JPS6348925B2 - - Google Patents

Info

Publication number
JPS6348925B2
JPS6348925B2 JP59165649A JP16564984A JPS6348925B2 JP S6348925 B2 JPS6348925 B2 JP S6348925B2 JP 59165649 A JP59165649 A JP 59165649A JP 16564984 A JP16564984 A JP 16564984A JP S6348925 B2 JPS6348925 B2 JP S6348925B2
Authority
JP
Japan
Prior art keywords
plating
atmosphere
molten metal
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59165649A
Other languages
Japanese (ja)
Other versions
JPS6144168A (en
Inventor
Yukinobu Higuchi
Kenichi Asakawa
Takayuki Oomori
Koji Umeno
Seiji Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59165649A priority Critical patent/JPS6144168A/en
Publication of JPS6144168A publication Critical patent/JPS6144168A/en
Publication of JPS6348925B2 publication Critical patent/JPS6348925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、鋼板にZn、Alなどのように比較的
融点の低い金属や合金を被覆した溶融金属メツキ
鋼板の製造法に関するものである。 〔従来の技術〕 一般に溶融金属メツキ鋼板は、メツキ原板に供
される鋼板を、酸化性雰囲気ガス中で加熱処理し
て表面に付着した油脂を燃焼させた後、高濃度水
素雰囲気ガス(75%Hz)中で還元するゼンジマー
法、あるいは水素濃度を低く(10〜20%Hz)した
雰囲気ガス中の加熱炉で表面に付着した油脂を燃
焼させて除去する無酸化炉法で処理した後、冷却
炉でメツキに適した温度まで降温し、溶融したメ
ツキ金属浴中に導入し浸漬する方法で製造されて
いる。このような製造法は、鋼板を切板にせずコ
イルのままで連続メツキが行える作業上の利点か
ら、一般に多く使われている。 〔発明が解決しようとする問題点〕 しかしながらこの製造法において加熱炉内雰囲
気ガスとして使用される還元性ガス中の水素は、
鋼板表面の活性化に対して極めて効果的である
が、高温度で鋼中に吸収され、メツキ層と鋼素地
(地鉄)との間で分子状水素になつて膨張し、メ
ツキ層膨れいわゆるブリスターと呼ばれるメツキ
欠陥を生じさせる問題がある。 また還元性ガス中の水素は、アルミメツキ時の
スナウト内アルミメツキ浴面上で反応生成物を発
生させ、これがスカムとなつて浮遊し、鋼板に付
着して不メツキ部分の発生原因となる問題があつ
た。このような事からメツキ密着性のすぐれた溶
融金属メツキ鋼板が得られず、このため、鋼中C
含有量を低下した鋼板表面に微細な凹凸を現出さ
せる方法(特公昭52−36962号公報)、酸化処理に
おいて積極的に酸化皮膜を生成せしめて還元し、
ポーラスな鋼板表面にする方法(特公昭53−
44141号公報)など各種の解決方法が開発され実
用化されている。 また最近では、鋼板に予めCu、Niなどのメツ
キを施し、爆発限界以下の水素濃度雰囲気に保た
れたゼンジマーラインを通過させる溶融金属メツ
キ方法(特開昭56−33463号公報)も開発されて
いる。しかしながらいずれの方法も前記したこれ
以前の方法に較べ、不メツキ部分が少なくメツキ
密着性のすぐれた溶融金属メツキ鋼板が製造でき
るようになつたとはいえ、品質のバラツキは大き
く、改善する余地は未だ残されていた。 〔問題点を解決するための手段〕 本発明は、このような問題を解決したもので、
不メツキ部分が極めて少なくメツキ密着性のすぐ
れた溶融金属メツキ鋼板の製造法を提供するもの
である。その要旨は、表面が清浄化された鋼板に
片面当り0.002〜1.5g/m2目付量のNiまたはNi系
合金の被覆層を施して150℃以下の温度で乾燥し、
続いて露点−35℃以下の不活性ガスもしくは水素
10%以下を混入する不活性ガスの雰囲気に保持さ
れた間接加熱炉で加熱処理した後、大気に触れさ
せることなく、溶融金属メツキ浴を通過させる製
造法である。 〔作用〕 以下、本発明について詳細に説明する。 転炉、電気炉など溶解炉で任意な鋼成分に溶製
された溶鋼は、連続鋳造法あるいは造塊・分塊法
を経てスラブとなり、さらに熱間圧延、冷間圧
延、焼鈍工程など通常の薄鋼板の製造過程を経て
製造された熱延板、冷延板、あるいは焼鈍板の表
面に機械的方法あるいは化学的方法など通常の前
処理を施して清浄化されたメツキ原板(鋼板)
に、片面当り0.002〜1.5g/m2目付量のNiまたは
Ni系合金の被覆層を施す。 NiまたはNi系合金の被覆層は、鋼板の溶融メ
ツキ性向上を計つて不メツキ部分の発生をなく
し、鋼板と上層メツキとの密着性を高める仲介を
するもので、電気メツキ法、化学メツキ法あるい
はNiイオンを含む溶液の塗布などによつて施さ
れる。この場合の被覆層片面当り目付量が、
0.002g/m2未満では上記の溶融メツキ性向上効
果が得られず、1.5g/m2を越えるとその効果の
飽和状態に達すると共に水素吸収量が増して被覆
層の剥離現象を起し製品のメツキ密着性を著しく
劣化せしめる。 続いて150℃以下の温度で乾燥する。乾燥は、
鋼板のメツキ時あるいは溶液塗布時被覆層に混入
された水分によるブリスターの発生を防止するた
めに行う脱水作業である。しかし、150℃を越え
る温度の乾燥は、急激な昇温速度に伴つて被覆層
にひび割れを起し、メツキ密着性を劣化させるた
め避けなければならない。このようにして、乾燥
を終えたNiまたはNi系合金の被覆鋼板は、間接
加熱炉で加熱処理する。加熱処理は、被覆鋼板を
焼鈍あるいは溶融金属メツキ浴導入温度に昇温す
るために加熱するもので、この場合、被覆層の酸
化を防止し、鋼中または被覆層に水素の侵入を防
止するために、露点が−35℃以下でかつ水分含有
量が極端に低いN2、Arなどの不活性ガスもしく
は水素10%以下の不活性ガス炉内雰囲気中で処理
する。特に10%を越える水素を含有する不活性ガ
スは、アルミメツキ浴面に反応生成物を発生させ
てスカムを形成し、不メツキ部分発生の原因とな
る。また炉内雰囲気ガスに含まれる不純ガスの酸
素については、10PPM以下に抑制することが、
本発明の目的から好ましい。 このようにして無酸化状態で高温度に加熱され
た被覆鋼板は、大気に触れさせることなく、活性
化された表面を保持しながら、かつ、Zn、Alな
どの単一金属または複合金属の溶融金属メツキ浴
導入温度に冷却しながら、該メツキ浴中を通過さ
せ、所定の目付量のZn、Al等を上層メツキする。 〔実施例〕 以下、本発明の実施例について説明する。 実施例 1 0.8mm×100mmのアルミキルド鋼のメツキ原板
(冷延板)を用いメツキ原板の走行方向に、鋼板
清浄装置、電気メツキ装置、乾燥機、加熱−冷却
炉と溶融金属メツキ装置を羅列した連続式メツキ
ラインにてNiメツキ付着量を電気メツキ法にて
0〜2g/m2(片面当り)の範囲でメツキを行
い、温度100℃で乾燥し、続いてNz100%で露点
−50℃の雰囲気ガスに保たれた加熱炉内で、板温
800℃迄加熱したのち亜鉛メツキ、及びを行つた。
その結果予めNiメツキを施すことにより溶融メ
ツキ性が著しく向上し適正なNi付着量は、0.002
〜1.5g/m2の範囲で不メツキの発生がなく、メ
ツキ密着性が良好であつた。又、従来法に比べて
もメツキ製品の性能は良好であり、特にアルミメ
ツキに於いては、不メツ止に顕著な効果がみられ
た。
