JPS6348876A - Laser oscillator - Google Patents

Laser oscillator

Info

Publication number
JPS6348876A
JPS6348876A JP19314986A JP19314986A JPS6348876A JP S6348876 A JPS6348876 A JP S6348876A JP 19314986 A JP19314986 A JP 19314986A JP 19314986 A JP19314986 A JP 19314986A JP S6348876 A JPS6348876 A JP S6348876A
Authority
JP
Japan
Prior art keywords
base
cast iron
laser oscillator
temperature
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19314986A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nawa
名和 章好
Kenji Kumamoto
健二 熊本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19314986A priority Critical patent/JPS6348876A/en
Publication of JPS6348876A publication Critical patent/JPS6348876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Abstract

PURPOSE:To decrease position deviation of an optical axis even if the temperature of a base is changed, to keep stable oscillating characteritics and to improve reliability, by using Ni cast iron as the material of the base, on which a plurality of discharge tubes and both reflecting mirrors are provided. CONSTITUTION:In the Table, thermal expansion coefficients of materials (a) constituting a base 1 are compared. Among the materials, the coefficient of Ni cast iron (b) has the smallest value. Above all, the thermal expansion coefficient of high Ni cast iron, which includes 30 wt % or more Ni, is about 1/3-1/4 those of gray cast iron (c) and steels for general structures. Therefore, the base 1 is formed with the high Ni cast iron having the small thermal expansion coefficient. In a laser oscillator constituted in this way, the position deviation of an optical axis becomes very small even if the temperature of the base 1 is changed due to radiant heat and the change in ambient temperature. A resonator can be maintained stably. Thus, deterioration in oscillating characteristics accompanying the temperature change of the base 1 is largely suppressed, and the highly reliable laser oscillator is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザガスが放電管内を流れる方向と、(
/−ザ光の開田方向とが同一な1iII]流型のレーザ
発振器、特にガス流速が200鳳/S程度の高速軸流型
レーザ発振器において、放電管、全反射鏡、および部分
反射鏡を支持するベースの改良に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is directed to the direction in which the laser gas flows in the discharge tube;
/-1iII] flow type laser oscillator in which the opening direction of the laser light is the same, especially a high-speed axial flow type laser oscillator with a gas flow rate of about 200/S, supports the discharge tube, total reflection mirror, and partial reflection mirror. This relates to improvements to the base.

〔従来の技術〕[Conventional technology]

第2図および第3図は従来の軸流型レーザ発振器を示す
もので、図中、(1)はベース、(2)は全反射鏡、(
3)は部分反射鏡、(4)は上記各反射鏡(2) 、(
3)を保持するミラーホルダ、(5)は軸心を同一にし
て軸方向に順次連結された複数本の放電管で、相隣る放
電管(5)の間および両端の放電管(5)の外端部と各
ミラーホルダ(4)との間には、後述するブロック(8
)がそれぞれ設けられている。(8)はブロック(8)
を介して各放電管(5)内にレーザガスを供給するレー
ザガス供給管、(7)はブロック(8)を介して各放電
管(5)内のレーザガスを排出するレーザガス排出管、
(8)は」二記各放電管(5)および両度射鏡(2)、
(3)等を第2図および第3図に示す組立状態でベース
(1)上に設置するベースである。
Figures 2 and 3 show a conventional axial flow laser oscillator, in which (1) is the base, (2) is the total reflection mirror, (
3) is a partial reflecting mirror, (4) is each of the above reflecting mirrors (2), (
3), and (5) are a plurality of discharge tubes connected sequentially in the axial direction with the same axis center, and the discharge tubes (5) between adjacent discharge tubes (5) and at both ends. A block (8), which will be described later, is located between the outer end of the mirror holder (4) and each mirror holder (4).
) are provided for each. (8) is block (8)
(7) is a laser gas supply pipe that supplies laser gas into each discharge tube (5) through a block (8);
(8) is "two discharge tubes (5) and a bidirectional mirror (2),
(3) etc. are installed on the base (1) in the assembled state shown in FIGS. 2 and 3.

