JPS6348972B2 - - Google Patents

Info

Publication number
JPS6348972B2
JPS6348972B2 JP12852280A JP12852280A JPS6348972B2 JP S6348972 B2 JPS6348972 B2 JP S6348972B2 JP 12852280 A JP12852280 A JP 12852280A JP 12852280 A JP12852280 A JP 12852280A JP S6348972 B2 JPS6348972 B2 JP S6348972B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
spinning
present
indentations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12852280A
Other languages
Japanese (ja)
Other versions
JPS5756538A (en
Inventor
Hiroshi Edakawa
Kazuo Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12852280A priority Critical patent/JPS5756538A/en
Publication of JPS5756538A publication Critical patent/JPS5756538A/en
Publication of JPS6348972B2 publication Critical patent/JPS6348972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な化学繊維ないしは合成繊維(以
下、化合繊と言う)ステープルに関し、更に詳し
くは表面に極めて微細な凹凸状構造を有し、天然
繊維に近い風合、光沢と、かつ紡績工程において
工程通過性の良好な機能を発揮できる紡績用原料
(ステープルおよびスライバ)に関するものであ
る。 化合繊繊維が出現してすでに久しいが、これら
の紡績性についてみると油剤、ケン縮等の設計に
より繊維集合体としての絡合性、平滑性、制電性
等で各種工夫をこらしているが、いまだにローラ
巻付き、コイラチユーブ詰り、風綿の発生等トラ
ブルが多い。また化合繊100%を用いた場合の生
産性(例えば精紡工程でのスピンドル回転数)は
天然繊維とミツクスして紡績する場合に比較して
低い。 例えばポリエステル100%での紡績と、ポリエ
ステルと綿(Cotton)の混紡績を比較すると精
紡の回転数でみて後者が15000〜16000rpmまで高
速化できるのに対し、前者の場合には12000〜
13000rpm程度が限界である。 次に化合繊繊維の製品については特に機能性に
すぐれ、プリーツ性、プリーツ保持性、防シワ性
が良く、またウオツシユ・アンド・ウエア性、耐
久性にすぐれている。しかるに高級衣料分野にお
いて要求される諸特性、例えば風合的にみて張・
腰、反撥性、触感(ソフトネス、しなやかさ、ボ
リユーム等)、色沢などは天然繊維に及ばないケ
ースが多い。従つて、実際には天然繊維との混
紡、交撚、交織等の手段がとられている。 これら天然繊維との対比で特性的に劣る原因と
しては種々考えられるが、その中の一つとして、
特に化合繊繊維の繊維軸方向における均一性、規
則性の影響が大であるといえる。 即ち、天然繊維の場合例えばウールのスケール
(鋸歯状ウロコ)、綿花の天然ヨリ、あるいは絹の
捩れ、等繊維軸方向において不規則な形態を具備
しており、これらが該繊維の持つ独特な風合に寄
与していると考えられるのであり、更には紡績性
を良好に保つ上に作用していると推定される。 本発明者等は以上の考え方にもとづき、すぐれ
た紡績用原料を得るべく鋭意検討した結果、以下
の構成要件から成る紡績用原料を得るに至つたも
のである。 即ち本発明は化合繊繊維を、好ましくは一定長
にカツトした、短繊維ステープルであつて、該短
繊維の長さ方向の不特定な表面に圧痕数が300〜
3000個/inの微細な圧痕に基づく凹凸状構造部分
を有しており、かつ該圧痕に基づく、微細ネジレ
(クリンプ状)部分をも兼備していることを特徴
とする。ここで上記微細ネジレは好ましくは100
個/in以上であり、かつ不規則で複雑な形態であ
るほど好適なものである。 また、他の本発明にかかる紡績原料は、上述の
本発明にかかる短繊維ステープルと、綿、羊毛、
麻等の天然繊維が混紡されてなることを特徴とす
る紡績用原料である。 以下、これらについて詳細に説明する。 本発明に係る化合繊は、レーヨンのような再生
繊維、アセテート、トリアセテート等の半合成繊
維、さらにはポリアミド、ポリエステル、アクリ
ロニトリル繊維等の合成繊維等いずれでも良く、
短繊維にカツトされる以前に紡績用として一般的
に付与されるケン縮を付与したものであつても良
いが、本発明によればほとんど無ケン縮のもので
も紡績に適用が可能である。 上記短繊維のデニールは0.4d位の超細デニール
から18d程度の太デニールまで各種可能であり、
特に細デニールの場合には微細な圧痕の多数付与
されたものとして特徴を発揮することができる。 繊維長は、平均繊維長として紡績に用いられて
いる32mm〜150mm程度まで各種の設定が可能であ
るが、本発明によれば単繊維のデニールよりこれ
まである程度一般的に設計されていたカツト長の
限界を打破し、例えば太デニールでかつ短カツト
長のものとか、細デニールでかつ長カツト長のも
のについても紡績可能とするものであり、極めて
広範囲な繊度、繊維長の選択が可能である。 さて、本発明による繊維形態は、繊維軸方向に
不規則な微細凹凸状圧痕と、これに基づくネジレ
とで構成するものであるが、該圧痕の生成、付与
方法を詳細に説明すると、まず短繊維群を構成す
る単繊維を相互に極めてランダムな配列状態と
し、該単繊維間に交錯交接部を多数発生させ、し
かる後に該交錯部を一対以上で構成した金属等の
硬質ローラで押圧し、繊維間の圧縮、せん断力に
より賦型を行なうものである。更に具体的に本発
明による短繊維ステープルの製造方法を述べれ
ば、まず合繊の場合には紡糸延伸されたトウ状物
を短繊維片にカツトし、該短繊維片の集合体とし
て十分に分繊、開繊を施し、かつ構成単繊維の方
向性をランダム状とし、単繊維が相互に交錯状を
成すように配置させる。続いて第4図に示したよ
うなウエツプ状繊維束28とし、フイードローラ
29とエプロン状無端バンド30、更には吸引パ
イプ31とで成るフイード装置に堆積し、続いて
シート状で硬質押圧ローラ32,33および3
4,35に供給する。該硬質ローラ部で上記した
繊維間交接部が互いに押圧され、極めて多数の圧
痕が生成されるのである。 他の方法としては、上記ウエツブ状繊維束28
を紡績工程のカード機に供給し、カーデイング作
用下で十分に開繊させた後、上記硬質ローラに供
給しても良い。 さて、上記押圧時の繊維形態例の一部を第1図
に示すが、極めて多くの態様となる。例えば、イ
図の場合、繊維1と繊維2が一定角度を成してa
点で交接したものであり、ロ図の場合は繊維3自
体がb点でねじれ、再度c点で同一繊維に交接し
ている。この場合はねじれ部b点と交接点cの両
方に圧痕が付加される。 ハ〜ホ図の場合には、ループ状になつた単繊維
4,5,6がおのおのd点、f点、i点で交接し
たものであり、繊維片自体はこれらの交接点以外
に各e点、g点、h点に変形歪を受けることにな
る。実際には、これらモデル的に示した各種変
形、ネジレの種々発生した状態で短繊維間におい
て複雑に交接、押圧させるものである。 実際の圧痕形態例を第2図に示す。 即ち、第2図のイ図は正面図、ロ図は側面から
見たイ図の断面を示すものであり、短繊維片7に
於て変形くぼみ8,8′、球形状くぼみ9,9′お
よび11,11′さらには角度を持つて溝状に深
くくぼんだ10,10′と浅くくぼんだ12,1
2′等が構成されている。これらの圧痕の数は、
300〜3000個/inの範囲にすることにより本発明
の効果を発揮させることができるが、該圧痕数の
測定は一般の光学顕微鏡、走査型電子顕微鏡で
100〜400倍程度の倍率で一定本数以上を写真撮影
し、写真上で判定できる圧痕数を読み取りインチ
当りの値として平均値で表わすものである。 次に、上記圧痕に基づく微細ネジレの例につい
て第3図イ,ロに示す。先述したように短繊維間
の交接時の繊維集団中における構成単繊維は直線
状のみならず、カール状、ネジレ状、ループ状等
を呈しているものであり、圧痕の付加は繊維軸に
対して各種角度を持つたものと同時にネジレ状態
がある確率をもつて発生する。また、押圧力が過
大に付加した個所においては、該過大な押圧によ
るせん断力や圧縮力により、圧痕が生成されると
ともに該圧痕の反対側やその近傍あたりが突起状
となつて微細ネジレを形成する。第3図のイ図に
おいて、たとえば短繊維片13の圧痕部14にお
