JPH0444283A - Laser oscillator - Google Patents

Laser oscillator

Info

Publication number
JPH0444283A
JPH0444283A JP14962190A JP14962190A JPH0444283A JP H0444283 A JPH0444283 A JP H0444283A JP 14962190 A JP14962190 A JP 14962190A JP 14962190 A JP14962190 A JP 14962190A JP H0444283 A JPH0444283 A JP H0444283A
Authority
JP
Japan
Prior art keywords
laser
folding
mirror
section
folding mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14962190A
Other languages
Japanese (ja)
Other versions
JP2706557B2 (en
Inventor
Takafumi Murakami
孝文 村上
Mitsuo Manabe
真鍋 三男
Nobuaki Iehisa
信明 家久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2149621A priority Critical patent/JP2706557B2/en
Publication of JPH0444283A publication Critical patent/JPH0444283A/en
Application granted granted Critical
Publication of JP2706557B2 publication Critical patent/JP2706557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To prevent a decrease in a laser output and to obtain a stable laser output by providing a folding mirror section in which an optical axis is folded by a folding mirror and at least one laser gas bypass provided in parallel with the section in a multiple folding type high speed axial flow laser oscillator. CONSTITUTION:A folding mirror section 1 is an optical path formed from a folding mirror 3 to a folding mirror 4, and a laser light 5 in a resonator is bent by the folding mirrors 3, 4 of a folding mirror section 2. On the other hand, a bypass 15 is provided in parallel with the section 2, and has an opening end 16 between a gas inlet 10 and the mirror 3, and an opening end 17 between a gas inlet 11 and the mirror 4. Since the diameter of the bypass 15 is set larger than the diameter of the section 2, the blast resistance is extremely smaller than that of the section 2. Therefore, even if a differential pressure is generated between laser gas pressures in resonators according to the diameter of a tube for circulating laser gas and the length of the path, the flow of the gas generated by the differential pressure is fed through the bypass 15, but not fed through the section 2. Thus, the gas pressures in the resonators are made uniform, thereby reducing the flows of the gases in the sections.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多重折り返し型高速軸流レーザであるレーザ発
振装置に関し、特に出力安定化及び出力低下防止の機構
を有するレーザ発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laser oscillation device that is a multi-folded high-speed axial flow laser, and more particularly to a laser oscillation device having a mechanism for stabilizing the output and preventing a decrease in the output.

〔従来の技術〕[Conventional technology]

従来、全反射鏡及び出力結合鏡の他に折り返し鏡を用い
て光軸を多段に折り返した多重折り返し型高速軸流型の
レーザ発振装置が知られている。
2. Description of the Related Art Conventionally, a multi-folding type high-speed axial flow type laser oscillation device is known in which the optical axis is folded in multiple stages using a folding mirror in addition to a total reflection mirror and an output coupling mirror.

第2図はこの従来のレーザ発振装置の共振器の構成を示
す図である。図において、レーザ光21は全反射鏡22
及び出力結合鏡23を通じて出力される。レーザ管24
内のレーザ光25は、折り返し鏡26及び27によって
折り曲げられている。
FIG. 2 is a diagram showing the configuration of a resonator of this conventional laser oscillation device. In the figure, the laser beam 21 is reflected by a total reflection mirror 22.
and is output through the output coupling mirror 23. Laser tube 24
The laser beam 25 inside is bent by folding mirrors 26 and 27.

レーザガスは、矢印で示すように、ガス流入口28.2
9.30及び31からレーザ管24に流入し、ガス流出
口32及び33から流出する。
The laser gas flows through the gas inlet 28.2 as shown by the arrow.
9. Gas flows into the laser tube 24 through gas outlets 32 and 31 and flows out through gas outlets 32 and 33.