従来のレーザ発振器は−1−記のように構成され。A conventional laser oscillator is configured as shown in -1-.

レーザガスは、レーザガス供給管(6)から各放電管(
5)に供給され、各放′市管(5)内を軸方向に流れて
レーザガス排出管(7)から排出される。排出されたレ
ーザガスは、図示しない冷却手段により冷却された後、
再びレーザガス供給管(6)から各放電管(5)に供給
される。そして一方の反射鏡(2)又は(3)の近くで
起きた波は、各放電管(5)内を通って両反射鏡(2)
、(3)で入反射を繰返す間に増幅され1部分反射鏡(
3)からレーザ光として出力される。
Laser gas is supplied from the laser gas supply pipe (6) to each discharge tube (
5), flows in the axial direction inside each discharge pipe (5), and is discharged from the laser gas discharge pipe (7). After the exhausted laser gas is cooled by a cooling means (not shown),
The laser gas is again supplied to each discharge tube (5) from the laser gas supply tube (6). The waves generated near one reflecting mirror (2) or (3) pass through each discharge tube (5) and return to both reflecting mirrors (2).
, (3), it is amplified while repeating the input and reflection, and one partial reflection mirror (
3) is output as a laser beam.

ところで、レーザ発振器内を循垣するレーザガスは、レ
ーザガス供給管(6)の入口部ではTo =10〜20
℃であるが、各放電管(5)内を通過する間にΔt (
150〜2QO℃程度)だけ温度が上昇し、レーザガス
排出管(7)の出口部ではTに160〜220°Cにも
達することになる。
By the way, the laser gas circulating inside the laser oscillator has To = 10 to 20 at the entrance of the laser gas supply pipe (6).
℃, but while passing through each discharge tube (5), Δt (
The temperature rises by about 150-2QO°C), reaching 160-220°C at T at the outlet of the laser gas discharge pipe (7).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来のレーザ発振器では、ベース(1)を
、ねずみ鋳鉄あるいは一般構造用鋼材を溶組する等の方
法で構成しており、これらの材質は熱膨張係数が大きい
ので、レーザガスの温度上昇によりレーザガス排出管(
7)が昇温した際に、第4図に鎖線で示すようにレーザ
ガス排出管(7)からの輻射熱でベース(1)に歪が生
じ、光軸がΔθだけ位置ずれすることになる。このため
、両反射鏡(2) 、 (3)のアライメントがずれた
り、ベース(1)の変形によりレーザビームのポインテ
インダスタビリティが劣化する等、発振特性が低下する
という問題があった。
In the conventional laser oscillator as described above, the base (1) is constructed by welding gray cast iron or general structural steel, and since these materials have a large coefficient of thermal expansion, the temperature of the laser gas The laser gas exhaust pipe (
7), when the temperature rises, the base (1) is distorted by the radiant heat from the laser gas exhaust pipe (7), as shown by the chain line in FIG. 4, and the optical axis is shifted by Δθ. For this reason, there were problems in that the oscillation characteristics deteriorated, such as misalignment of both reflecting mirrors (2) and (3) and deterioration of pointer stability of the laser beam due to deformation of the base (1).

この発明は、かかる問題点を解決するためになされたも
ので、輻射熱あるいは周囲温度変化によりベースの温度
が変化しても、光軸の位置ずれを極力少なくして発振特
性を安定に維持することができるレーザ発振器を得るこ
とを目的とする。
This invention was made to solve this problem, and aims to maintain stable oscillation characteristics by minimizing the positional deviation of the optical axis even if the temperature of the base changes due to radiant heat or changes in ambient temperature. The purpose is to obtain a laser oscillator that can.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るレーザ発振器は、複数の放電管および両
反射鏡が設訂されるベースの材質を、Ni鋳鉄とするよ
うにしたものである。
In the laser oscillator according to the present invention, the material of the base on which the plurality of discharge tubes and both reflecting mirrors are installed is Ni cast iron.

