JP2003343481A - Pump - Google Patents
PumpInfo
- Publication number
- JP2003343481A JP2003343481A JP2002147820A JP2002147820A JP2003343481A JP 2003343481 A JP2003343481 A JP 2003343481A JP 2002147820 A JP2002147820 A JP 2002147820A JP 2002147820 A JP2002147820 A JP 2002147820A JP 2003343481 A JP2003343481 A JP 2003343481A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- dynamic pressure
- pump
- rotating body
- dlc film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/0465—Ceramic bearing designs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/046—Bearings
- F04D29/047—Bearings hydrostatic; hydrodynamic
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷却水などの液体
を圧送するポンプに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pump for pumping a liquid such as cooling water under pressure.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】液体を
循環させるポンプには、その循環液の循環流路上に配置
されたハウジング内に、回転軸とこれに取り付けられた
インペラ(回転翼)とを備えた回転体を配置し、この回
転体を電動モータ等により回転させることでハウジング
内から上記循環流路内へ循環液を流すものがある。とこ
ろで、上記のようなポンプでは、その回転体の回転軸を
支持する軸受をハウジング内で液中に没した状態で使用
する必要がある。このような軸受には、従来、転がり軸
受やすべり軸受が用いられているが、それらの軸受構成
部材に、上記循環液が水を含む場合には当該液による腐
食が生じることがあり、軸受寿命、ひいてはポンプ寿命
が短くなることがあった。また、セラミックス材料を用
いて軸受構成部材を形成した軸受を使用することも提案
されているが、上記水を含む循環液に対する耐食性や液
中使用での耐摩耗性や摺動特性が十分でなく、ポンプ寿
命を向上することは難しいものであった。2. Description of the Related Art In a pump for circulating a liquid, a rotary shaft and an impeller (rotary vane) attached to the rotary shaft are provided in a housing arranged on a circulating flow path of the circulating liquid. There is a type in which a rotator provided with is disposed and the circulated liquid is caused to flow from the inside of the housing into the circulation flow path by rotating the rotator by an electric motor or the like. By the way, in the pump as described above, it is necessary to use the bearing that supports the rotating shaft of the rotating body in a state of being immersed in the liquid in the housing. Conventionally, rolling bearings and slide bearings have been used for such bearings, but when the circulating fluid contains water, corrosion of the bearing fluid may occur if the circulating fluid contains water. As a result, the pump life could be shortened. It has also been proposed to use a bearing in which a bearing component is formed of a ceramic material, but the corrosion resistance to the circulating liquid containing water, the wear resistance in liquid use, and the sliding property are not sufficient. It was difficult to improve the pump life.
【0003】上記のような従来の問題点に鑑み、本発明
は、回転体を支持する軸受の耐食性や耐摩耗性などを向
上することができ、よって長寿命化を図ることができる
ポンプを提供することを目的とする。In view of the above-mentioned conventional problems, the present invention provides a pump which can improve the corrosion resistance and wear resistance of a bearing that supports a rotating body and thus can prolong the service life. The purpose is to do.
【0004】[0004]
【課題を解決するための手段】本発明のポンプは、水を
含んだ液体を圧送する回転体と、前記液体を潤滑流体と
して前記回転体を回転自在に支持する動圧軸受とを備え
たポンプであって、前記動圧軸受の軸受面と、前記回転
体の少なくとも前記軸受面に対向する対向部分とのう
ち、少なくとも一方の表面にダイヤモンドライクカーボ
ン膜を形成するとともに、他方を前記液体に対する耐食
性をもつ耐食材により構成したことを特徴とするもので
ある(請求項1)。A pump of the present invention is provided with a rotary body for pumping a liquid containing water, and a dynamic pressure bearing for rotatably supporting the rotary body using the liquid as a lubricating fluid. Of the bearing surface of the dynamic pressure bearing, and at least one of the facing portion of the rotating body facing the bearing surface, a diamond-like carbon film is formed on at least one surface, and the other is corrosion resistant to the liquid. It is characterized by being constituted by a food-resistant material having (claim 1).
【0005】上記のように構成されたポンプにおける動
圧軸受は、その軸受面にダイヤモンドライクカーボン膜
が形成されるかまたは上記耐食材により構成されるの
で、当該軸受の耐食性を向上することができる。また、
軸受面または上記回転体の少なくとも軸受面に対向する
対向部分の表面にダイヤモンドライクカーボン膜を形成
しているので、回転開始時などでの当該動圧軸受の回転
体に対する耐摩耗性及び摺動特性を向上することができ
る。In the dynamic pressure bearing of the pump constructed as described above, the diamond-like carbon film is formed on the bearing surface of the pump or the above-mentioned corrosion resistant material is used, so that the corrosion resistance of the bearing can be improved. . Also,
Since a diamond-like carbon film is formed on the bearing surface or at least the surface of the facing portion of the rotating body that faces the bearing surface, wear resistance and sliding characteristics of the dynamic pressure bearing against the rotating body at the start of rotation, etc. Can be improved.
【0006】また、上記ポンプ(請求項1)において、
前記動圧軸受と同軸上で前記回転体を回転支持するタッ
チダウン軸受を備えてもよい(請求項2)。この場合、
ポンプ起動または停止時に、上記タッチダウン軸受が回
転体を支持することにより、上記動圧軸受の回転体との
接触を防ぐことができる。Further, in the above pump (claim 1),
A touchdown bearing that rotatably supports the rotating body coaxially with the dynamic pressure bearing may be provided (claim 2). in this case,
When the pump is started or stopped, the touchdown bearing supports the rotating body, so that the contact of the dynamic pressure bearing with the rotating body can be prevented.
【0007】[0007]
【発明の実施の形態】以下、本発明のポンプの好ましい
実施形態について、図面を参照しながら説明する。尚、
以下の説明では、水を含む液体として、水とエチレング
リコールとの混合液からなる冷却水(不凍液)を流路内
で循環させる軸流式のポンプを構成した場合を例示して
説明する。図1は本発明の一実施形態に係るポンプの構
成を示す断面図であり、図2は図1に示した動圧軸受の
動圧発生部とこれに対向する回転軸の対向部分とを示す
拡大断面図である。図1及び2において、本実施形態の
ポンプ1は、筒状のハウジング2と、このハウジング2
の吸入口2a側から吐出口2b側に上記冷却水を圧送す
る回転体3とを備えている。ハウジング2は上記流路の
途中に配置されたものであり、その吸入口2a及び吐出
口2bが流路を構成する配管(図示せず)に接続されて
いる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the pump of the present invention will be described below with reference to the drawings. still,
In the following description, a case where an axial flow type pump that circulates cooling water (antifreeze liquid) composed of a mixed liquid of water and ethylene glycol as a liquid containing water in a flow path is exemplified. FIG. 1 is a sectional view showing a structure of a pump according to an embodiment of the present invention, and FIG. 2 shows a dynamic pressure generating portion of the dynamic pressure bearing shown in FIG. 1 and a facing portion of a rotary shaft facing the dynamic pressure generating portion. It is an expanded sectional view. 1 and 2, a pump 1 according to this embodiment includes a cylindrical housing 2 and a housing 2
And a rotating body 3 for pumping the cooling water from the suction port 2a side to the discharge port 2b side. The housing 2 is arranged in the middle of the flow path, and its suction port 2a and discharge port 2b are connected to a pipe (not shown) forming the flow path.
