み、従来の様な配管の屋内及び水車ピツト内
引き廻しが皆無となる。更に給水ポンプについて
は主軸受7への給水が不要となるため封水装置5
に給水するだけの小型なポンプで済むし、またポ
ンプに接続する配管の口径やストレーナ容量も小
さくすることができる。主軸受7への給水が専用
ポンプでなされる計画の発電所においては専用ポ
ンプそのものが不要となり、特に中小水力発電所
の狭小な建屋内でその他の機器設置が非常に楽に
なり、水力機械そのものも非場にコンパクトにな
る。
Therefore, the piping for the main bearing cooling water only needs to connect the oil tank 12 and the hole provided in the upper cover 2, and there is no need to route piping indoors or into the water turbine pit as in the past. Furthermore, regarding the water supply pump, water sealing device 5 is used since there is no need to supply water to main bearing 7.
A small pump is sufficient to supply water to the pump, and the diameter of the piping connected to the pump and the capacity of the strainer can also be reduced. In power plants where water is supplied to the main bearing 7 using a dedicated pump, the dedicated pump itself becomes unnecessary, making it extremely easy to install other equipment, especially in the narrow buildings of small and medium-sized hydropower plants, and the hydraulic machinery itself. It becomes extremely compact.

〔考案の効果〕[Effect of idea]

以上詳述したように、本考案によれば油冷却管
と背圧室とを排水管で連通し、背圧室から給水さ
れた冷却水を背圧室に戻しているので水力機械の
効率を低下させることなく油槽を冷却することが
でき、基礎ピツト内の冷却水配管が省略され、フ
ランシス形水力機械の構成を簡素化するに有効で
ある。
As detailed above, according to the present invention, the oil cooling pipe and the back pressure chamber are connected through a drain pipe, and the cooling water supplied from the back pressure chamber is returned to the back pressure chamber, thereby improving the efficiency of the hydraulic machine. The oil tank can be cooled without lowering the oil tank, and the cooling water piping inside the foundation pit can be omitted, which is effective in simplifying the configuration of the Francis type hydraulic machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す水力機械の断
面図、第2図は他の実施例を示す水力機械の断面
図、第3図は中間シールを有するランナの場合の
背圧室圧力分布図、第4図は中間シールのないラ
ンナの場合の背圧室圧力分布図である。 2……上カバ、3……ランナ、6……主軸、7
……主軸受、10……給水管、11……油冷却
管、12……油槽、13……排水管、14……外
側背圧室、15……内側背圧室。
Fig. 1 is a sectional view of a hydraulic machine showing one embodiment of the present invention, Fig. 2 is a sectional view of a hydraulic machine showing another embodiment, and Fig. 3 is a back pressure chamber pressure in the case of a runner with an intermediate seal. Distribution diagram, FIG. 4 is a back pressure chamber pressure distribution diagram in the case of a runner without an intermediate seal. 2...Top cover, 3...Runner, 6...Main shaft, 7
... Main bearing, 10 ... Water supply pipe, 11 ... Oil cooling pipe, 12 ... Oil tank, 13 ... Drain pipe, 14 ... Outer back pressure chamber, 15 ... Inner back pressure chamber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] フランシス形ランナを有する水力機械の主軸を
回転自在に案内して支承する主軸受を上カバに固
定し、この主軸受を油冷却管を内蔵した油槽内の
潤滑油に浸し、この油冷却管の給水側と前記ラン
ナの背圧室とを給水管で連通させて前記油冷却管
に冷却水が流入するようにした軸受冷却装置にお
いて、前記油冷却管の排水側と前記ランナの背圧
室とを前記給水管より内側の背圧室に開口した排
水管によつて連通させたことを特徴とする水力機
械の軸受冷却装置。
The main bearing, which rotatably guides and supports the main shaft of a hydraulic machine with a Francis-type runner, is fixed to the upper cover, and the main bearing is immersed in lubricating oil in an oil tank containing a built-in oil cooling pipe. In the bearing cooling device, the water supply side and the back pressure chamber of the runner are communicated with each other through a water supply pipe so that cooling water flows into the oil cooling pipe, wherein the water supply side of the oil cooling pipe and the back pressure chamber of the runner are connected to each other. A bearing cooling device for a hydraulic machine, characterized in that the water supply pipe is connected to a back pressure chamber inside the water supply pipe through a drain pipe that opens to the back pressure chamber.
JP1983160046U 1983-10-18 1983-10-18 Bearing cooling system for hydraulic machinery Granted JPS6069369U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983160046U JPS6069369U (en) 1983-10-18 1983-10-18 Bearing cooling system for hydraulic machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983160046U JPS6069369U (en) 1983-10-18 1983-10-18 Bearing cooling system for hydraulic machinery

Publications (2)

Publication Number Publication Date
JPS6069369U JPS6069369U (en) 1985-05-16
JPH021498Y2 true JPH021498Y2 (en) 1990-01-16

Family

ID=30352139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983160046U Granted JPS6069369U (en) 1983-10-18 1983-10-18 Bearing cooling system for hydraulic machinery

Country Status (1)

Country Link
JP (1) JPS6069369U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896063U (en) * 1981-12-23 1983-06-29 富士電機株式会社 Main bearing cooling water supply system for hydraulic machinery

Also Published As

Publication number Publication date
JPS6069369U (en) 1985-05-16

Similar Documents

Publication Publication Date Title
JPH021498Y2 (en)
US3724966A (en) Hydraulic machine crown aeration
JPS5920572A (en) Water lubricated bearing for hydraulic turbine
JP4139568B2 (en) Vertical valve turbine
US3985464A (en) Spinning reserve device for a water-wheel
CN2926565Y (en) Push bearing oil-tank collector of hydraulic-turbine generator
US2733892A (en) Thrust bearings
CN201554590U (en) Self-aligning horizontal-axis drum-type turbine guide bearing for tubular turbine
US3172640A (en) Dry band francis turbines
JPS62131979A (en) Water turbine
US2906570A (en) Suspension bearing arrangement for turbo sets in hydraulic power plants
CN207420888U (en) The main cooling water pump of used in nuclear power station
US1787088A (en) Turbo pump
US1362304A (en) Hydromotive unit
JPH0237250Y2 (en)
JPS6215496Y2 (en)
CN211449052U (en) Vertical multi-stage centrifugal pump
JPS6218708Y2 (en)
JPH0339616Y2 (en)
CN220930184U (en) Drilling platform is with novel hydraulic turntable including seal structure
US1990045A (en) Hydraulic turbine
JP3001568B1 (en) Lubricating oil cooling device for water wheel bearing
JPS5840032B2 (en) Vertical water-lubricated bearing device for hydraulic machinery
SU445758A1 (en) Guide bearing on fluid lubricated hydraulic machine
SU307680A1 (en)