いてネジレj、圧痕部16,17においてネジレ
kが生起する。他の圧痕部15,18は該ネジレ
j,kとは生成上、直接関与していない。またロ
図の短繊維片19においては、かなり一様で繊維
軸に対し直角方向の筋状圧痕であるが、該圧痕の
付加された強弱により、20,21の個所でネジ
レl,23,24の個所でネジレm,26,27
の個所でnの各ネジレを生起しているものであ
る。他の圧痕部22,25等はネジレ生成への関
与の程度が小さいと言える。該ネジレの発生頻度
は先述したように、紡績性および製品物性に大き
な影響を持つものであり、少なくとも100個/in
以上(望ましくは200個/in以上)あることが肝
要である。 該ネジレの測定は先述の圧痕の場合と同じく、
一般の光学顕微鏡や走査型電子顕微鏡で写真撮影
し、短繊維片の繊維軸に対して偏芯している個所
を読み取り、インチ当りの平均個数値で表わすも
のである。 以上の圧痕数およびネジレの程度に関し、上記
した範囲を満足しない場合には、後述する紡績性
改善効果および製品特性図での効果が急激に損わ
れるものである。 次に本発明により得られる効果について説明す
る。まず第1に本発明による化合繊短繊維ステー
プルは先述の如く極めて微細な圧痕を表面に多数
賦型してなるため、特に摩擦特性的に繊維−繊維
間の摩擦係数(以下μfと呼称する)を大幅にアツ
プし、かつ繊維−金属間のいわゆる対金属摩擦係
数(以下μmと呼称する)を大幅に低下させるこ
とができる。 これらについてポリエステル繊維(“テトロ
ン”、1.25d、44mmカツト長)の実験データで以下
に説明する。 上記μf、μmの各静摩擦係数を各μfs、μmsとす
ると、Ro¨der法による測定値(JIS−L−1074試
験法)では本発明の圧痕付与処理前と処理後で第
1表の通りである。参考までに綿(Cotton)の
値についても測定値を併記する。
The present invention relates to a new chemical fiber or synthetic fiber (hereinafter referred to as "synthetic fiber") staple, and more specifically, it has an extremely fine uneven structure on its surface, has a texture and gloss close to that of natural fiber, and is easy to use in the spinning process. This invention relates to raw materials for spinning (staples and slivers) that can exhibit good process passability. Synthetic fibers have been around for a long time, but when looking at their spinnability, various improvements have been made to improve the entanglement, smoothness, and antistatic properties of the fiber aggregate through the design of oil agents, densification, etc. However, there are still many problems such as roller wrapping, coiler tube clogging, and occurrence of fluff. Furthermore, the productivity (for example, spindle rotation speed in the spinning process) when using 100% synthetic fibers is lower than when mixing and spinning with natural fibers. For example, if we compare spinning of 100% polyester and blended spinning of polyester and cotton, the latter can increase the spinning speed to 15,000 to 16,000 rpm, while the former can speed up to 12,000 to 16,000 rpm.
The limit is around 13000rpm. Next, products made of synthetic fibers have particularly excellent functionality, with good pleatability, pleat retention, and wrinkle resistance, as well as excellent wash-and-wear properties and durability. However, there are various characteristics required in the field of high-end clothing, such as tension and texture.
In many cases, they are not as good as natural fibers in terms of waist, repulsion, texture (softness, suppleness, volume, etc.), and color luster. Therefore, in practice, methods such as blending, twisting, and weaving with natural fibers have been taken. There are various possible reasons for the inferior properties compared to these natural fibers, but one of them is:
In particular, it can be said that the uniformity and regularity of synthetic fibers in the fiber axis direction have a large influence. In other words, natural fibers have irregular shapes in the fiber axis direction, such as the scales of wool, the natural twist of cotton, or the twists of silk, and these have the unique wind of the fiber. It is thought that this contributes to the improvement of the spinnability, and furthermore, it is presumed that it acts to maintain good spinnability. Based on the above-mentioned concept, the inventors of the present invention have conducted intensive studies to obtain an excellent spinning material, and as a result, they have obtained a spinning material having the following constituent requirements. That is, the present invention is a short fiber staple made of synthetic fibers, preferably cut into a certain length, and which has 300 to 300 indentations on an unspecified surface in the length direction of the short fibers.
It is characterized by having an uneven structure based on 3000 minute indentations per inch, and also having a minute twist (crimp-like) part based on the indentations. Here, the fine twist mentioned above is preferably 100