レーザ管24内のレーザガス圧力が均一に保たれるとき
は、折り返し鏡26から27にわたる経路(折り返し鏡
部)34内のレーザガス圧力も均一に保たれ、この折り
返し鏡部34にはレーザガスは流れない。
When the laser gas pressure in the laser tube 24 is kept uniform, the laser gas pressure in the path (folding mirror section) 34 extending from folding mirrors 26 to 27 is also kept uniform, and no laser gas flows through this folding mirror section 34. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来のレーザ発振装置では、レーザガスが循環
する各送風系内に管径、経路長の差があるため、レーザ
管24内のレーザガス圧力に差圧が生じる。このため、
例えばレーザ管24内の、折り返し鏡26の直前部分3
5と折り返し鏡27の直後部分36との間にも差圧が生
じる。従って、本来光学経路である折り返し鏡部34に
レーザガスの流れが発生する。
However, in the conventional laser oscillation device, there is a difference in tube diameter and path length within each blowing system through which the laser gas circulates, so a pressure difference occurs in the laser gas pressure within the laser tube 24. For this reason,
For example, the portion 3 in front of the folding mirror 26 in the laser tube 24
5 and the immediate rear portion 36 of the folding mirror 27. Therefore, a flow of laser gas is generated in the folding mirror section 34, which is originally an optical path.

一方、レーザガスには、送風系内を循環する際に、機構
部からの塵やオイルミスト等が含まれる。
On the other hand, the laser gas contains dust, oil mist, etc. from the mechanical part when circulating in the ventilation system.

このたと、光学部品(折り返し鏡26及び27)がレー
ザガスにさらされ、表面が汚染されてレーザ出力が低下
するという問題点があった。
In addition, there was a problem in that the optical components (folding mirrors 26 and 27) were exposed to the laser gas, and the surfaces were contaminated, resulting in a decrease in laser output.

本発明はこのような点に鑑みてなされたものであり、レ
ーザ出力の低下を防止し、安定したレーザ出力が得られ
るレーザ発振装置を提供することを目的とする。
The present invention has been made in view of these points, and it is an object of the present invention to provide a laser oscillation device that can prevent a decrease in laser output and provide stable laser output.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では上記課題を解決するために、全反射鏡及び出
力結合鏡の他に折り返し鏡を用いて光軸を多段に折り返
した多重折り返し型高速軸流レーザであるレーザ発振装
置において、前記折り返し鏡によって前記光軸が折り返
される折り返し鏡部と、前記折り返し鏡部と並列に設け
られた、少なくとも1個のレーザガス用ノくイノくスと
、を備えたことを特徴とするレーザ発振装置が、提供さ
れる。
In order to solve the above-mentioned problems, the present invention provides a laser oscillation device that is a multi-folding type high-speed axial flow laser in which the optical axis is folded in multiple stages using a folding mirror in addition to a total reflection mirror and an output coupling mirror. Provided is a laser oscillation device, comprising: a folding mirror portion for folding back the optical axis; and at least one laser gas nozzle provided in parallel with the folding mirror portion. be done.

〔作用〕[Effect]

折り返し鏡部と並列にレーザガス用ノくイノイスを設け
たので、レーザ管内のレーザガス圧力が均一化され、折
り返し鏡部のレーザガスの流れが低減される。このため
、光学部品は、レーザガスの流れにさらされず、表面が
汚染されない。従って、レーザ出力の低下を防止できる
Since the laser gas nozzle is provided in parallel with the folding mirror section, the laser gas pressure within the laser tube is made uniform, and the flow of the laser gas through the folding mirror section is reduced. Therefore, the optical component is not exposed to the flow of laser gas and the surface is not contaminated. Therefore, a decrease in laser output can be prevented.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明のレーザ発振装置の共振器の構成を示す
図である。
FIG. 1 is a diagram showing the configuration of a resonator of a laser oscillation device according to the present invention.

共振器は多重折り返し型高速軸流型のものである。The resonator is of the multiple folded high speed axial flow type.

放電管1は、2本直列のものが2組並列に配置されてい
る。この2組並列に配置された放電管1は、折り返し鏡
部2によって結合されている。
Two sets of two discharge tubes 1 in series are arranged in parallel. These two sets of discharge tubes 1 arranged in parallel are connected by a folding mirror section 2.