【0008】上記回転体3は、軸長の回転軸4と、この
回転軸4の一端部側の外周面4aに一体回転可能に取り
付けられたインペラ5とを備えており、上記回転軸4が
電動モータ7により図のR方向に回転駆動されたとき
に、回転体3は上記吸入口2aから冷却水をハウジング
2内に導入し、その冷却水を図1の矢印Fにて示すよう
にハウジング2内を流して、上記吐出口2bから冷却水
を送り出す。上記回転軸4及びインペラ5は、冷却水に
対する耐食性に優れた金属、例えばオーステナイト系ス
テンレス鋼(SUS304等)により構成されたもので
あり、回転体3として必要な強度を有している。また、
回転軸4の一端部側の先端部には球状部4bが形成され
ており、この球状部4bがハウジング2内に固定された
円盤状のピボット板6の球面座6aに接した状態で、回
転体3が回転するようになっている。このピボット板6
は、例えば上記ステンレス鋼により構成されたものであ
り、回転体3が冷却水を圧送したときに当該回転体3が
図1の左側に移動するのを規制している。また、このピ
ボット板6には、冷却水を流すための複数の開口6bが
周方向に沿って適宜設けられており、ポンプ効率の低下
を極力抑えるようになっている。The rotating body 3 includes a rotating shaft 4 having an axial length and an impeller 5 integrally rotatably mounted on an outer peripheral surface 4a of the rotating shaft 4 on one end side thereof. When rotated by the electric motor 7 in the R direction in the drawing, the rotating body 3 introduces the cooling water into the housing 2 through the suction port 2a, and the cooling water is supplied to the housing as shown by an arrow F in FIG. Then, the cooling water is discharged from the discharge port 2b. The rotating shaft 4 and the impeller 5 are made of a metal having excellent corrosion resistance against cooling water, for example, austenitic stainless steel (SUS304 or the like), and have the strength required for the rotating body 3. Also,
A spherical portion 4b is formed at the tip end on the one end side of the rotating shaft 4, and the spherical portion 4b rotates in a state of being in contact with the spherical seat 6a of the disk-shaped pivot plate 6 fixed in the housing 2. The body 3 is adapted to rotate. This pivot board 6
Is made of, for example, the above-mentioned stainless steel, and restricts the rotating body 3 from moving to the left side in FIG. 1 when the rotating body 3 pumps cooling water. Further, the pivot plate 6 is appropriately provided with a plurality of openings 6b for flowing the cooling water along the circumferential direction so as to suppress the decrease in pump efficiency as much as possible.
【0009】上記電動モータ7は、例えばハウジング2
の外部に配置されたステータ巻線7aと、ハウジング2
の内部に配置され、上記回転軸4に固定された筒状のモ
ータロータ7bとを備えている。詳細には、モータロー
タ7bは、回転軸4が圧入された円筒部7cと、この円
筒部7cとの間で周方向に所定間隔をおいて等配された
複数のリブ7dとにより、回転軸4の軸方向中央部分に
一体回転可能に取り付けられており、当該ロータ7bの
一端開口部7b1から流入した冷却水が複数のリブ7d
の各間を通って他端開口部7b2から流出するようにな
っている。また、これらのモータロータ7b、円筒部7
c、及びリブ7dは、例えば上記オーステナイト系ステ
ンレス鋼により構成されたものであり、必要な強度及び
上記冷却水に対する耐食性が確保されている。また、モ
ータロータ7bの外周側には、樹脂モールドされること
により防水性が確保された永久磁石(図示せず)が設け
られている。そして、この電動モータ7は、そのステー
タ巻線7aに通電することによって回転磁界を発生さ
せ、その回転磁界と上記永久磁石の磁界との相互作用に
より回転体3を所望の回転速度で回転させる。The electric motor 7 is, for example, a housing 2
The stator winding 7a arranged outside the housing and the housing 2
And a cylindrical motor rotor 7b fixed inside the rotary shaft 4. More specifically, the motor rotor 7b includes a cylindrical portion 7c into which the rotating shaft 4 is press-fitted, and a plurality of ribs 7d that are equidistantly arranged at predetermined intervals in the circumferential direction between the cylindrical portion 7c. Is attached to the central portion in the axial direction of the rotor 7b so that the cooling water flowing from the one end opening 7b1 of the rotor 7b can have a plurality of ribs 7d.
It is configured to flow out from the other end opening portion 7b2 through each of the above. Also, these motor rotor 7b and cylindrical portion 7
The c and the rib 7d are made of, for example, the above-mentioned austenitic stainless steel, and ensure the required strength and the corrosion resistance against the cooling water. In addition, a permanent magnet (not shown) is provided on the outer peripheral side of the motor rotor 7b, the waterproof property being ensured by resin molding. The electric motor 7 energizes the stator winding 7a to generate a rotating magnetic field, and the interaction between the rotating magnetic field and the magnetic field of the permanent magnet causes the rotating body 3 to rotate at a desired rotational speed.
【0010】また、上記回転体3は、モータロータ7b
を左右方向で挟むように設けられた一対の動圧軸受8に
より、上記ハウジング2内で回転自在に支持されてい
る。上記動圧軸受8は、上記オーステナイト系ステンレ
ス鋼などの冷却水に対する優れた耐食性をもつ金属素材
からなる耐食材により構成されたものであり、ハウジン
グ2に固定された円環状の固定部8aと、この固定部8
aと同芯円上に設けられ、内周面8b1にスパイラルパ
ターンやへリングボーンパターン等の帯状の動圧発生用
溝8b2(図2)が形成された円環状の動圧発生部8b
とを備えている。また、動圧軸受8は、図1の矢印F1
にて示すように、ハウジング2内を流れる冷却水を潤滑
流体として、その動圧発生用溝8b2とこれに対向する
回転軸外周面4aとの間に、回転体3の回転に応じた動
圧を発生させることにより、回転体3をラジアル方向に
支承する。また、この動圧軸受8では、上記固定部8a
と動圧発生部8bとの間で周方向に沿って等間隔に複数
の開口8cが設けられており、これらの開口8cに冷却
水を通してポンプ効率の低下を極力抑えるようになって
いる。The rotating body 3 is composed of a motor rotor 7b.