The more irregular and complex the shape is, the more suitable it is. In addition, other spinning raw materials according to the present invention include the above-mentioned short fiber staple according to the present invention, cotton, wool,
It is a raw material for spinning characterized by being made by blending natural fibers such as hemp. These will be explained in detail below. The synthetic fibers according to the present invention may be any of recycled fibers such as rayon, semi-synthetic fibers such as acetate and triacetate, and synthetic fibers such as polyamide, polyester and acrylonitrile fibers.
Although it is possible to apply crimp, which is generally applied for spinning, before cutting into staple fibers, according to the present invention, even fibers with almost no crimp can be applied to spinning. The denier of the above-mentioned short fibers can vary from ultra-fine denier of around 0.4d to thick denier of around 18d.
In particular, in the case of a fine denier, it can exhibit its characteristics as having a large number of fine indentations. The fiber length can be set in various ways from 32 mm to 150 mm, which is the average fiber length used for spinning, but according to the present invention, the cut length, which has been generally designed to some extent, can be set from the denier of single fibers. For example, it is possible to spin thick denier and short cut length, or fine denier and long cut length, making it possible to select an extremely wide range of fineness and fiber length. . Now, the fiber morphology according to the present invention is composed of irregular fine unevenness indentation in the fiber axis direction and twist based on this. The single fibers constituting the fiber group are mutually arranged in a very random manner, a large number of intersecting and intersecting parts are generated between the single fibers, and then the intersecting parts are pressed with one or more pairs of hard rollers made of metal or the like, Shaping is performed by compression and shear force between fibers. More specifically, to describe the method for producing short fiber staples according to the present invention, first, in the case of synthetic fibers, a spun and drawn tow-like material is cut into short fiber pieces, and the short fiber pieces are sufficiently divided into aggregates. , the fibers are opened, and the directionality of the constituent single fibers is made random, and the single fibers are arranged so as to intertwine with each other. Next, a web-like fiber bundle 28 as shown in FIG. 4 is deposited on a feed device comprising a feed roller 29, an apron-like endless band 30, and a suction pipe 31. 33 and 3
4,35. The above-mentioned inter-fiber intersections are pressed against each other by the hard roller portion, and an extremely large number of impressions are generated. As another method, the web-like fiber bundle 28
The fibers may be supplied to a carding machine in the spinning process, sufficiently opened under carding action, and then supplied to the hard roller. Now, although some examples of the fiber form during the above-mentioned pressing are shown in FIG. 1, there are many forms. For example, in the case of figure A, fiber 1 and fiber 2 form a certain angle and a
In the case of the figure B, the fiber 3 itself is twisted at point b, and intersected again with the same fiber at point c. In this case, indentations are added to both the twist point b and the intersection point c. In the case of diagrams H to H, loop-shaped single fibers 4, 5, and 6 intersect at points d, f, and i, and the fiber piece itself has intersecting points other than these intersecting points. Deformation strain will be applied to point, g point, and h point. In reality, the short fibers are intersected and pressed in a complicated manner under various deformations and twists shown in the model. An example of an actual indentation form is shown in FIG. That is, Figure A in Figure 2 is a front view, and Figure B is a cross-sectional view of Figure A viewed from the side. and 11, 11', and 10, 10', which is deeply recessed in the shape of an angular groove, and 12, 1, which is shallowly recessed.