〔作用〕[Effect]

この発明においては、ベースが、従来のねずみ鋳鉄や一
般構造用鋼材に比較して熱膨張係数が小さいNi鋳鉄で
形成されているので、輻射熱や周囲温度変化によiJベ
ースの温度が変化しても、光軸の位置ずれが少なくなり
、発振特性の低下を抑制できる。
In this invention, the base is made of Ni cast iron, which has a smaller coefficient of thermal expansion than conventional gray cast iron or general structural steel, so the temperature of the iJ base does not change due to radiant heat or changes in ambient temperature. Also, the positional deviation of the optical axis is reduced, and deterioration of the oscillation characteristics can be suppressed.

〔実施例〕〔Example〕

第1図はこの発明の−・実施例を示すもので、ベース(
1)を構成する各材質の81膨張係数をそれぞれ比較し
て表したものである。第1図からも明らかなように、各
材質中、Ni鋳鉄の8膨張係数が最も小さく、その中で
も、Niを30重量%以上含有する高Ni鋳鉄は、ねず
み鋳鉄や一般構造用鋼材に比較して、熱膨張係数が約局
〜ハである。
Figure 1 shows an embodiment of the present invention, with a base (
1) is a comparison of the 81 expansion coefficients of each material constituting the material. As is clear from Figure 1, Ni cast iron has the lowest coefficient of expansion of all materials, and among these, high Ni cast iron containing 30% by weight or more of Ni is superior to gray cast iron and general structural steel. Therefore, the coefficient of thermal expansion is approximately 2.

この実施例では、この熱膨張係数が小さな高Nin鉄に
よりベース(1)を形成している。
In this embodiment, the base (1) is made of high Ni iron with a small coefficient of thermal expansion.

なお、ベース(1)の材質以外の点については、第2図
および第3図に示す従来のレーザ発振器と全く同一構成
である。
Note that, except for the material of the base (1), the structure is exactly the same as the conventional laser oscillator shown in FIGS. 2 and 3.

上記のように構成されたレーザ発振器においては、ベー
ス(1)が高Ni鋳鉄で形成されているので、輻射熱や
周囲温度変化によりベース(1)の温度が変化しても、
′i54図に示す光軸の位置ずれΔ0が大幅に少なくな
り、共振器を安定して保持することが可能となる。この
ため、ベース(1)の温度変化に伴なう発振特性の低下
が大幅に抑制され、信頼性の高いレーザ発振器が得られ
る。
In the laser oscillator configured as above, the base (1) is made of high Ni cast iron, so even if the temperature of the base (1) changes due to radiant heat or changes in ambient temperature,
The positional deviation Δ0 of the optical axis shown in Figure 'i54 is significantly reduced, making it possible to stably hold the resonator. Therefore, the deterioration of the oscillation characteristics due to the temperature change of the base (1) is significantly suppressed, and a highly reliable laser oscillator can be obtained.

なお上記実施例では、ベース(1)の材質として、高N
i鋳鉄を用いる場合について示したが、Niの含有量が
30重量%未満のNi鋳鉄であっても、ねずみ鋳鉄や一
般構造用鋼材に比へれば、熱膨張係数が小さいので、ベ
ース(1)の材質として充分使用できる。
In the above embodiment, the material of the base (1) is high N.
Although we have shown the case of using cast iron, even if Ni cast iron has a Ni content of less than 30% by weight, its coefficient of thermal expansion is small compared to gray cast iron or general structural steel. ) can be fully used as a material.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、ベースを熱膨張係数の
小さなNipj鉄で形成するようにしているので、ベー
スの温度が変化しても光軸の位置ずれが少なくなり、発
振特性を安定に維持して信頼第1図はこの発明の−・実
施例を示すベース材質の8膨張係数比較表、第2図は従
来のレーザ発振器を示すY面図、第3図は同様の正面図
、第4図は従来のレーザ発振器におけるベースの変形状
態を示す説明図である。
As explained above, in this invention, the base is made of Nipj iron, which has a small coefficient of thermal expansion, so even if the temperature of the base changes, the positional deviation of the optical axis is reduced, and the oscillation characteristics are maintained stably. Fig. 1 is a comparison table of 8 expansion coefficients of base materials showing examples of the present invention, Fig. 2 is a Y-plane view showing a conventional laser oscillator, Fig. 3 is a similar front view, and Fig. 4 FIG. 2 is an explanatory diagram showing a deformed state of a base in a conventional laser oscillator.