折り返し鏡部2は、折り返し鏡3から4にわたって形成
された光学経路であり、共振器内のレーザ光5は、この
折り返し鏡部2の折り返し鏡3及び4によって折り曲げ
られている。
The folding mirror section 2 is an optical path formed across the folding mirrors 3 and 4, and the laser beam 5 within the resonator is bent by the folding mirrors 3 and 4 of the folding mirror section 2.

放電管1内部のレーザガスは、レーザ用電源(図示せず
)から高周波電圧が印加壱れると放電を生じて励起され
る。全反射鏡6及び出力結合鏡7は、励起されたレーザ
ガス分子から放出されたエネルギを設け、レーザ光5を
発振、増幅して、その一部を出力結合鏡7からレーザ光
8として外部に出力する。
When a high frequency voltage is applied from a laser power source (not shown), the laser gas inside the discharge tube 1 generates a discharge and is excited. The total reflection mirror 6 and the output coupling mirror 7 provide energy emitted from the excited laser gas molecules, oscillate and amplify the laser beam 5, and output a part of it to the outside as a laser beam 8 from the output coupling mirror 7. do.

レーザガスは、図中矢印で示すように、ガス流入口9.
10.11及び12から放電管1内に流入し、ガス流出
口13及び14から流出する。放電管1内のガス速度は
約200m/secである。
The laser gas flows through the gas inlet 9. as shown by the arrow in the figure.
10. Gas flows into the discharge tube 1 through gas outlets 11 and 12, and flows out through gas outlets 13 and 14. The gas velocity within the discharge tube 1 is approximately 200 m/sec.

バイパス15は、折り返し鏡部2と並列に設けられ、ガ
ス流入口10と折り返し鏡3との間16及びガス流入口
11と折り返し鏡4との間17に開口端をそれぞれ有し
ている。バイパス15の径(例えば20φ)は、折り返
し鏡部2の径(例えば12φ)より大きく設定しである
。従って、バイパス15の送風抵抗は折り返し鏡部2の
送風抵抗に比べて極めて小さくなる。
The bypass 15 is provided in parallel with the folding mirror section 2 and has open ends at 16 between the gas inlet 10 and the folding mirror 3 and between 17 between the gas inlet 11 and the folding mirror 4, respectively. The diameter of the bypass 15 (for example, 20φ) is set larger than the diameter of the folding mirror portion 2 (for example, 12φ). Therefore, the air blowing resistance of the bypass 15 is extremely small compared to the air blowing resistance of the folding mirror section 2.

このため、たとえレーザガスが循環する各送風系(図示
せず)内の管径や経路長の差によって共振器内のレーザ
ガス圧力に差圧が生じ、その結果、バイパス15の各開
口端側16及び17にも差圧が生じたとしても、この差
圧によって発生するレーザガスの流れはバイパス15を
経由し、折り返し鏡部2を経由しない。
For this reason, even if a difference in pipe diameter or path length in each ventilation system (not shown) through which the laser gas circulates causes a difference in laser gas pressure within the resonator, as a result, a pressure difference occurs between the open end sides 16 of the bypass 15 and the Even if a pressure difference occurs also in 17, the flow of laser gas generated by this pressure difference passes through the bypass 15 and does not pass through the folding mirror section 2.

従って、折り返し鏡部2の折り返し鏡3及び4は、レー
ザガスにさらされず、その表面は、レーザガスが送V系
内を循環する際にレーザガス中に含まれる機構部からの
塵やオイルミスト等によって汚染されない。
Therefore, the folding mirrors 3 and 4 of the folding mirror unit 2 are not exposed to the laser gas, and their surfaces are contaminated by dust, oil mist, etc. from the mechanical parts contained in the laser gas when the laser gas circulates in the V transmission system. Not done.

このため、従来、折り返し鏡3及び4の表面が汚染され
て生じていたレーザガス出力の低下を防止することがで
きるとともに、レーザガス出力を安定して得ることがで
きる。更に、共振器内の折り返し鏡3及び4等の光学部
品のメンテナンスピリオドが延長されるため、レーザ発
振装置の信頼性を向上させることができる。
Therefore, it is possible to prevent the laser gas output from decreasing, which conventionally occurs due to contamination of the surfaces of the folding mirrors 3 and 4, and to stably obtain the laser gas output. Furthermore, since the maintenance period for optical components such as the folding mirrors 3 and 4 in the resonator is extended, the reliability of the laser oscillation device can be improved.