2' etc. are constructed. The number of these impressions is
The effect of the present invention can be exhibited by setting the number of indentations in the range of 300 to 3000 indentations/in, but the number of indentations cannot be measured using a general optical microscope or scanning electron microscope.
A certain number of indentations are photographed at a magnification of about 100 to 400 times, and the number of impressions that can be determined on the photograph is expressed as an average value per inch. Next, examples of fine twisting based on the above-mentioned indentation are shown in FIGS. 3A and 3B. As mentioned earlier, the constituent single fibers in the fiber group when intersecting short fibers are not only straight, but also curled, twisted, looped, etc., and the indentation is applied to the fiber axis. There is a probability that there will be a twisting state at the same time as objects with various angles. In addition, in areas where excessive pressing force is applied, indentations are generated due to the shearing force and compressive force caused by the excessive pressing force, and the opposite side of the indentation and its vicinity become protrusions and form fine twists. do. In FIG. 3A, for example, twisting j occurs in the impression portion 14 of the short fiber piece 13, and twisting k occurs in the impression portions 16 and 17. The other impression parts 15 and 18 are not directly involved in the generation of the torsions j and k. In addition, in the short fiber piece 19 shown in Figure B, the streak-like impressions are quite uniform and perpendicular to the fiber axis, but due to the strength and weakness of the impressions, twists l, 23, 24 at points 20 and 21 are formed. Twisted at the points m, 26, 27
Each twist of n occurs at the location. It can be said that the other indentations 22, 25, etc. have a small degree of involvement in the generation of twisting. As mentioned above, the frequency of occurrence of twisting has a great influence on spinning properties and product properties, and is at least 100 pieces/in.
It is important that there be at least 200 pieces/in (preferably 200 pieces/in or more). The torsion is measured as in the case of the indentation mentioned above.
A photograph is taken using a general optical microscope or a scanning electron microscope, and the eccentricity of the short fiber pieces with respect to the fiber axis is read and expressed as an average number per inch. If the number of indentations and the degree of twist do not satisfy the above-mentioned ranges, the effect of improving spinnability and the effect in the product characteristic diagram described below will be sharply impaired. Next, the effects obtained by the present invention will be explained. First of all, since the short synthetic fiber staple according to the present invention has a large number of extremely fine indentations formed on its surface as described above, it has particularly high frictional characteristics such as the coefficient of friction between fibers (hereinafter referred to as μf). It is possible to significantly increase the coefficient of friction between the fiber and the metal (hereinafter referred to as μm). These are explained below using experimental data on polyester fiber ("Tetron", 1.25d, 44mm cut length). If the above static friction coefficients μf and μm are respectively μfs and μms, the values measured by the Ro¨der method (JIS-L-1074 test method) are as shown in Table 1 before and after the indentation treatment of the present invention. be. For reference, the measured values for cotton are also listed.