[Industrial Field of Application] The present invention relates to a method for manufacturing a molten metal plated steel plate in which a steel plate is coated with a metal or alloy having a relatively low melting point such as Zn or Al. [Prior Art] In general, molten metal plated steel sheets are produced by heat-treating the steel plate to be used as the original plate in an oxidizing atmosphere gas to burn off fats and oils adhering to the surface, and then applying a high-concentration hydrogen atmosphere gas (75% Hz) or the non-oxidizing furnace method, which burns and removes fats and oils attached to the surface in a heating furnace in an atmospheric gas with a low hydrogen concentration (10 to 20% Hz), and then cools. It is manufactured by lowering the temperature in a furnace to a temperature suitable for plating, then introducing it into a molten plating metal bath and immersing it. This manufacturing method is commonly used because of the operational advantage that continuous plating can be performed without cutting the steel plate into coils. [Problems to be solved by the invention] However, in this production method, the hydrogen in the reducing gas used as the atmosphere gas in the heating furnace is
Although it is extremely effective for activating the surface of steel sheets, it is absorbed into the steel at high temperatures, becomes molecular hydrogen between the plating layer and the steel substrate (base iron), and expands, causing the plating layer to swell. There is a problem that causes plating defects called blisters. In addition, hydrogen in the reducing gas generates reaction products on the aluminizing bath surface in the snout during aluminizing, which becomes floating scum and adheres to the steel plate, causing the problem of unplated areas. Ta. For these reasons, it is not possible to obtain a molten metal plated steel sheet with excellent plating adhesion, and for this reason, the C in the steel
A method of creating fine irregularities on the surface of a steel plate with a reduced content (Japanese Patent Publication No. 52-36962), which actively generates an oxide film during oxidation treatment and reduces it.
Method for making a porous steel plate surface (Special Publication 1973-
Various solutions have been developed and put into practical use, such as (No. 44141). Recently, a molten metal plating method (Japanese Unexamined Patent Publication No. 56-33463) has been developed in which a steel plate is pre-plated with Cu, Ni, etc., and passed through a Sendzimer line maintained in an atmosphere with a hydrogen concentration below the explosive limit. ing. However, although both methods can produce molten metal-plated steel sheets with fewer unplated areas and better plating adhesion than the previous methods described above, the quality varies widely and there is still room for improvement. It was left behind. [Means for solving the problems] The present invention solves these problems, and
The present invention provides a method for producing a molten metal plated steel sheet with extremely few unplated areas and excellent plating adhesion. The gist is that a coating layer of Ni or Ni-based alloy is applied to a surface-cleaned steel plate with a coating weight of 0.002 to 1.5 g/m 2 per side, and then dried at a temperature of 150°C or less.
Next, inert gas or hydrogen with a dew point of -35℃ or less
This is a production method in which the material is heated in an indirect heating furnace kept in an atmosphere of inert gas containing 10% or less, and then passed through a molten metal plating bath without exposing it to the atmosphere. [Function] The present invention will be explained in detail below. Molten steel is melted into a desired steel composition in a melting furnace such as a converter or electric furnace, and then becomes a slab through continuous casting or ingot making/slaking. A plated original sheet (steel sheet) that has been cleaned by applying normal pretreatment such as mechanical or chemical methods to the surface of a hot-rolled sheet, cold-rolled sheet, or annealed sheet manufactured through the manufacturing process of thin steel sheets.