Is rotatably supported in the housing 2 by a pair of dynamic pressure bearings 8 which are provided so as to sandwich in the left-right direction. The dynamic pressure bearing 8 is made of a food material made of a metal material having excellent corrosion resistance to cooling water, such as the austenitic stainless steel, and has an annular fixing portion 8a fixed to the housing 2. This fixed part 8
An annular dynamic pressure generating portion 8b which is provided on the same concentric circle as a and has a strip-shaped dynamic pressure generating groove 8b2 (FIG. 2) such as a spiral pattern or a herringbone pattern formed on the inner peripheral surface 8b1.
It has and. Further, the dynamic pressure bearing 8 is indicated by an arrow F1 in FIG.
As shown in FIG. 3, the cooling water flowing in the housing 2 is used as a lubricating fluid, and a dynamic pressure corresponding to the rotation of the rotating body 3 is generated between the dynamic pressure generating groove 8b2 and the rotating shaft outer peripheral surface 4a facing the dynamic pressure generating groove 8b2. Is generated to support the rotating body 3 in the radial direction. Further, in this dynamic pressure bearing 8, the fixed portion 8a is
A plurality of openings 8c are provided at equal intervals along the circumferential direction between and the dynamic pressure generating portion 8b, and cooling water is passed through these openings 8c to suppress a decrease in pump efficiency as much as possible.
【0011】また、図2に示すように、上記動圧発生部
8bと対向する回転軸外周面4aの上記対向部分の表面
にはダイヤモンドライクカーボン膜(以下、「DLC
膜」ともいう)10が形成されている。上記DLC膜1
0は、例えば炭素をターゲットとしたスパッタリング法
により、1.0〜5.0μm程度の膜厚で上記対向部分
の表面上に成膜されたものであり、ビッカース硬度10
00〜2000(Hv)程度の硬さを有する硬質膜を構
成している。このDLC膜10の表面粗さは例えば中心
線平均粗さ(Ra)で0.1μm以下に管理されてい
る。また、このDLC膜10は、所定の密着力(少なく
とも40N、好ましくは60N)で対向部分の上記表面
に接合されており、この表面から剥離しないようになっ
ている。さらに、このDLC膜10は、冷却水に対する
優れた耐食性を有するとともに、当接する相手材への攻
撃性及び摩擦係数が低く、しかも耐摩耗性に優れ、若干
の自己潤滑性を有する皮膜であり、回転体3の回転開始
時や停止時などにおいて動圧軸受8と回転体3の回転軸
外周面4aとが接触するときに動圧軸受8の回転軸外周
面4aとの間での耐摩耗性及び摺動特性を向上させる。Further, as shown in FIG. 2, a diamond-like carbon film (hereinafter referred to as "DLC") is formed on the surface of the facing portion of the outer peripheral surface 4a of the rotating shaft which faces the dynamic pressure generating portion 8b.
A film 10) is formed. The DLC film 1
0 is a film having a film thickness of about 1.0 to 5.0 μm formed on the surface of the facing portion by, for example, a sputtering method using carbon as a target, and has a Vickers hardness of 10
A hard film having a hardness of about 00 to 2000 (Hv) is formed. The surface roughness of the DLC film 10 is controlled to, for example, a center line average roughness (Ra) of 0.1 μm or less. The DLC film 10 is bonded to the surface of the facing portion with a predetermined adhesive force (at least 40 N, preferably 60 N) so that it does not peel off from the surface. Further, the DLC film 10 is a film having excellent corrosion resistance against cooling water, low attacking property against contacting mating material and low friction coefficient, and also excellent in abrasion resistance, and having some self-lubricating property, Wear resistance between the dynamic pressure bearing 8 and the rotary shaft outer peripheral surface 4a of the rotary body 3 when the dynamic pressure bearing 8 and the rotary shaft outer peripheral surface 4a of the rotary body 3 contact each other when the rotary body 3 starts rotating or stops. And improve sliding characteristics.
【0012】上記スパッタリング法によるDLC膜10
の形成では、アルゴンガス、炭化水素ガスなどの導入ガ
スが導入された蒸着室内の圧力を10-3〜10(Tor
r)程度とし、放電電圧100〜2000(V)、電流
2〜10(A)の放電処理を行うことにより、ターゲッ
ト面である上記対向部分の表面に炭素を蒸着する。これ
により、上記膜厚、硬さ等を有し、グラファイト(SP
2)構造とダイヤモンド(SP3)構造とが共存した非晶
質構造からなるDLC膜10が上記対向部分の表面上に
形成される。尚、このDLC膜10を形成するときに
は、上記ターゲット面以外の外周面4aなどの回転軸表
面はマスク部材によりマスキングが施され、炭素が付着
しないようになっている。また、上記DLC膜10の膜
厚が1.0μm未満であれば耐摩耗性が不足し、5.0
μmを超えると、コストが膨大となるだけでなく、膜厚
が厚すぎることによる内部応力が大きくなり剥離の原因
となる。それ故、DLC膜10の好ましい膜厚は、1.
0〜5.0μmであり、さらに好ましくは3.0μmで
ある。また、DLC膜10の上記表面に対する密着力が
40N未満であると、当該DLC膜10の剥離を生じや
すくなる。また、DLC膜10の硬さがビッカース硬度
(Hv)で1000未満であれば耐摩耗性が不足し、2
000を超えると、内部応力が大きくなり剥離の原因と
なる。DLC film 10 formed by the above-mentioned sputtering method.
In forming the film, the pressure in the vapor deposition chamber into which the introduction gas such as argon gas or hydrocarbon gas is introduced is 10 −3 to 10 (Tor).
r), and a discharge voltage of 100 to 2000 (V) and a current of 2 to 10 (A) are discharged to deposit carbon on the surface of the facing portion which is the target surface. As a result, the graphite (SP
2 ) A DLC film 10 having an amorphous structure in which a diamond (SP 3 ) structure and a diamond structure coexist is formed on the surface of the facing portion. When the DLC film 10 is formed, the surface of the rotating shaft such as the outer peripheral surface 4a other than the target surface is masked by a mask member to prevent carbon from adhering. Further, if the thickness of the DLC film 10 is less than 1.0 μm, the abrasion resistance is insufficient and 5.0
If it exceeds μm, not only the cost becomes enormous, but also the internal stress increases due to the excessively large film thickness, which causes peeling. Therefore, the preferable film thickness of the DLC film 10 is 1.
The thickness is 0 to 5.0 μm, and more preferably 3.0 μm. If the adhesion of the DLC film 10 to the surface is less than 40N, the DLC film 10 is likely to peel off. Further, if the hardness of the DLC film 10 is less than 1000 in Vickers hardness (Hv), abrasion resistance is insufficient, and 2
If it exceeds 000, the internal stress increases and causes peeling.