【表】 第1表で明らかなように本発明によれば極めて
高度なμfs値と低いμms値を得ることが可能であ
り、繊維束集合体、特にスライバ状物としての絡
合性が向上し、対金属に対して平滑性が向上す
る。μfs値については比較値の綿にくらべ大幅に
アツプしているが、これは従来の綿の絡合性不足
を向上させる点で好都合である。 また、μms値については綿の値に近接してお
り、これまでポリエステル繊維で困難であつた対
金属に対する摩擦の低減化を容易に達成すること
ができる。 ここで上記μfs値の大幅向上による練条、粗紡、
精紡、各工程等でのドラフテイング性についての
悪化懸念については何ら問題のないことを確認し
た。即ち、本発明のμfs値のアツプは特に極めて
微細な表面凹凸・圧痕による表面形態の効果が寄
与しているものであり、ドラフテイング時にこれ
ら微細凹凸での繊維間滑脱が極めてスムースに行
なわれる。従つて、上記各工程でのドラフテイン
グ中における繊維間のステイツク・スリツプも極
めて小さく、ドラフト不良とかスライバムラの発
生は見られない。以上の摩擦特性により、特に
μfsの大幅アツプにかり練条、粗紡、精紡の各工
程におけるローラ巻付を大幅に低減化することが
でき、かつ風綿発生量の低減化を図ることができ
る。 更に、絡合性アツプによる繊維束の集束性向上
により粗紡、精紡各工程での甘ヨリ化が可能であ
り、生産性向上を図ることができる。 また、μms値を大幅に低下させることが可能と
なることにより紡績工程でのコイラチユーブ詰り
のトラブル解消とか精紡工程でのスピンドル回転
数上昇が可能となり生産性向上を図ることができ
る。 次に、本発明によれば微細な表面凹凸のネジレ
を適正範囲で多数存在させることにより、繊維束
内での繊維間空隙をうまく形成し、該空隙の効果
により糸および布帛状態での嵩高性を高度にし、
風合的にドレープ性、ボリユーム感、張・腰、反
撥性が良好となる。また、表面凹凸の圧痕および
ネジレにより布帛表面の光沢がマイルドになり高
級感のある色調を得ることができる。 さらに、前記の摩擦特性値を容易に得られるこ
とにより、対金属摩擦が低く、かつ繊維間摩擦が
高いことにより、しごき状の外力に対して抵抗が
強く、紡績〜製織工程でのしごき状・ネツプの発
生が極力押えられ、最終布帛として表面均斉度、
品位を良好なものとすることができる。 本発明の上記ステープルは、必ずしも100%で
スライバないし紡績糸とする必要はなく、本発明
者らの知見によれば、該ステープルを40重量%以
上含むスライバとすることにより、既述の効果を
発揮して良好な紡績が達成される。また、該ステ
ープルと綿、羊毛、麻等の天然繊維とを混紡して
も付加価値の高い良好な製品及び良好な紡績性が
得られるものである。特に本発明のステープルお
よびスライバは、先述の如く形態的に天然繊維に
近似させるべく十分に考慮したものであり、天然
繊維とのなじみを大幅に向上させている。従つて
例えば綿とのミツクスにおいては従来のものにく
らべ大幅に綿ライクな高級風合となり、またウー
ル、麻とのミツクスにおいては従来の単に化合繊
の機能性のみを付加する役割のものから本発明に
よれば風合的にもウール、麻の特徴を十分に生か
しつつ、これを補完し、天然繊維の不十分な特性
をなくするという点で極めて効果的に用いること
ができる。 以下、実施例で説明する。 実施例 1 ポリエステルブライトタイプの1.5d、44mmの短
繊維ステープルを十分に開繊、分繊し、カード機
でのカーデイング作用を与えた後にスライバ状繊
維束を3.5g/mの太さで第4図の装置に供給し、
表面圧痕付与加工を行なつた。ローラ31,32
は800Kg、およびローラ33,34は600Kgで加圧
し、ローラ33,34の紡出速度は30m/minと
した。紡出したスライバ束37の構成単繊維束N
=40(本)を顕微鏡で観察し、ほぼ目標の圧痕付
加状態にあることを確認して写真撮影して表面形
態を調査した。該ステープルは、圧痕数は平均値
として約1210個/inの微細なもの、かつ約420
個/inのネジレを有するものであつた。 また、該短繊維片をRo¨der法にてμfsとμms(対
クロム)を測定したところ、各々0.441と0.235で
あつた。 次に上記本発明によるスライバ束と、比較用と
して表面圧痕付与加工を施していないもの(ブラ
ンク品(比較品))の計2水準について紡績工程
に供給し、紡績性を比較評価した。 第5図に練条工程(第1工程〜第3工程)での
各工程通過のときのローラ巻付き回数の測定値を
示す。スライバ太さは280ゲレン/6ydとし、練
条機は研磨直後の表面処理を施していないローラ
を使用し、かつクリヤラを使用しないで強制巻付
きテストを行なつた。 第5図で明らかなように、ブランク品に比べて
本発明によるスライバは練条工程数が増加するに
対して特に顕著な巻付きトラブル減少効果があ
る。また、第6図は精紡機においてスピンドル回
転数を1.5万rpmから1.8万rpmまで強制的に回転
数を上昇させ、紡出番手60S、ヨリ係数K=3.1で
糸切れ発生頻度を本発明品とブランク品とで比較
評価したものである。図で明らかなように本発明
品の方が極めて良好な結果を得た。次に該60Sの
スパン糸を用いて製織し(組織:平織ローン、密
度:タテ115本/in、ヨコ104本/in)、染色仕上
加工を行なつた後に布帛特性を比較した。 本発明によるスライバを用いた布帛は特に表面
の均斉度が良好で、しごき状ネツプも少なく、光
沢もマイルドで絹ライクなものとなり、品位的に
高級感のあるものを得ることができた。比較のた
めに用いた圧痕付与加工を施していないものは、
しごき状ネツプが多発しており表面品位が悪い。
また、本発明品の風合はドレープ性にすぐれ、極
めてソフトで、かつ張・腰を有するものであつ
た。 実施例 2 ポリエステルステープル2d、51mm、アクリル
ステープル2d、51mm、レーヨンステープル(セ
ミダル)2d、51mmおよびナイロン2.2d、51mmの
各々について実施例1と同一条件で表面圧痕付与
加工を施し、紡出番手36S(ヨリ係数K=3.0)の
スパン糸を製造した。また、比較のため表面圧痕
付与加工を施していないものからも同様のスパン
糸を製造した。 次にこれらのスパン糸を製織し、特にしごき状
ネツプの発生状況について調査した。上記の各ス
テープル素材についての表面圧痕付与加工の有無
と摩擦特性について第2表に示すが、特に本発明
によればμfsとμmsの値に関し、下記(1)、(2)式の
いずれか一方又は両者を満足させることが容易で
あり、いずれか一方の満足によりしごきネツプ改
善効果が得られることを確認できた。また、両者
を満足する場合には効果が顕著であり、無糊製織
も十分に可能であることを把握した。 μfs≧0.38 …(1) μms≦0.25 …(2)
[Table] As is clear from Table 1, according to the present invention, it is possible to obtain extremely high μfs values and low μms values, and the entanglement properties of fiber bundle aggregates, especially as sliver-like materials, are improved. , the smoothness is improved with respect to metals. The μfs value is significantly higher than that of the comparative cotton, which is advantageous in terms of improving the lack of entanglement of conventional cotton. Furthermore, the μms value is close to that of cotton, and it is possible to easily achieve a reduction in friction against metal, which has been difficult to achieve with polyester fibers. Here, due to the significant improvement in the μfs value mentioned above,
It has been confirmed that there are no concerns about deterioration of drafting properties in spinning or other processes. That is, the increase in the μfs value of the present invention is particularly due to the effect of the surface morphology due to extremely fine surface irregularities/indentations, and during drafting, slipping between fibers occurs extremely smoothly on these fine irregularities. Therefore, the sticks and slips between fibers during drafting in each of the above steps are extremely small, and no draft defects or uneven slivers occur. Due to the above frictional characteristics, it is possible to significantly increase μfs, significantly reduce roller wrapping in each process of drawing, roving, and spinning, and reduce the amount of fluff generated. . Furthermore, by improving the convergence of the fiber bundle by increasing the entanglement property, it is possible to reduce looseness in each step of roving and spinning, and it is possible to improve productivity. Furthermore, by making it possible to significantly reduce the μms value, it is possible to solve the problem of coiler tube clogging in the spinning process and to increase the spindle rotation speed in the spinning process, thereby improving productivity. Next, according to the present invention, by creating a large number of twisted fine surface irregularities in an appropriate range, voids between fibers are effectively formed within the fiber bundle, and the effect of the voids improves bulkiness in the state of yarn and fabric. to a high degree,
In terms of texture, it has good drape, volume, tension/waist, and repulsion. In addition, the impressions and twisting of the surface irregularities make the surface of the fabric mildly glossy, and a luxurious color tone can be obtained. Furthermore, since the above-mentioned frictional characteristic values can be easily obtained, the friction against metal is low and the friction between fibers is high, so there is strong resistance to external force in the form of ironing, which is useful in the spinning and weaving processes. The occurrence of neps is suppressed as much as possible, and the surface uniformity of the final fabric is improved.