Ni or
Apply a coating layer of Ni-based alloy. The Ni or Ni-based alloy coating layer improves the hot-dip plating properties of the steel sheet, eliminates the occurrence of unplated areas, and acts as an intermediary to increase the adhesion between the steel sheet and the upper layer plating. Alternatively, it may be applied by applying a solution containing Ni ions. In this case, the basis weight per one side of the coating layer is
If it is less than 0.002 g/m 2 , the above-mentioned effect of improving melt plating property cannot be obtained, and if it exceeds 1.5 g/m 2 , the effect reaches saturation and the amount of hydrogen absorption increases, causing peeling of the coating layer and causing the product to deteriorate. The adhesion of the plating will be significantly deteriorated. This is followed by drying at a temperature below 150°C. Drying is
This dehydration work is performed to prevent the formation of blisters due to moisture mixed into the coating layer when plating steel plates or applying solution. However, drying at temperatures exceeding 150°C must be avoided because the rapid rate of temperature increase will cause cracks in the coating layer and deteriorate plating adhesion. The Ni or Ni-based alloy coated steel sheet that has been dried in this manner is heat treated in an indirect heating furnace. Heat treatment involves heating the coated steel sheet to annealing or raising the temperature to the temperature at which it is introduced into a molten metal plating bath. The process is then carried out in an inert gas furnace atmosphere with a dew point of −35° C. or lower and an extremely low moisture content such as N 2 or Ar, or an inert gas containing 10% or less hydrogen. In particular, inert gas containing more than 10% hydrogen generates reaction products on the aluminized bath surface, forming scum and causing unplated areas. In addition, the impurity gas oxygen contained in the furnace atmosphere gas must be suppressed to 10 PPM or less.
Preferred for the purposes of the present invention. In this way, the coated steel sheet heated to high temperature in a non-oxidizing state maintains an activated surface without being exposed to the atmosphere, and melts single metals or composite metals such as Zn and Al. The metal plating bath is passed through the plating bath while being cooled to the introduction temperature, and the upper layer is plated with a predetermined basis weight of Zn, Al, etc. [Examples] Examples of the present invention will be described below. Example 1 A 0.8 mm x 100 mm aluminium-killed steel plated plate (cold-rolled plate) was used, and a steel plate cleaning device, an electric plating device, a dryer, a heating-cooling furnace, and a molten metal plating device were arranged in the running direction of the plated plate. On a continuous plating line, plating was performed using an electroplating method with a Ni plating amount in the range of 0 to 2 g/m 2 (per side), dried at a temperature of 100°C, and then dried at a dew point of -50°C at N z 100%. The plate temperature is maintained in a heating furnace maintained at a gas atmosphere of
After heating to 800℃, galvanizing was performed.
As a result, by applying Ni plating in advance, the melt plating properties were significantly improved, and the appropriate amount of Ni deposited was 0.002
In the range of ~1.5 g/m 2 , no plating occurred and the plating adhesion was good. Furthermore, the performance of the plated product was better than that of the conventional method, and particularly in aluminum plating, a remarkable effect was seen in preventing non-metals.