本実施例では、メンテナンスピリオドが、従来の技術で
は2000時間だったものが、4600時間と約2.3
倍もの延長が図られた。
In this embodiment, the maintenance period was 2000 hours in the conventional technology, but it was 4600 hours, which is about 2.3 hours.
It was attempted to be twice as long.

上計の説明では、バイパスを折り返し鏡部側に設けたが
、全反射鏡及び出力結合鏡側に設けることもできる。
In the above explanation, the bypass is provided on the folding mirror side, but it can also be provided on the total reflection mirror and output coupling mirror side.

また、放電管の本数及び結合の形は、レーザ発振装置の
目的に応じて増加させることができる。
Further, the number of discharge tubes and the shape of their coupling can be increased depending on the purpose of the laser oscillation device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、折り返し鏡部と並列に
レーザガス用バイパスを設けたので、共振器内のレーザ
ガス圧力が均一化され、折り返し鏝部のレーザガスの流
れが低減される。このため、光学部品は、レーザガスの
流れにさらされず、表面が汚染されない。従って、レー
ザ出力の低下を防止することができるとともに、レーザ
出力を安定して得ることができる。
As described above, in the present invention, since the laser gas bypass is provided in parallel with the folding mirror section, the laser gas pressure within the resonator is made uniform, and the flow of the laser gas through the folding iron section is reduced. Therefore, the optical component is not exposed to the flow of laser gas and the surface is not contaminated. Therefore, it is possible to prevent the laser output from decreasing and to stably obtain the laser output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザ発振装置の共振器の構成を示す
図、 第2図は従来のレーザ発振装置の共振器の構成を示す図
である。 2・ 3.4 9.10. 13.14 折り返し鏡部 折り返し鏡 全反射鏡 出力結合鏡 11.12 ガス流出口 バイパス ガス流入口
FIG. 1 is a diagram showing the configuration of a resonator of a laser oscillation device of the present invention, and FIG. 2 is a diagram showing the configuration of a resonator of a conventional laser oscillation device. 2. 3.4 9.10. 13.14 Folding mirror unit Folding mirror Total reflection mirror Output coupling mirror 11.12 Gas outlet bypass Gas inlet

Claims (3)

【特許請求の範囲】[Claims] (1)全反射鏡及び出力結合鏡の他に折り返し鏡を用い
て光軸を多段に折り返した多重折り返し型高速軸流レー
ザであるレーザ発振装置において、前記折り返し鏡によ
って前記光軸が折り返される折り返し鏡部と、 前記折り返し鏡部と並列に設けられた、少なくとも1個
のレーザガス用バイパスを備えたことを特徴とするレー
ザ発振装置。
(1) In a laser oscillation device that is a multi-folding type high-speed axial flow laser in which the optical axis is folded in multiple stages using a folding mirror in addition to a total reflection mirror and an output coupling mirror, folding in which the optical axis is folded back by the folding mirror A laser oscillation device comprising: a mirror; and at least one laser gas bypass provided in parallel with the folding mirror.
(2)前記レーザガス用バイパスは、前記折り返し鏡部
の直前に設けられたことを特徴とする請求項1記載のレ
ーザ発振装置。
(2) The laser oscillation device according to claim 1, wherein the laser gas bypass is provided immediately before the folding mirror.
(3)前記レーザガス用バイパスは、送風抵抗が前記折
り返し鏡部に比較して極めて小さいことを特徴とする請
求項1記載のレーザ発振装置。
(3) The laser oscillation device according to claim 1, wherein the laser gas bypass has extremely small air blowing resistance compared to the folding mirror.
JP2149621A 1990-06-07 1990-06-07 Laser oscillation device Expired - Lifetime JP2706557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2149621A JP2706557B2 (en) 1990-06-07 1990-06-07 Laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2149621A JP2706557B2 (en) 1990-06-07 1990-06-07 Laser oscillation device