Good quality can be achieved. The staple of the present invention does not necessarily have to be 100% sliver or spun yarn, but according to the findings of the present inventors, the above-mentioned effects can be achieved by using a sliver containing 40% by weight or more of the staple. This results in good spinning performance. Furthermore, even when the staple is blended with natural fibers such as cotton, wool, hemp, etc., a good product with high added value and good spinnability can be obtained. In particular, the staples and slivers of the present invention have been carefully considered to approximate natural fibers in form as described above, and their compatibility with natural fibers has been greatly improved. Therefore, for example, when mixed with cotton, it has a luxurious texture that is much more cotton-like than conventional ones, and when mixed with wool and linen, it has changed from the conventional one that only added functionality to synthetic fibers. According to the invention, it can be used extremely effectively in terms of texture, making full use of the characteristics of wool and linen, complementing them, and eliminating the insufficient characteristics of natural fibers. Examples will be described below. Example 1 Polyester bright type short fiber staples of 1.5 d and 44 mm were sufficiently opened and separated, and after being given a carding effect by a carding machine, a sliver-like fiber bundle was made into a fourth fiber bundle with a thickness of 3.5 g/m. Supply the device shown in the figure,
Surface indentation processing was performed. Rollers 31, 32
The pressure was 800 kg, and the rollers 33 and 34 were pressurized with 600 kg, and the spinning speed of the rollers 33 and 34 was 30 m/min. Constituent single fiber bundle N of spun sliver bundle 37
= 40 (book) was observed with a microscope, and it was confirmed that the target indentation was almost achieved, and a photograph was taken to investigate the surface morphology. The staple has a fine indentation number of approximately 1,210 indentations/in on average, and approximately 420 indentations/in.
It had a twist of 1/in. Further, when the short fiber pieces were measured for μfs and μms (relative to chromium) using the Ro¨der method, they were 0.441 and 0.235, respectively. Next, a total of two sliver bundles according to the present invention and a sliver bundle without surface impression processing (blank product (comparative product)) for comparison were supplied to a spinning process, and their spinnability was comparatively evaluated. FIG. 5 shows the measured values of the number of times the roller wraps when passing through each process in the drawing process (first process to third process). The sliver thickness was 280 gel/6 yd, the drawing machine used a roller with no surface treatment immediately after polishing, and a forced winding test was conducted without using a clearer. As is clear from FIG. 5, compared to the blank product, the sliver according to the present invention has a particularly remarkable effect of reducing winding troubles even though the number of drawing steps increases. In addition, Figure 6 shows the frequency of occurrence of yarn breakage when the spindle rotation speed was forcibly increased from 15,000 rpm to 18,000 rpm in a spinning machine, the spinning number was 60S, and the twist coefficient K was 3.1. This is a comparative evaluation with a blank product. As is clear from the figure, the product of the present invention obtained extremely better results. Next, the 60S spun yarn was woven (texture: plain weave lawn, density: 115 vertical yarns/in, horizontal 104 yarns/in), and after dyeing and finishing, the fabric properties were compared. The fabric using the sliver according to the present invention had particularly good surface uniformity, few iron-like neps, and had a mild, silk-like luster, giving it a luxurious feel. The ones that were not subjected to indentation processing were used for comparison.
The surface quality is poor as there are many scratchy neps.
In addition, the product of the present invention had excellent drapability, was extremely soft, and had firmness and elasticity. Example 2 Polyester staples 2d, 51mm, acrylic staples 2d, 51mm, rayon staples (semi-dull) 2d, 51mm, and nylon 2.2d, 51mm were subjected to surface indentation processing under the same conditions as Example 1, and the spinning count was 36S. (Twist coefficient K=3.0) spun yarn was produced. In addition, for comparison, similar spun yarns were also manufactured from yarns that were not subjected to surface impression imparting processing. Next, these spun yarns were woven and the occurrence of strained neps was investigated. Table 2 shows the presence or absence of surface indentation processing and friction characteristics for each of the staple materials mentioned above. In particular, according to the present invention, with respect to the values of μfs and μms, either one of the following equations (1) and (2) It was confirmed that it is easy to satisfy both conditions, and that the effect of improving the straining strain can be obtained by satisfying either one of them. In addition, it was found that when both conditions are satisfied, the effect is significant and glue-free weaving is also fully possible. μfs≧0.38 …(1) μms≦0.25 …(2)