【表】 実施例 2 板厚2.3mm、板巾100mmの熱延酸洗液(アルミキ
ルド鋼)を用いて連続式メツキラインにてNiを
0.1g/m2(片面)メツキしたのち、温度60℃で
乾燥後、炉内雰囲気中のHz濃度(露点−40℃)を
0〜30%の範囲に変えて亜鉛メツキを行つた結果
を第2表に示す。加熱炉内雰囲気中水素濃度を10
%以下とすることによりブリスター発生防止に顕
著な効果がある。又、熱延材のメツキでは、従来
は表面活性化のために800℃前后まで加熱が必要
であつたが、本発明では低温加熱で良好なメツキ
が可能である。
[Table] Example 2 Ni was removed on a continuous plating line using a hot rolling pickling solution (aluminum killed steel) with a plate thickness of 2.3 mm and a plate width of 100 mm.
After plating 0.1 g/m 2 (one side), drying at a temperature of 60℃, and changing the Hz concentration in the furnace atmosphere (dew point -40℃) to a range of 0 to 30%, the results of galvanizing are shown below. It is shown in Table 2. The hydrogen concentration in the atmosphere inside the heating furnace is 10
% or less has a remarkable effect on preventing blistering. Furthermore, when plating hot-rolled materials, conventionally it was necessary to heat the material to around 800°C to activate the surface, but with the present invention, good plating can be achieved by heating at a low temperature.