【0013】尚、上記のスパッタリング法以外に、ベン
ゼンを原料ガスとしたイオンビーム蒸着によるイオンプ
レーティング法等の他の物理蒸着法(PVD)、化学蒸
着法(CVD)、あるいはプラズマジェットを利用した
プラズマ溶射などの溶射法を用いて、DLC膜10を形
成してもよい。また、ローレット加工等により、上記対
向部分の表面を粗面に仕上げることでDLC膜10が形
成される表面への密着性(密着強度)を高めてもよい。
但し、上記スパッタリング法等のPVDは、物理的メカ
ニズムを利用した成膜法であることから、下地(回転軸
4)の材料に左右されることがなく、他の成膜法に比べ
て下地に対する高い密着性を容易に確保できるので、D
LC膜10の形成に最適である。また、この説明以外
に、タングステン等をDLC膜10に含有させたり、ク
ロム膜等をDLC膜10と表面との間に介在させたりし
て、DLC膜10の回転軸表面に対する密着強度を高め
る構成でもよい。In addition to the above-mentioned sputtering method, other physical vapor deposition method (PVD) such as ion plating method by ion beam vapor deposition using benzene as a source gas, chemical vapor deposition method (CVD), or plasma jet is used. The DLC film 10 may be formed by using a thermal spraying method such as plasma spraying. Alternatively, the surface of the facing portion may be roughened by knurling or the like to improve the adhesion (adhesion strength) to the surface on which the DLC film 10 is formed.
However, since PVD such as the above-mentioned sputtering method is a film forming method using a physical mechanism, it does not depend on the material of the underlayer (rotating shaft 4), and the PVD with respect to the underlayer is different from other film forming methods. Since high adhesion can be easily secured, D
It is most suitable for forming the LC film 10. In addition to this description, the DLC film 10 may be made to contain tungsten or the like, or a chromium film or the like may be interposed between the DLC film 10 and the surface to enhance the adhesion strength of the DLC film 10 to the surface of the rotating shaft. But it's okay.
【0014】また、図1においては、上記動圧発生部8
bと回転軸4との隙間を誇張して図示しているが、実際
の隙間の寸法は数十μm程度に設定されており、動圧発
生部8bがDLC膜10との間でキャビテーションとこ
れに起因する異常音及び異常振動等を生じることなく、
上記動圧を適切に発生させて回転体3を安定して支持す
るようになっている。Further, in FIG. 1, the dynamic pressure generating section 8 is provided.
Although the gap between b and the rotating shaft 4 is exaggerated in the drawing, the actual size of the gap is set to about several tens of μm, and the dynamic pressure generating portion 8b and cavitation between the DLC film 10 and Without causing abnormal noise and vibration due to
The dynamic pressure is appropriately generated to stably support the rotating body 3.
【0015】以上のように、本実施形態のポンプ1で
は、上記金属素材からなる耐食材により動圧軸受8を構
成しているので、当該軸受8の冷却水に対する耐食性を
向上することができる。また、回転軸外周面4aの動圧
軸受8と対向する対向部分に上記DLC膜10を形成し
て、回転体3の回転開始時などでの動圧軸受8の回転軸
外周面4aとの間での耐摩耗性及び摺動特性を向上させ
るので、冷却水に対する耐食性を向上することができる
点とも相まって、動圧軸受8は長期間にわたって回転体
3を高精度に支持することができ、当該動圧軸受8の寿
命、ひいてはポンプ1の寿命を長寿命なものとすること
ができる。さらに、ポンプ1の循環水である冷却水を潤
滑流体として用いた動圧軸受8によって回転体3を支持
させているので、グリースが封入された転がり軸受を用
いた場合と異なり、軸受内部への循環水の浸入に起因す
るグリースの流出やその粘度低下、劣化等が発生するこ
とがなく、循環水の汚染及び軸受性能の低下などの発生
を防いだ高性能で環境性に優れ、かつ長期間にわたって
回転体3の回転精度を維持することができるエンジン冷
却用等のポンプを容易に構成することができる。As described above, in the pump 1 of this embodiment, since the dynamic pressure bearing 8 is made of the corrosion resistant material made of the above-mentioned metal material, the corrosion resistance of the bearing 8 against the cooling water can be improved. Further, the DLC film 10 is formed on a portion of the outer peripheral surface 4a of the rotary shaft that faces the dynamic bearing 8 so that the DLC film 10 is formed between the outer peripheral surface 4a of the rotary shaft 4a of the dynamic bearing 8 when the rotating body 3 starts rotating. Since the wear resistance and the sliding property at the same time are improved, the dynamic pressure bearing 8 can support the rotating body 3 with high precision for a long period of time, together with the point that the corrosion resistance against cooling water can be improved. The life of the dynamic pressure bearing 8 and thus the life of the pump 1 can be extended. Further, since the rotating body 3 is supported by the dynamic pressure bearing 8 using the cooling water which is the circulating water of the pump 1 as the lubricating fluid, unlike the case where the rolling bearing in which the grease is filled is used, Grease does not flow out due to infiltration of circulating water, its viscosity does not decrease, and deterioration does not occur, and it prevents contamination of circulating water and deterioration of bearing performance, and is highly environmentally friendly and long-lasting. It is possible to easily configure a pump for cooling the engine or the like that can maintain the rotation accuracy of the rotating body 3 throughout.
【0016】尚、本発明の発明者等による検証試験によ
れば、回転体3を10000rpmで回転させて、60
℃の水を循環供給するポンプで6ヶ月以上連続運転させ
ても、動圧軸受8及びポンプ1に不具合発生の兆候は全
く現れておらず、ポンプ寿命を格段に延ばせることが実
証されている。According to a verification test conducted by the inventors of the present invention, the rotating body 3 was rotated at 10,000 rpm to obtain 60
Even if a pump that circulates water at a temperature of 0 ° C. is continuously operated for 6 months or longer, no signs of failure have appeared in the dynamic pressure bearing 8 and the pump 1, and it has been proved that the pump life can be significantly extended.
【0017】また、本実施形態の説明では、回転軸4の
外周面4aの動圧軸受8に対向する対向部分の表面にD
LC膜10を形成する構成について説明したが、本発明
はこれに限定されるものではなく、回転体3の少なくと
も動圧軸受8に対向する対向部分の表面にDLC膜10
を形成するものであればよく、回転軸4の外周面4a全
面にわたってDLC膜10を形成する構成でもよい。こ
のように構成した場合、当該DLC膜10の耐食性によ
り回転軸全体の耐食性を向上できる。Further, in the description of the present embodiment, the outer peripheral surface 4a of the rotary shaft 4 has a D portion on the surface thereof facing the dynamic pressure bearing 8.
Although the configuration for forming the LC film 10 has been described, the present invention is not limited to this, and the DLC film 10 is formed on the surface of at least the facing portion of the rotating body 3 facing the dynamic pressure bearing 8.
However, the DLC film 10 may be formed over the entire outer peripheral surface 4a of the rotating shaft 4. With such a configuration, the corrosion resistance of the DLC film 10 can improve the corrosion resistance of the entire rotating shaft.