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る短繊維の交錯状態例を示
すモデル図、第2図、第3図は各々本発明の圧痕
形態例を示す側面および一部断面図を示す。第4
図は本発明のステープル又はスライバを得るため
の具体的製造法を示す工程概略図、第5図、第6
図は本発明の効果を具体例として紡績性のデータ
として示したグラフである。 主要部の説明、8,9,10,11,12:微
細圧痕、32,33,34,35……硬質ロー
ラ、j,k,l,m,n:ネジレ。
FIG. 1 is a model diagram showing an example of the intertwined state of short fibers according to the present invention, and FIGS. 2 and 3 are side views and partial sectional views showing examples of the indentation form of the present invention, respectively. Fourth
The figures are process schematic diagrams showing a specific manufacturing method for obtaining the staple or sliver of the present invention, Figures 5 and 6.
The figure is a graph showing the effects of the present invention as spinnability data as a specific example. Description of main parts, 8, 9, 10, 11, 12: fine impression, 32, 33, 34, 35... hard roller, j, k, l, m, n: twist.

Claims (1)

【特許請求の範囲】 1 化合繊からなる短繊維ステープルであつて、
該短繊維の長さ方向の不特定な表面に圧痕数300
〜3000個/inの微細な凹凸状構造部分を有すると
ともに、該圧痕に基づく微細ネジレ部分をも兼備
していることを特徴とする紡績用ステープル。 2 化合繊からなる短繊維ステープルであつて、
該短繊維の長さ方向の不特定な表面に圧痕数300
〜3000個/inの微細な凹凸状構造部分を有すると
ともに、該圧痕に基づく微細ネジレ部分をも兼備
しているステープルと、綿、羊毛、麻等の天然繊
維を混紡してなることを特徴とする紡績用原料。
[Claims] 1. A short fiber staple made of synthetic fiber,
The number of indentations is 300 on the unspecified surface of the short fiber in the length direction.
A staple for spinning, characterized in that it has a fine uneven structure of ~3000/in and also has a fine twist part based on the indentation. 2 A short fiber staple made of synthetic fiber,
The number of indentations is 300 on the unspecified surface of the short fiber in the length direction.
It is characterized by being made by blending a staple that has ~3000 pieces/in of fine uneven structures and also has fine twisting parts based on the impressions with natural fibers such as cotton, wool, and hemp. raw material for spinning.
JP12852280A 1980-09-18 1980-09-18 Staple and sliver for spinning and spinning stock material Granted JPS5756538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12852280A JPS5756538A (en) 1980-09-18 1980-09-18 Staple and sliver for spinning and spinning stock material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12852280A JPS5756538A (en) 1980-09-18 1980-09-18 Staple and sliver for spinning and spinning stock material