【表】 実施例 3 板厚0.8mm、板巾100mmのアルミキルド鋼メツキ
原板を用いて、ニツケルメツキ量(乾燥温度−
110℃)、加熱炉内雰囲気条件を変えてアルミ−10
%Siメツキ浴にてアルミメツキを行つた。その結
果第3表に示す如く、ニツケルメツキ量0.002
g/m2(片面)以上で、かつ加熱炉雰囲気中の水
分量が露点−40℃以下で良好なメツキ密着性が得
られ、しかも従来法にまさるメツキ性を示してい
る。
[Table] Example 3 Using an aluminium-killed steel plating original plate with a thickness of 0.8 mm and a width of 100 mm, the amount of nickel plating (drying temperature -
110℃), aluminum-10 by changing the atmospheric conditions in the heating furnace.
Aluminization was performed in a %Si plating bath. As shown in Table 3, the amount of nickel plating was 0.002.
g/m 2 (one side) or more and the moisture content in the heating furnace atmosphere is below the dew point of -40°C, good plating adhesion is obtained, and moreover, the plating performance is superior to that of the conventional method.

【表】 実施例 4 板厚0.8mm、板巾100mmの冷延鋼板(アルミキル
ド鋼)を用いて連続式メツキラインにて、Ni合
金メツキ(1g/m2)を行つた後、温度50℃で乾
燥し、加熱炉雰囲気がNz100%、で露点−50℃の
加熱炉内で板温800℃迄加熱したのち、アルミメ
ツキを行つた。その結果第4表に示すようにNi
−Fe(1〜40%)、Ni−Co(1〜30%)、Ni−Cu
(1〜40%)、Ni−P(1〜20%)、Ni−Mo(1〜
30%)等の合金メツキはメツキ性向上に顕著な効
果がみられた。
[Table] Example 4 A cold-rolled steel plate (aluminum killed steel) with a thickness of 0.8 mm and a width of 100 mm was plated with Ni alloy (1 g/m 2 ) on a continuous plating line, and then dried at a temperature of 50°C. After heating the plate to a temperature of 800°C in a heating furnace with a dew point of −50°C and a heating furnace atmosphere of 100% N z , aluminizing was performed. As a result, as shown in Table 4, Ni
-Fe (1-40%), Ni-Co (1-30%), Ni-Cu
(1-40%), Ni-P (1-20%), Ni-Mo (1-40%), Ni-P (1-20%), Ni-Mo (1-40%),
30%) etc. had a remarkable effect on improving plating performance.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

上記のように本発明は、従来の連続メツキのよ
うな鋼板を酸化させるメツキ方法でないため、不
メツキ部分が極めて少なく、メツキ密着性のすぐ
れた溶融金属メツキ鋼板を製造することができ
る。また本発明は、連続メツキラインにおいて加
熱炉内に設けられた搬送ロール(ハースロール)
にビルドアツプを生じさせることもないため、ロ
ール転写によるメツキ鋼板の押し疵もなく、外観
性のすぐれた溶融金属メツキ鋼板を製造すること
もできる。
As described above, since the present invention is not a plating method that oxidizes a steel sheet like the conventional continuous plating, it is possible to produce a molten metal plated steel sheet with extremely few unplated areas and excellent plating adhesion. Further, the present invention provides a conveyor roll (hearth roll) provided in a heating furnace in a continuous plating line.
Since no build-up occurs in the plated steel plate, there are no indentation defects in the plated steel plate due to roll transfer, and it is possible to produce a molten metal plated steel plate with excellent appearance.

【図面の簡単な説明】[Brief explanation of drawings]

図は、実施例5の試験結果を示す。 The figure shows the test results of Example 5.

Claims (1)

【特許請求の範囲】[Claims] 1 表面が清浄化された鋼板に片面当り0.002〜
1.5g/m2目付量のNiまたはNi系合金の被覆層を
施して150℃以下の温度で乾燥し、続いて露点−
35℃以下の不活性ガスもしくは水素10%以下を混
入する不活性ガスの雰囲気に保持された間接加熱
炉で加熱処理した後、大気に触れさせることな
く、溶融金属メツキ浴を通過させることを特徴と
する不メツキ部分が少なくメツキ密着性のすぐれ
た溶融金属メツキ鋼板の製造法。
1 0.002~ per side on a steel plate whose surface has been cleaned
A coating layer of Ni or Ni-based alloy with a weight of 1.5 g/m 2 is applied and dried at a temperature below 150°C, followed by dew point -
It is characterized by being heat-treated in an indirect heating furnace maintained in an atmosphere of inert gas at 35°C or less or inert gas containing 10% or less hydrogen, and then passing through a molten metal plating bath without exposing it to the atmosphere. A method for manufacturing a molten metal plated steel sheet with few unplated areas and excellent plating adhesion.
JP59165649A 1984-08-09 1984-08-09 Production of metal hot dipped steel sheet having less non-plated part and excellent plating adhesiveness Granted JPS6144168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165649A JPS6144168A (en) 1984-08-09 1984-08-09 Production of metal hot dipped steel sheet having less non-plated part and excellent plating adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165649A JPS6144168A (en) 1984-08-09 1984-08-09 Production of metal hot dipped steel sheet having less non-plated part and excellent plating adhesiveness