【0018】また、上記の説明では、モータロータ7b
を左右方向で挟むように、一対の動圧軸受8を設けた構
成について説明したが、動圧軸受8の形状、設置数や設
置箇所、またはDLC膜10の成膜箇所、あるいはイン
ペラ5の形状や個数などの回転体3の構成は上記のもの
に何等限定されない。具体的にいえば、上記一対の動圧
軸受8に代えて、図3及び4に示すように、モータロー
タ7bの外周面に対向するようハウジング2の内周面に
固定された筒状のスリーブ部材18aによって動圧軸受
18を構成して、回転体3を回転自在に支持する構成で
もよい。上記スリーブ部材18aは、動圧軸受8と同様
に、上記オーステナイト系ステンレス鋼などの金属素材
からなる耐食材によって構成されたものであり、当該ス
リーブ部材18aには、モータロータ7bの対向する外
周面7b3との対向面に回転体3の回転に応じた所望の
動圧を発生させる動圧発生用溝18a2が内周面18a
1に形成されている。また、図4に示すように、モータ
ロータ7bの外周面7b3の表面上には、上記DLC膜
10が形成されている。尚、上記とは逆に、モータロー
タ7bの外周面7b3に動圧発生用溝を設け、スリーブ
部材18aには同溝を設けない構成としてもよい。In the above description, the motor rotor 7b
Although the configuration in which the pair of dynamic pressure bearings 8 are provided so as to sandwich the two in the left-right direction has been described, the shape of the dynamic pressure bearings 8, the number of installations or installation locations, the deposition location of the DLC film 10, or the shape of the impeller 5 are described. The configuration of the rotating body 3 such as the number and the number thereof is not limited to the above. Specifically, instead of the pair of dynamic pressure bearings 8, as shown in FIGS. 3 and 4, a cylindrical sleeve member fixed to the inner peripheral surface of the housing 2 so as to face the outer peripheral surface of the motor rotor 7b. The dynamic pressure bearing 18 may be configured by 18a to rotatably support the rotating body 3. Similar to the dynamic pressure bearing 8, the sleeve member 18a is made of a food material made of a metal material such as the austenitic stainless steel, and the sleeve member 18a has an outer peripheral surface 7b3 facing the motor rotor 7b. A dynamic pressure generating groove 18a2 for generating a desired dynamic pressure according to the rotation of the rotating body 3 is provided on the surface facing the inner peripheral surface 18a.
1 is formed. Further, as shown in FIG. 4, the DLC film 10 is formed on the surface of the outer peripheral surface 7b3 of the motor rotor 7b. Note that, conversely to the above, a configuration may be adopted in which the groove for dynamic pressure generation is provided on the outer peripheral surface 7b3 of the motor rotor 7b and the groove is not provided on the sleeve member 18a.
【0019】また、図3においては、スリーブ部材18
aと上記モータロータ7bとの隙間を誇張して図示して
おり、スリーブ部材18aとモータロータ7bの最外周
部である上記DLC膜10との隙間は数十μm程度であ
り、図1に示した場合と同様に、スリーブ部材18aが
DLC膜10との間でキャビテーションとこれに起因す
る異常音及び異常振動等を生じることなく、上記動圧を
適切に発生させて回転体3を安定して支持するようにな
っている。また、上記耐食材によりスリーブ部材18a
を構成するとともに、このスリーブ部材18aに対向す
るモータロータ7bの表面にDLC膜10を形成したこ
とから、動圧軸受18は図1に示した動圧軸受8と同様
な効果を得ることができる。Further, in FIG. 3, the sleeve member 18
The gap between a and the motor rotor 7b is exaggerated in the drawing, and the gap between the sleeve member 18a and the DLC film 10, which is the outermost peripheral portion of the motor rotor 7b, is about several tens of μm. Similarly to the above, the sleeve member 18a appropriately generates the dynamic pressure and stably supports the rotating body 3 without causing cavitation between the DLC film 10 and the cavitation and the abnormal noise and the abnormal vibration due to the cavitation. It is like this. In addition, the sleeve member 18a is made of the above-mentioned food material.
In addition, since the DLC film 10 is formed on the surface of the motor rotor 7b facing the sleeve member 18a, the dynamic pressure bearing 18 can obtain the same effect as that of the dynamic pressure bearing 8 shown in FIG.
【0020】また、この実施形態では、図3に示すよう
に、モータロータ7bの内部に一対のインペラ5を設
け、これらのインペラ5を介してモータロータ7bと回
転軸4とを一体回転可能に連結するとともに、上記動圧
軸受18と同軸上で回転体3を回転支持する一対のタッ
チダウン軸受12をハウジング2内に設けている。詳細
には、インペラ5の一端(外周)側がモータロータ7b
の内周面側に固定され、他端(内周)が回転軸4の外周
面側に一体回転可能に取り付けられている。これによ
り、図1に示した円筒部7c及びリブ7dを割愛するこ
とができるとともに、インペラ5をモータロータの7b
の内部に設けたことから、回転体3、ひいてはポンプ1
の軸方向長さを容易に短くすることができる。Further, in this embodiment, as shown in FIG. 3, a pair of impellers 5 are provided inside the motor rotor 7b, and the motor rotor 7b and the rotary shaft 4 are integrally rotatably connected to each other via the impellers 5. In addition, a pair of touchdown bearings 12 that rotatably support the rotating body 3 coaxially with the dynamic pressure bearings 18 are provided in the housing 2. Specifically, one end (outer periphery) side of the impeller 5 is the motor rotor 7b.
Is fixed to the inner peripheral surface side and the other end (inner circumference) is integrally rotatably attached to the outer peripheral surface side of the rotating shaft 4. As a result, the cylindrical portion 7c and the rib 7d shown in FIG. 1 can be omitted, and the impeller 5 can be attached to the motor rotor 7b.
Since it is provided inside the rotor, the rotating body 3, and thus the pump 1
The axial length of can be easily shortened.
【0021】また、上記タッチダウン軸受12は、上記
耐食材からなる円筒状の部材により構成されたものであ
り、同耐食材により構成されたドーナツ状の取付部材1
1を介してハウジング2内に配置されている。上記取付
部材11は、ハウジング2に固定された円環状の固定部
11aと、タッチダウン軸受12が圧入固定されたリン
グ状部11bと、これら固定部11aとリング状部11
bとの間で周方向に沿って等間隔に形成された複数の開
口11cとを備えており、上記の開口11cに冷却水を
通してポンプ効率の低下を極力抑えるようになってい
る。また、上記タッチダウン軸受12の内周面12aと
回転軸4の外周面4aとの離間寸法は、動圧軸受18の
内周面18a1と上記外周面7b3上のDLC膜10と
の間の間隔寸法より、数μm〜数十μm程度小さい値に
設定されており、タッチダウン軸受12は回転体3のラ
ジアル方向の可動範囲を規制するとともに、ポンプ1の
起動時及び停止時などで回転軸4の外周面4aと当接す
ることによって、動圧軸受18のDLC膜10との接触
を防止する。The touchdown bearing 12 is made of a cylindrical member made of the above-mentioned food material, and the doughnut-shaped mounting member 1 made of the same food material.