Publications (2)

Publication Number Publication Date
JPS5756538A JPS5756538A (en) 1982-04-05
JPS6348972B2 true JPS6348972B2 (en) 1988-10-03

Family

ID=14986817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12852280A Granted JPS5756538A (en) 1980-09-18 1980-09-18 Staple and sliver for spinning and spinning stock material

Country Status (1)

Country Link
JP (1) JPS5756538A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663045B2 (en) * 1985-04-08 1994-08-17 新日本製鐵株式会社 Sintering raw material charging method

Also Published As

Publication number Publication date
JPS5756538A (en) 1982-04-05

Similar Documents

Publication Publication Date Title
JPH06248528A (en) Spun yarn and multicomponent spun yarn rich in surface variety and its production
JPH02307925A (en) Synthetic fiber yarn having high-class cottony hand and production thereof
US5837370A (en) Fabrics of wool and/or polyester fibers
JPH02289136A (en) Cotton-bast fiber blended yarn and production thereof
JPH03206140A (en) Blended yarn of polyester/wool/electrically conductive fiber produced by pneumatic false-twisting method
JPS6348972B2 (en)
JP2610489B2 (en) Blended yarn of acrylic fiber and natural fiber by air false twisting method
CN108708010B (en) Fine spinning production process of superfine polyester blended yarn
JP2550132B2 (en) Hemp / rayon / polyester blended yarn by false twisting method
US3739564A (en) Yarn guide
JPH01213430A (en) Ramie/polyester blended yarn by air false-twisting
JPH06108333A (en) Production of conjugate yarn having high cover ratio
JPH0143048B2 (en)
JPH0227453B2 (en) FUKUGOSHIOYO BISONOSEIZOHO
JP4099925B2 (en) Spun yarn and woven / knitted fabric using the same
JPS58156049A (en) Composite yarn and production thereof
CN115874322A (en) Anti-pilling vortex yarn and preparation method and application thereof
JPS60110946A (en) Hemp blended composite spun yarn
JPH0641652B2 (en) Method for producing wool / polyester blended spinning yarn by false twisting of air
JPH0791713B2 (en) Slab-like spun yarn and knitted fabric with excellent coolness
JPH04281026A (en) Conjugate yarn
JPH06248527A (en) Stretch spun yarn and its production
JPH0143047B2 (en)
JPH06287828A (en) Multilayer composite yarn having soft and bulky touch
JPS6111330B2 (en)