Publications (2)

Publication Number Publication Date
JPS6144168A JPS6144168A (en) 1986-03-03
JPS6348925B2 true JPS6348925B2 (en) 1988-10-03

Family

ID=15816370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165649A Granted JPS6144168A (en) 1984-08-09 1984-08-09 Production of metal hot dipped steel sheet having less non-plated part and excellent plating adhesiveness

Country Status (1)

Country Link
JP (1) JPS6144168A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138616A (en) * 1983-01-25 1984-08-09 Kaneko Kogyo Kk Avalanche prevention work for sloped ground
JPS59115087U (en) * 1983-01-26 1984-08-03 トヨタ自動車株式会社 Housing fittings storage device
JP2561331B2 (en) * 1988-11-07 1996-12-04 川崎製鉄株式会社 Method for producing hot-dip Zn plated Cr-containing steel strip
KR100399224B1 (en) * 1999-12-27 2003-09-22 주식회사 포스코 Method for the formation of atmospheric gasses with low dew point
WO2018115947A1 (en) * 2016-12-21 2018-06-28 Arcelormittal A method for the manufacture of a coated steel sheet
FI3701058T3 (en) * 2017-10-24 2024-06-05 Arcelormittal A method for the manufacture of a galvannealed steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549152A (en) * 1978-10-04 1980-04-09 Satake Eng Co Ltd Automatic digital display rice cleaning yield measuring device in riceecleaning device
JPS5633463A (en) * 1979-07-16 1981-04-03 Nippon Parkerizing Co Ltd Hot dipping method
JPS57114650A (en) * 1980-12-30 1982-07-16 Nippon Steel Corp Production of zinc hot dipped steel plate of superior adhesive strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549152A (en) * 1978-10-04 1980-04-09 Satake Eng Co Ltd Automatic digital display rice cleaning yield measuring device in riceecleaning device
JPS5633463A (en) * 1979-07-16 1981-04-03 Nippon Parkerizing Co Ltd Hot dipping method
JPS57114650A (en) * 1980-12-30 1982-07-16 Nippon Steel Corp Production of zinc hot dipped steel plate of superior adhesive strength

Also Published As

Publication number Publication date
JPS6144168A (en) 1986-03-03

Similar Documents

Publication Publication Date Title
JP6025867B2 (en) High-strength hot-dip galvanized steel sheet excellent in plating surface quality and plating adhesion and method for producing the same
JP2707928B2 (en) Hot-dip galvanizing method for silicon-containing steel sheet
JPH0127147B2 (en)
JP4882446B2 (en) Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet
JPH0349981B2 (en)
JPS6348925B2 (en)
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JP4168667B2 (en) In-line annealing furnace for continuous hot dip galvanizing
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
JPH04202631A (en) Production of galvannealed p-containing high tensile strength steel sheet
JP2000290762A (en) Production of hot dip metal coated steel sheet
JP2619550B2 (en) Manufacturing method of galvannealed steel sheet
JP2007169752A (en) Method for manufacturing galvanized steel sheet superior in adhesiveness of plating film
JPH02285057A (en) Method for continuously annealing steel sheet to be galvanized
JPH0355542B2 (en)
JP2705386B2 (en) Hot-dip galvanizing method for Si-containing steel sheet
JP2787371B2 (en) Manufacturing method of aluminum plated steel sheet with excellent plating adhesion and appearance
JPH0748662A (en) Production of galvanized steel sheet excellent in plating adhesion and appearance
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JPS6240352A (en) Production of alloyed zinc plated steel sheet
JPH06212383A (en) Hot dip galvanizing method for silicon-containing steel sheet
JP3257301B2 (en) Manufacturing method of hot-dip galvanized steel sheet from hot-rolled steel sheet
JP3598889B2 (en) Method for producing hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR100286667B1 (en) Manufacturing method of galvanized steel sheet
JP2001262303A (en) Method for producing alloyed galvanized steel sheet and galvannealed steel sheet excellent in hot dip metal coated property