It is arranged in the housing 2 via 1. The mounting member 11 includes an annular fixing portion 11a fixed to the housing 2, a ring-shaped portion 11b into which the touchdown bearing 12 is press-fitted, and the fixing portion 11a and the ring-shaped portion 11 respectively.
It is provided with a plurality of openings 11c formed at equal intervals in the circumferential direction with respect to b, and cooling water is passed through the openings 11c so as to minimize the reduction in pump efficiency. The distance between the inner peripheral surface 12a of the touchdown bearing 12 and the outer peripheral surface 4a of the rotary shaft 4 is determined by the distance between the inner peripheral surface 18a1 of the dynamic pressure bearing 18 and the DLC film 10 on the outer peripheral surface 7b3. The touch-down bearing 12 restricts the movable range of the rotating body 3 in the radial direction, and is set to a value smaller than the size by several μm to several tens of μm. The contact with the DLC film 10 of the dynamic pressure bearing 18 is prevented by abutting on the outer peripheral surface 4a.
【0022】以上のように、この実施形態では、タッチ
ダウン軸受12を設けて動圧軸受18のDLC膜10と
の接触を防止するので、この接触による摩耗や損傷が動
圧軸受18及びDLC膜10などに発生するのを確実に
防止することができる。また、タッチダウン軸受12が
動圧軸受18とDLC膜10との接触を防止することか
ら、たとえ冷却水漏れ等により動圧軸受18が動圧を発
生させることができないポンプ緊急停止時などでも、当
該軸受18とDLC膜10との衝突を防ぐことができ、
上記動圧発生用溝18a2などに変形や破損を生じるこ
とを防止することができる。また、上記取付部材11及
びタッチダウン軸受12を、動圧軸受8,18と同様に
上記耐食材により構成したことから冷却水に対する耐食
性を向上することができるとともに、タッチダウン軸受
12の回転軸4に対する耐摩耗性及び摺動特性を向上さ
せることができ、タッチダウン軸受12の寿命、ひいて
はポンプ寿命を長寿命化することができる。また、ポン
プ1の起動停止を頻繁に行う用途でタッチダウン軸受1
2が損傷した場合でも、当該ダッチダウン軸受12のみ
交換すればポンプ1の継続使用が可能となる。また、モ
ータロータ7bに向かい合う上記動圧軸受18によって
回転体3を回転自在に支持することから、一対の動圧軸
受8を用いたものに比べて、ポンプ1の軸方向長さを長
くすることなくタッチダウン軸受12を容易にハウジン
グ2内に設けることができる。As described above, in this embodiment, since the touchdown bearing 12 is provided to prevent the contact of the dynamic pressure bearing 18 with the DLC film 10, wear or damage due to this contact causes the dynamic pressure bearing 18 and the DLC film. It is possible to surely prevent the occurrence of such a phenomenon. Further, since the touchdown bearing 12 prevents the contact between the dynamic pressure bearing 18 and the DLC film 10, even when the pump is stopped in an emergency such as when the dynamic pressure bearing 18 cannot generate dynamic pressure due to cooling water leakage, The collision between the bearing 18 and the DLC film 10 can be prevented,
It is possible to prevent the dynamic pressure generating groove 18a2 and the like from being deformed or damaged. Further, since the mounting member 11 and the touchdown bearing 12 are made of the above-mentioned food material like the dynamic pressure bearings 8 and 18, the corrosion resistance to cooling water can be improved and the rotary shaft 4 of the touchdown bearing 12 can be improved. Wear resistance and sliding characteristics can be improved, and the life of the touchdown bearing 12 and thus the pump life can be extended. In addition, the touchdown bearing 1 is used for the purpose of frequently starting and stopping the pump 1.
Even if 2 is damaged, the pump 1 can be continuously used by replacing only the Dutch down bearing 12. Further, since the rotating body 3 is rotatably supported by the dynamic pressure bearing 18 facing the motor rotor 7b, the axial length of the pump 1 can be reduced without increasing the axial length of the pump 1 as compared with the one using the pair of dynamic pressure bearings 8. The touchdown bearing 12 can be easily provided in the housing 2.
【0023】尚、上記の説明では、冷却水を循環させる
軸流式のポンプに適用した場合について説明したが、本
発明は、蒸留水などのピュアな水や化学物質を含んだ水
溶液などの液体を圧送する回転体と、この液体を潤滑流
体として用いて回転体を回転自在に支持する動圧軸受と
を有する、電動ウォータポンプ等の各種ポンプに好適に
用いることができる。また、本発明における動圧軸受に
は、動圧溝を有さないものや、すべり軸受、ステップ軸
受をも含んでいる。また、上記の説明では、オーステナ
イト系ステンレス鋼などの金属素材からなる耐食材によ
り動圧軸受8,18を構成した場合について説明した
が、本発明は、冷却水等の水を含む液体(潤滑流体)に
対する耐食性をもつ耐食材により動圧軸受8,18を構
成するものであれば何等限定されない。具体的には、上
記DLC膜10を軸受用鋼(SUJ2等)の表面に形成
した耐食材により、動圧軸受8,18を構成してもよ
く、このように動圧軸受8,18側にDLC膜10を形
成した場合は、その軸受の耐摩耗性及び摺動特性を向上
することから回転体3側でのDLC膜10の形成を割愛
することができる。また、DLC膜10に代えて、上記
水を含む液体に対する耐食性に優れたニッケル等の金属
皮膜を電気メッキなどによって軸受用鋼などの表面上に
形成した耐食材を用いて、動圧軸受8,18を構成して
もよい。In the above description, the case where the present invention is applied to an axial flow type pump for circulating cooling water has been described. However, the present invention applies pure water such as distilled water or a liquid such as an aqueous solution containing a chemical substance. It can be suitably used for various pumps such as an electric water pump having a rotating body that pumps the liquid and a dynamic pressure bearing that rotatably supports the rotating body by using this liquid as a lubricating fluid. Further, the dynamic pressure bearing in the present invention includes a bearing having no dynamic pressure groove, a slide bearing and a step bearing. Further, in the above description, the case where the dynamic pressure bearings 8 and 18 are made of a corrosion resistant material made of a metal material such as austenitic stainless steel has been described, but the present invention is directed to a liquid containing water such as cooling water (lubricating fluid). ) Is not limited as long as the dynamic pressure bearings 8 and 18 are made of a corrosion resistant material. Specifically, the dynamic pressure bearings 8 and 18 may be made of a corrosion resistant material in which the DLC film 10 is formed on the surface of bearing steel (SUJ2 or the like). When the DLC film 10 is formed, it is possible to omit the formation of the DLC film 10 on the side of the rotating body 3 because the wear resistance and sliding characteristics of the bearing are improved. Further, in place of the DLC film 10, a metal-resistant film such as nickel having excellent corrosion resistance against the liquid containing water is formed on the surface of bearing steel or the like by electroplating or the like, and the dynamic pressure bearing 8, 18 may be configured.