Publications (2)

Publication Number Publication Date
JPH0444283A true JPH0444283A (en) 1992-02-14
JP2706557B2 JP2706557B2 (en) 1998-01-28

Family

ID=15479223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2149621A Expired - Lifetime JP2706557B2 (en) 1990-06-07 1990-06-07 Laser oscillation device

Country Status (1)

Country Link
JP (1) JP2706557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766473A (en) * 1993-08-26 1995-03-10 Matsushita Electric Ind Co Ltd Gas laser oscillator
JP2010171145A (en) * 2009-01-21 2010-08-05 Fanuc Ltd Gas laser oscillator
JP5832609B1 (en) * 2014-08-25 2015-12-16 ファナック株式会社 Laser oscillator with laser medium flow path

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198694A (en) * 1984-11-24 1986-09-03 トルンプフ・ゲ−・エム・ベ−・ハ−・ウント・コンパニイ Gas lazer having cross energy input unit of high frequency energy
JPS62165382A (en) * 1985-11-01 1987-07-21 フエランテイ・ピ−エルシ− Gas laser device
JPS63239888A (en) * 1986-11-06 1988-10-05 Mitsubishi Electric Corp Gas laser oscillator
JPH01204486A (en) * 1988-02-09 1989-08-17 Fanuc Ltd Laser oscillator
JPH0239584A (en) * 1988-07-11 1990-02-08 Trumpf Gmbh & Co Co2 industrial laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198694A (en) * 1984-11-24 1986-09-03 トルンプフ・ゲ−・エム・ベ−・ハ−・ウント・コンパニイ Gas lazer having cross energy input unit of high frequency energy
JPS62165382A (en) * 1985-11-01 1987-07-21 フエランテイ・ピ−エルシ− Gas laser device
JPS63239888A (en) * 1986-11-06 1988-10-05 Mitsubishi Electric Corp Gas laser oscillator
JPH01204486A (en) * 1988-02-09 1989-08-17 Fanuc Ltd Laser oscillator
JPH0239584A (en) * 1988-07-11 1990-02-08 Trumpf Gmbh & Co Co2 industrial laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766473A (en) * 1993-08-26 1995-03-10 Matsushita Electric Ind Co Ltd Gas laser oscillator
JP2010171145A (en) * 2009-01-21 2010-08-05 Fanuc Ltd Gas laser oscillator
JP5832609B1 (en) * 2014-08-25 2015-12-16 ファナック株式会社 Laser oscillator with laser medium flow path
US9350134B2 (en) 2014-08-25 2016-05-24 Fanuc Corporation Laser oscillator provided with laser medium flow path

Also Published As

Publication number Publication date
JP2706557B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
JPH06101596B2 (en) Cross flow type laser device
US5608754A (en) Laser resonator
JPH0444283A (en) Laser oscillator
JP2800593B2 (en) Laser oscillator
JP2008021854A (en) Gas laser oscillation device
WO2021095099A1 (en) Gas laser amplifier, gas laser device, euv light generator, and euv exposure device
JPS62106681A (en) Gas laser oscillator
US4152049A (en) Spatial filter having aerodynamic windows
JPS6076181A (en) High-speed axial flow type gas laser oscillator
JPS63110683A (en) Gas laser oscillator
JPH07118556B2 (en) Excimer laser device
JPH06326379A (en) Gas laser oscillator
JP2776412B2 (en) Narrow band ArF excimer laser device
JPH057034A (en) Laser equipment
JP2002016304A (en) Unstable type resonator
JPS63107179A (en) High-speed axial flow type co2 laser oscillator
JP2820180B2 (en) Waveguide type laser oscillator
US5856993A (en) Gas laser oscillator
JPS637683A (en) Gas laser system
JPH02281675A (en) Gas laser oscillation device
JPH05110160A (en) Gas laser oscillation device
JPH03123089A (en) Gas laser oscillator
JPH0611369U (en) Partial transmission mirror for unstable laser cavity
RU96105177A (en) MULTI-TUBE GAS LASER
JPH1084148A (en) Gas laser oscillation device