(1)・・・ベース、  (2)・・・全反射鏡、(3
)・・・部分反射鏡、(5)・・・放電管。
(1)...Base, (2)...Total reflection mirror, (3
)...partial reflecting mirror, (5)...discharge tube.

なお、各図中、同一符号は同−又は相当部分を示す。In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)複数本の放電管を、軸心を同一にして軸方向に順
次連結するとともに、両端の放電管の外端部に、全反射
鏡と部分反射鏡とをそれぞれ配置し、かつこれらをベー
ス上に設置した軸流型のレーザ発振器において、上記ベ
ースの材質を、Ni鋳鉄としたことを特徴とするレーザ
発振器。
(1) A plurality of discharge tubes are sequentially connected in the axial direction with the same axis, and a total reflection mirror and a partial reflection mirror are respectively arranged at the outer ends of the discharge tubes at both ends, and these An axial flow type laser oscillator installed on a base, characterized in that the base is made of Ni cast iron.
(2)ベースに使用するNi鋳鉄は、Niを30重量%
以上含有する高Ni鋳鉄であることを特徴とする特許請
求の範囲第1項記載のレーザ発振器。
(2) The Ni cast iron used for the base contains 30% by weight of Ni.
The laser oscillator according to claim 1, characterized in that the laser oscillator is made of high-Ni cast iron containing the above.
JP19314986A 1986-08-19 1986-08-19 Laser oscillator Pending JPS6348876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19314986A JPS6348876A (en) 1986-08-19 1986-08-19 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19314986A JPS6348876A (en) 1986-08-19 1986-08-19 Laser oscillator

Publications (1)

Publication Number Publication Date
JPS6348876A true JPS6348876A (en) 1988-03-01

Family

ID=16303101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19314986A Pending JPS6348876A (en) 1986-08-19 1986-08-19 Laser oscillator

Country Status (1)

Country Link
JP (1) JPS6348876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013847A1 (en) * 1992-12-15 1994-06-23 Kabushiki Kaisha Toshiba Method of manufacturing cast iron of high strength and low expansion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013847A1 (en) * 1992-12-15 1994-06-23 Kabushiki Kaisha Toshiba Method of manufacturing cast iron of high strength and low expansion
US6110305A (en) * 1992-12-15 2000-08-29 Kabushiki Kaisha Toshiba Method for production of high-strength low-expansion cast iron

Similar Documents

Publication Publication Date Title
US4500998A (en) Gas laser
US4050036A (en) Optical system for lasers
Rodloff A laser gyro with optimized resonator geometry
US3466566A (en) Optical resonator for lasers
JPS6348876A (en) Laser oscillator
JPS6394695A (en) Gas laser oscillator
TW306084B (en)
CN108110596B (en) Alkali metal laser
JPS6028288A (en) Orthogonal gas laser oscillator
GB2139808A (en) High performance lasers
Draganov et al. Compact telescope for free-space communications
JP2015103762A (en) Gas laser amplifying system
Vasiltsov et al. High-power waveguide industrial CO2 lasers
JPH07106669A (en) Laser oscillator
JP2001320114A (en) Laser resonator
JPS63110683A (en) Gas laser oscillator
Vasiltsov et al. Waveguide high-power industrial CO2 lasers
JPS63239888A (en) Gas laser oscillator
JPS62224990A (en) Gas laser osciillator
JPH02281675A (en) Gas laser oscillation device
JPS5855663Y2 (en) Laser oscillation device
JPH0444283A (en) Laser oscillator
JPS62260379A (en) Gas laser oscillator
JPH01140785A (en) Laser device
JPS62152190A (en) Laser oscillator