【0024】また、上記の説明では、回転軸4の一端部
側の先端部に球状部4bを設け、この球状部4bをピボ
ット板6の球面座6aに接した状態で回転体3を回転さ
せる構成について説明したが、本発明はこれに限定され
るものではない。例えば上記球状部4bを設けることな
く回転軸4の上記先端部を断面円形状とし、さらに上記
球面座6aの代わりに、ピボット板6の回転軸先端部に
対向する軸方向端面にヘリングボーン状等の動圧発生用
溝を形成して、この溝により発生させた動圧によって回
転体3が冷却水を圧送したときに当該回転体3が図1,
3の左側に移動するのを規制しつつ、軸方向に回転体3
を支承する構成でもよい。このようにピボット板6で回
転体3を軸方向に支承する場合、動圧軸受8,18と同
様に、このピボット板6あるいは球状部4bを上記耐食
材によって構成し、このピボット板6に対向する回転軸
4の先端部表面にDLC膜10を形成することにより、
当該ピボット板6の寿命、ひいてはポンプ寿命を容易に
向上することができる。また、逆に、ピボット板6の表
面にDLC膜10を形成し、対向する回転軸4の先端部
を上記耐食材で形成してもよい。Further, in the above description, the spherical portion 4b is provided at the tip end on the one end side of the rotary shaft 4, and the rotating body 3 is rotated with the spherical portion 4b being in contact with the spherical seat 6a of the pivot plate 6. Although the configuration has been described, the present invention is not limited to this. For example, the tip portion of the rotating shaft 4 is formed into a circular cross section without providing the spherical portion 4b, and instead of the spherical seat 6a, a herringbone shape or the like is formed on the axial end surface of the pivot plate 6 facing the rotating shaft tip portion. When a groove for dynamic pressure generation is formed and the rotor 3 pumps cooling water by the dynamic pressure generated by the groove,
3, while restricting movement to the left of
It may be configured to support. When the rotating body 3 is axially supported by the pivot plate 6 as described above, the pivot plate 6 or the spherical portion 4b is made of the above-described food-resistant material and faces the pivot plate 6 as in the dynamic pressure bearings 8 and 18. By forming the DLC film 10 on the surface of the tip of the rotating shaft 4,
The life of the pivot plate 6 and thus the life of the pump can be easily improved. Alternatively, conversely, the DLC film 10 may be formed on the surface of the pivot plate 6, and the tip of the opposing rotating shaft 4 may be formed of the above-mentioned food material.
【0025】尚、上記各実施形態では、動圧軸受8,1
8の軸受面とこれに対向する回転軸4の対向面のいずれ
か一方にDLC膜10を設けた場合を示したが、両方に
DLC膜10を設けてもよい。一般に、耐摩耗性を重視
する用途では、いずれか一方のみにDLC膜10を設け
た方が好ましいが、他方の面の耐食材として、耐食被膜
としてのDLC膜10を表面に形成した部材を用いるこ
とで、DLC膜10の極めて優れた耐久性を利用でき、
耐食性をより重視する用途で好ましい形態の一つといえ
る。In each of the above embodiments, the dynamic pressure bearings 8, 1
Although the case where the DLC film 10 is provided on either one of the bearing surface of No. 8 and the facing surface of the rotating shaft 4 facing the bearing surface is shown, the DLC film 10 may be provided on both. Generally, in applications where importance is attached to wear resistance, it is preferable to provide the DLC film 10 on only one of them, but a member having the DLC film 10 as a corrosion-resistant film formed on the surface thereof is used as the food material on the other surface. Therefore, the extremely excellent durability of the DLC film 10 can be utilized,
It can be said that this is one of the preferred forms for applications where importance is placed on corrosion resistance.
【0026】[0026]
【発明の効果】以上のように構成された本発明は以下の
効果を奏する。請求項1のポンプによれば、動圧軸受の
水を含む液体に対する耐食性を向上することができると
ともに、回転開始時などでの当該軸受の回転体に対する
耐摩耗性及び摺動特性を向上することができるので、長
期間にわたって回転体を高精度に支持することができ、
軸受寿命、ひいてはポンプ寿命の長寿命化を図ることが
できる。The present invention constructed as described above has the following effects. According to the pump of claim 1, it is possible to improve the corrosion resistance of the hydrodynamic bearing against a liquid containing water, and to improve the wear resistance and sliding characteristics of the bearing against the rotating body at the start of rotation. Since it is possible to support the rotating body with high accuracy for a long period of time,
The bearing life, and eventually the pump life, can be extended.
【0027】請求項2のポンプによれば、上記タッチダ
ウン軸受がポンプ起動または停止時に回転体を支持して
上記動圧軸受の回転体との接触を防ぐことができるの
で、その接触による摩耗などが動圧軸受等に発生するの
を確実に防止することができ、軸受及びポンプの寿命を
延ばすことができる。According to the pump of the second aspect, the touchdown bearing can support the rotating body at the time of starting or stopping the pump to prevent the contact of the dynamic pressure bearing with the rotating body. Can be reliably prevented from occurring in the dynamic pressure bearing and the like, and the life of the bearing and the pump can be extended.
【図1】本発明の一実施形態に係るポンプの構成を示す
断面図である。FIG. 1 is a sectional view showing a configuration of a pump according to an embodiment of the present invention.
【図2】図1に示した動圧軸受の動圧発生部とこれに対
向する回転軸の対向部分とを示す拡大断面図である。2 is an enlarged cross-sectional view showing a dynamic pressure generating portion of the dynamic pressure bearing shown in FIG. 1 and a facing portion of a rotary shaft facing the dynamic pressure generating portion.
【図3】別の実施形態に係るポンプの構成を示す断面図
である。FIG. 3 is a cross-sectional view showing a configuration of a pump according to another embodiment.
【図4】図3に示した動圧軸受の動圧発生部とこれに対
向するモータロータの対向部分とを示す拡大断面図であ
る。4 is an enlarged cross-sectional view showing a dynamic pressure generating portion of the dynamic pressure bearing shown in FIG. 3 and a facing portion of a motor rotor facing the dynamic pressure generating portion.
1 ポンプ 3 回転体 8,18 動圧軸受 10 ダイヤモンドライクカーボン膜(DLC膜) 12 タッチダウン軸受 1 pump 3 rotating bodies 8,18 Dynamic bearing 10 Diamond-like carbon film (DLC film) 12 Touchdown bearing
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 政良 大阪市中央区南船場三丁目5番8号 光洋 精工株式会社内 (72)発明者 瀧井 裕一 大阪市中央区南船場三丁目5番8号 光洋 精工株式会社内 Fターム(参考) 3H022 AA01 BA06 CA11 CA51 DA13 3J011 AA20 BA02 CA02 CA05 DA01 JA02 KA02 MA02 QA04 SB02 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Masayoshi Onishi 3-5-8 Minamisenba, Chuo-ku, Osaka Koyo Within Seiko Co., Ltd. (72) Inventor Yuichi Takii 3-5-8 Minamisenba, Chuo-ku, Osaka Koyo Within Seiko Co., Ltd. F term (reference) 3H022 AA01 BA06 CA11 CA51 DA13 3J011 AA20 BA02 CA02 CA05 DA01 JA02 KA02 MA02 QA04 SB02
Claims (2)
液体を潤滑流体として前記回転体を回転自在に支持する
動圧軸受とを備えたポンプであって、 前記動圧軸受の軸受面と、前記回転体の少なくとも前記
軸受面に対向する対向部分とのうち、少なくとも一方の
表面にダイヤモンドライクカーボン膜を形成するととも
に、他方を前記液体に対する耐食性をもつ耐食材により
構成したことを特徴とするポンプ。1. A pump provided with a rotating body for pumping a liquid containing water and a dynamic pressure bearing for rotatably supporting the rotating body using the liquid as a lubricating fluid, the bearing of the dynamic pressure bearing. A diamond-like carbon film is formed on at least one surface of the surface and at least one of the facing portions of the rotating body facing the bearing surface, and the other is made of a food material having corrosion resistance to the liquid. And a pump.
支持するタッチダウン軸受を備えたことを特徴とする請
求項1記載のポンプ。2. The pump according to claim 1, further comprising a touchdown bearing that rotatably supports the rotating body coaxially with the dynamic pressure bearing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002147820A JP3988531B2 (en) | 2002-05-22 | 2002-05-22 | pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002147820A JP3988531B2 (en) | 2002-05-22 | 2002-05-22 | pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003343481A true JP2003343481A (en) | 2003-12-03 |
JP3988531B2 JP3988531B2 (en) | 2007-10-10 |
Family
ID=29766693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002147820A Expired - Fee Related JP3988531B2 (en) | 2002-05-22 | 2002-05-22 | pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3988531B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005282371A (en) * | 2004-03-26 | 2005-10-13 | Minebea Co Ltd | Electric pump |
WO2008081650A1 (en) * | 2006-12-28 | 2008-07-10 | Jtekt Corporation | Highly corrosion-resistant members and processes for production thereof |
JP2013000043A (en) * | 2011-06-15 | 2013-01-07 | Shimano Inc | Fishing reel |
DE102012207661A1 (en) * | 2012-05-08 | 2013-11-14 | Bayerische Motoren Werke Aktiengesellschaft | Water-lubricated shaft assembly for high pressure radial flow fan, has bearing arrangements for bearing of fan shaft, where bearing elements of one of arrangements, and rings and elements of other arrangement are coated with carbon coating |
CN103608598A (en) * | 2011-06-15 | 2014-02-26 | 谢夫勒科技股份两合公司 | Slide bearing |
WO2019166041A1 (en) * | 2018-02-28 | 2019-09-06 | Schaeffler Technologies AG & Co. KG | Fluid bearing and wet rotor pump comprising such a bearing |
-
2002
- 2002-05-22 JP JP2002147820A patent/JP3988531B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005282371A (en) * | 2004-03-26 | 2005-10-13 | Minebea Co Ltd | Electric pump |
JP4565870B2 (en) * | 2004-03-26 | 2010-10-20 | ミネベア株式会社 | Electric pump |
US7896626B2 (en) | 2004-03-26 | 2011-03-01 | Minebea Co., Ltd. | Electric pump |
WO2008081650A1 (en) * | 2006-12-28 | 2008-07-10 | Jtekt Corporation | Highly corrosion-resistant members and processes for production thereof |
JP2008163430A (en) * | 2006-12-28 | 2008-07-17 | Jtekt Corp | High corrosion-resistant member and its manufacturing method |
JP2013000043A (en) * | 2011-06-15 | 2013-01-07 | Shimano Inc | Fishing reel |
CN103608598A (en) * | 2011-06-15 | 2014-02-26 | 谢夫勒科技股份两合公司 | Slide bearing |
DE102012207661A1 (en) * | 2012-05-08 | 2013-11-14 | Bayerische Motoren Werke Aktiengesellschaft | Water-lubricated shaft assembly for high pressure radial flow fan, has bearing arrangements for bearing of fan shaft, where bearing elements of one of arrangements, and rings and elements of other arrangement are coated with carbon coating |
WO2019166041A1 (en) * | 2018-02-28 | 2019-09-06 | Schaeffler Technologies AG & Co. KG | Fluid bearing and wet rotor pump comprising such a bearing |
Also Published As
Publication number | Publication date |
---|---|
JP3988531B2 (en) | 2007-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5303137B2 (en) | Bearing module for vacuum pump and vacuum pump | |
KR20010051572A (en) | Fluid dynamic bearing, fluid dynamic bearing device, method for manufacturing fluid dynamic bearing and method for processing surface of bearing | |
US6376952B1 (en) | Bearing system for a rotating shaft | |
JP2005147394A (en) | Dynamic-pressure bearing device and disc driving device | |
RU2521820C2 (en) | Electric borehole pump motor (versions) | |
US20050201864A1 (en) | Centrifugal fan | |
JP2002138990A (en) | Motor pump | |
JP3988531B2 (en) | pump | |
JP2003214444A (en) | Rolling sliding member and rolling device | |
US8390161B2 (en) | Electric motor having a rain guard | |
JP2000354349A (en) | Motor | |
JP5974414B2 (en) | Sliding bearing combined sliding member | |
JP2004190605A (en) | Fluid machine | |
US4921260A (en) | Lip seal device for water pumps | |
US20100309587A1 (en) | Fluid dynamic bearing, spindle motor having the fluid dynamic bearing, and storage apparatus having the spindle motor | |
JP2001289243A (en) | Hydrodynamic bearing motor | |
JP2001124070A (en) | Water lubricated bearing device | |
JP2002303297A (en) | Horizontal shaft type pump | |
JP4539861B2 (en) | Touchdown bearing | |
JP2005207333A (en) | Pump | |
JP2003343480A (en) | Pump | |
JP2006144864A (en) | Fluid bearing device, spindle motor, and method of manufacturing fluid bearing device | |
KR102358176B1 (en) | Motor | |
JP2004169577A (en) | Casing ring of pump | |
CN209875762U (en) | Bearing assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060518 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070413 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070626 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |