JPS6348633B2 - - Google Patents

Info

Publication number
JPS6348633B2
JPS6348633B2 JP9308480A JP9308480A JPS6348633B2 JP S6348633 B2 JPS6348633 B2 JP S6348633B2 JP 9308480 A JP9308480 A JP 9308480A JP 9308480 A JP9308480 A JP 9308480A JP S6348633 B2 JPS6348633 B2 JP S6348633B2
Authority
JP
Japan
Prior art keywords
current
pulse
amount
welding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9308480A
Other languages
Japanese (ja)
Other versions
JPS5719182A (en
Inventor
Koji Komura
Shigeo Eguri
Koji Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9308480A priority Critical patent/JPS5719182A/en
Publication of JPS5719182A publication Critical patent/JPS5719182A/en
Publication of JPS6348633B2 publication Critical patent/JPS6348633B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、パルス状の溶接電流を流すパルス
アーク溶接方法に関するものである。 従来のパルスアーク溶接機として、第1図に示
すようなものがあつた。図において、1はパルス
状の溶接電流(以下「パルス電流」と呼ぶ)を供
給するパルス発生電源、2はパルス発生電源1内
のサイリスタ等のゲートにトリガ信号を与えるた
めのパルスゲート回路、3はパルス電流とパルス
電流との間でアーク切れが生じないように直流電
流(以下「ベース電流」と呼ぶ)を供給するため
のベース電源、4はワイヤ、5はワイヤ4を母材
方向へ送り込むためのワイヤ送給装置、6は母
材、7はワイヤ4と母材6との間に点灯されるア
ークである。 次に、動作について説明する。 ワイヤ送給装置5によりワイヤ4を母材6方向
へ送り出し、それに伴いパルス発生電源1および
ベース電源3からそれぞれパルス電流、ベース電
流を供給すれば、第2図に示すような波形の溶接
電流が流れ、母材が溶接される。第2図aは平均
溶接電流値の小さい場合、bは平均溶接電流値の
大きい場合であり、τはパルス幅、Ipはパルス電
流のピーク値(以下「ピーク電流値」と呼ぶ)、
IBはベース電流値を示す。 アークのエネルギー量(すなわちワイヤおよび
母材への入熱量)を変えるには、パルスゲート回
路2によつてパルス発生電源1内のサイリスタの
点弧位相を変え、パルス幅τ、従つてピーク電流
値Ip、さらに時に応じてベース電流値IBを変えて
調整をする。すなわち、平均溶接電流値が小さい
ときは、第2図aのようにIB,τ,Ipを小さく設
定し、逆に平均溶接電流値が大きいときは、第2
図bのように、IB,τ,Ipを大きく設定する。な
お、パルス周波数は、基本電源周波数(わが国で
は50Hz,60Hz)に等しいか、またはその2倍に固
定している。 さて、このようなパルスアーク溶接機を用いた
溶接方法においては、通常1パルス当り1回、ワ
イヤの溶滴が細粒状となつて母材へ移行する(以
下これを「スプレー移行」と呼ぶ)。従来のパル
スアーク溶接機による溶接電流波形変化が行われ
れば、1パルス当りにワイヤへ注入される熱量が
大きく変わつてしまう。すなわち、平均溶接電流
値が小さい場合は、1パルス当りにワイヤへ注入
される熱量が小さく、またピーク電流値がスプレ
ー移行を起こすに必要な臨界電流値以下になり、
溶滴が大きくならないと母材へ移行しないことに
なる。この様子を第3図aに示す。従つて、アー
ク長を短くすれば、ワイヤと母材とが短絡し、そ
の短絡電流によつて溶融したワイヤがスパツタと
なつて周囲に飛散する。また、平均溶接電流値が
大きい場合には、1パルス当りのワイヤへの入熱
量が大きくなりすぎ、第3図cに示されるように
溶滴が垂れ下がり、やはりアーク長を短くすれ
ば、ワイヤと母材とが短絡し、スパツタが生じて
しまう。第3図a,cのような場合には、スパツ
タの発生を避けるためにアーク長を長くとれば、
アンダーカツトが発生し、そのため溶接速度が上
げられない。このため、第3図bのように短いア
ーク長でもスパツタなく溶滴の移行を行わせるた
めには、溶滴径をなるべく小さくしておかねばな
らない。すなわち、ワイヤへの入熱量を適正な値
にしておかねばならない。しかしながら、従来の
パルスアーク溶接方法では、第2図a,bに示し
たように電流波形を変化させるため、第3図bの
ような適正な溶滴移行形態を得るには、パルス
幅、ベース電流値等をよほどうまく調整しておか
ねばならなかつた。 以上のように、従来のパルスアーク溶接方法で
は、適正な溶滴移行状態を実現させるための調整
が困難で、往々にしてスパツタが発生したり、ア
ンダーカツト等の溶接欠陥が生じたりするので、
スパツタの除去等余計な作業工程が必要となるな
ど作業能率も悪いという欠点があつた。 この発明は、以上のような従来方法の欠点を除
去するためになされたもので、溶接電流を時々
刻々検出して積分、演算し、その値があらかじめ
設定した入熱量あるいはクーロン量に等しくなる
とパルスを停止させることにより、1パルス当り
のワイヤへの入熱を適正値とし、簡単な調整で、
適正な溶滴移行状態が得られるパルスアーク溶接
方法を提供することにある。 次に、この発明方法の一実施例を図について説
明する。 第4図において、パルス発生電源1では直流電
流をトランジスタ等のスイツチング素子でON―
OFFしている。9は溶接電流を検出する検出器、
10は積分回路で、検出器9の出力そのものを積
分する積分器11と、検出器9の出力の2乗を積
分する積分器12と、積分器11の出力をK倍
(Kはワイヤ材質、径、シールドガスの種類によ
つて決まる定数)する掛算器13と、積分器12
の出力をRl倍(Rはワイヤの単位長さ当りの抵
抗値、lは突出し長)する掛算器14と、掛算器
13および14の出力を足し合わせる加算器15
とで構成されている。16は所定の熱量W0を予
め設定する設定器、17は加算器15の出力Wと
設定器16の設定量W0とを比較する比較器であ
る。 つぎに実施例方法について説明する前に、この
発明の動作原理について述べておく。 ワイヤが溶融し、細粒状になつて母材へ移行す
る場合の溶滴の大きさは、溶滴に働くつぎの三つ
の力、 (イ) 母材方向への電磁力(ピンチ力) (ロ) ワイヤ方向への表面張力 (ハ) 重 力 のつりあいから求められる。ワイヤ材質、径、シ
ールドガスの種類を種々変化させた場合、第3図
bに示したようなスプレー移行時の溶滴径aは、
実測によると次頁に示す第1表のようになる。 溶滴移行は1パルス当りほぼ1回起こるため、
1パルス当りのワイヤへの入熱量は、表に示した
溶滴分のワイヤを溶融させるに足りるものでなけ
ればならない。例えばワイヤが軟鋼1.2mmφ、シ
ールドガスが流量比Ar/CO2=8/2の混合ガ
スの場合、室温0℃、溶滴の温度1535℃(鉄の融
点)、密度7.8g/cm3、比熱0.15cal/g・℃、潜熱
65cal/gとして計算すれば溶滴径1.2mmφのとき
は2.08cal(8.74Joule)分必要となる。
The present invention relates to a pulsed arc welding method in which a pulsed welding current is passed. As a conventional pulse arc welding machine, there was one shown in FIG. In the figure, 1 is a pulse generation power source that supplies a pulsed welding current (hereinafter referred to as "pulse current"), 2 is a pulse gate circuit for giving a trigger signal to the gate of a thyristor, etc. in the pulse generation power source 1, and 3 is a base power supply for supplying a direct current (hereinafter referred to as "base current") so that arc breakage does not occur between pulse currents, 4 is a wire, and 5 is a wire 4 that is sent toward the base metal. 6 is a base material, and 7 is an arc lit between the wire 4 and the base material 6. Next, the operation will be explained. If the wire 4 is fed in the direction of the base material 6 by the wire feeding device 5, and the pulse current and base current are supplied from the pulse generating power source 1 and the base power source 3, respectively, a welding current with a waveform as shown in FIG. 2 can be obtained. flow, and the base metal is welded. Figure 2 a shows the case where the average welding current value is small, and b shows the case where the average welding current value is large, τ is the pulse width, I p is the peak value of the pulse current (hereinafter referred to as "peak current value"),
I B indicates the base current value. To change the energy amount of the arc (that is, the amount of heat input into the wire and the base metal), the firing phase of the thyristor in the pulse generating power source 1 is changed by the pulse gate circuit 2, and the pulse width τ and therefore the peak current value are changed. Adjustments are made by changing I p and the base current value I B depending on the time. That is, when the average welding current value is small, I B , τ, and I p are set small as shown in Figure 2 a, and conversely, when the average welding current value is large, the second
As shown in Figure b, I B , τ, and I p are set large. The pulse frequency is fixed to be equal to or twice the basic power frequency (50Hz, 60Hz in Japan). Now, in a welding method using such a pulse arc welding machine, usually once per pulse, the wire droplets become fine particles and transfer to the base metal (hereinafter referred to as "spray transfer"). . If a conventional pulse arc welding machine were to change the welding current waveform, the amount of heat injected into the wire per pulse would vary greatly. That is, when the average welding current value is small, the amount of heat injected into the wire per pulse is small, and the peak current value is less than the critical current value required to cause spray transfer.
If the droplets do not become large, they will not transfer to the base material. This situation is shown in FIG. 3a. Therefore, if the arc length is shortened, the wire and the base metal will be short-circuited, and the short-circuit current will cause the melted wire to become spatter and scatter around. In addition, if the average welding current value is large, the amount of heat input to the wire per pulse becomes too large, and the droplets droop as shown in Figure 3c.If the arc length is shortened, the wire This will cause a short circuit with the base material, resulting in spatter. In cases like Figure 3 a and c, if the arc length is made long to avoid spatter,
Undercut occurs and welding speed cannot be increased. Therefore, in order to transfer the droplet without spatter even with a short arc length as shown in FIG. 3b, the diameter of the droplet must be made as small as possible. That is, the amount of heat input to the wire must be kept at an appropriate value. However, in the conventional pulsed arc welding method, the current waveform is changed as shown in Figure 2a and b, so in order to obtain the appropriate droplet transfer form as shown in Figure 3b, it is necessary to I had to adjust the current value etc. very well. As mentioned above, in the conventional pulse arc welding method, it is difficult to make adjustments to achieve a proper droplet transfer state, and often spatter or weld defects such as undercuts occur.
It also had the disadvantage of poor work efficiency, such as the need for extra work steps such as removing spatter. This invention was made in order to eliminate the drawbacks of the conventional methods as described above.The welding current is detected moment by moment, integrated and calculated, and when the value becomes equal to a preset heat input amount or coulomb amount, a pulse is generated. By stopping the heat input into the wire per pulse, the heat input to the wire per pulse can be set to an appropriate value, and with simple adjustment,
It is an object of the present invention to provide a pulse arc welding method that allows a proper droplet transfer state to be obtained. Next, an embodiment of the method of this invention will be described with reference to the drawings. In Fig. 4, the pulse generating power supply 1 turns on DC current using a switching element such as a transistor.
It's off. 9 is a detector for detecting welding current;
10 is an integration circuit, which includes an integrator 11 that integrates the output of the detector 9 itself, an integrator 12 that integrates the square of the output of the detector 9, and an integrator 11 that multiplies the output of the integrator 11 by K (K is the wire material, a constant determined by the diameter and type of shielding gas), a multiplier 13, and an integrator 12.
a multiplier 14 that multiplies the output by Rl (R is the resistance value per unit length of the wire, l is the protrusion length), and an adder 15 that adds the outputs of the multipliers 13 and 14.
It is made up of. Reference numeral 16 is a setter for presetting a predetermined amount of heat W 0 , and 17 is a comparator for comparing the output W of the adder 15 and the set amount W 0 of the setter 16 . Next, before explaining the method of the embodiment, the principle of operation of the present invention will be described. When the wire melts and becomes fine particles and transfers to the base metal, the size of the droplet is determined by the following three forces acting on the droplet: (a) electromagnetic force (pinch force) in the direction of the base metal; ) Surface tension in the wire direction (c) Determined from the balance of gravity. When the wire material, diameter, and type of shielding gas are varied, the droplet diameter a during spray transfer as shown in Figure 3b is:
According to actual measurements, the results are as shown in Table 1 shown on the next page. Since droplet transfer occurs approximately once per pulse,
The amount of heat input to the wire per pulse must be sufficient to melt the wire for the number of droplets shown in the table. For example, if the wire is mild steel 1.2mmφ and the shielding gas is a mixed gas with a flow rate ratio of Ar/CO 2 = 8/2, the room temperature is 0°C, the temperature of the droplet is 1535°C (melting point of iron), the density is 7.8g/cm 3 , and the specific heat is 0.15cal/g・℃, latent heat
If calculated as 65 cal/g, 2.08 cal (8.74 Joule) is required when the droplet diameter is 1.2 mmφ.

【表】 各種条件下での必要なワイヤへの入熱量W0
第1表に示す。なおステンレス、アルミの場合に
使用した物理定数は第2表の通りである。
[Table] Table 1 also shows the required amount of heat input W 0 to the wire under various conditions. The physical constants used for stainless steel and aluminum are shown in Table 2.

【表】 一方、1パルス当り溶接電流によつてワイヤに
注入される熱量Wは、アーク熱による分W1と突
出し部分でのジユール熱分W2との和に等しいも
のと考えられる。そして、アーク熱分W1はジユ
ール熱分W2に比べて大きく、8:2若しくは
7:3程度の割合と考えられる。また、前者は電
流に比例し、後者は電流の2乗に比例する。故
に、1パルス当りの電流波形の面積Q1と、電流
の2乗の波形の面積Q2と上記Wとの関係は以下
のようになる。 W=W1+W2 =KQ1+RlQ2 従つて、電流波形を検出し、上式で示した演算
を行えば、注入されている熱量が時々刻々把握で
きることになる。そこでWが第1表に示したW0
と等しくなつた時点でパルスの発生を停止させれ
ば、1パルス当りのワイヤへの入熱量Wを必ず適
正に抑えることができる。 以上の動作原理を具体的に実現するための回路
構成が、第4図であり、以下その動作を示す。 まず、ワイヤ送給装置5によつてワイヤ4を母
材方向へ送り込み、パルス発生電源1、ベース電
源3から溶接電流を供給し、溶接が行われるので
あるが、検出器9で溶接電流波形が時々刻々検出
され、積分器11によつてQ1が計算され、積分
器12(この積分器12は例えば非直線素子を介
して積分することになる)によつてQ2が計算さ
れる。従つて、掛算器13の出力はワイヤへの入
熱量Wのうちのアーク熱による分であり、掛算器
14の出力は突出し部分でのジユール熱による分
である。加算器15は掛算器13および14の出
力の和をとるものであり、その出力はワイヤへの
入熱量の合計Wを示している。 設定器16には、第1表に示したW0の値が設
定されるので、加算器15の出力Wが設定器16
の設定量W0より大きくなつた時点で、パルスト
リガ回路2に指令を送り、パルス発生電源1内の
トランジスタ等のスイツチング素子をOFFし、
パルスを停止させる。第5図にこの実施例の電流
波形を示したが、図中t1から電流波形の検出・演
算が行われ、ワイヤへの入熱量Wが設定値W0
達した時点t2で検出・演算はリセツトされ、再び
次の周期のパルスに対する検出・演算が行われ
る。 次に、最適熱量範囲に相当するQ1の最適範囲
を試算してみる。その際、ピーク電流値Ipを設定
する必要があるが、このピーク電流値Ipは、少な
くともスプレー移行させるのに足るだけの必要最
小限の電流値(臨界電流値)より以上でなければ
ならず、かつあまり大きすぎても母材へのアーク
力が強くなつてビードが乱れてしまうということ
も考慮し、第1表に付記した値Ipに設定する。
今、ベース電流は小さい(約10〜30A)ので無視
し、また電流波形も第6図に示すような矩形波で
近似させる。ワイヤが軟鋼1.2mmφ、シールドガ
スが流量比8/2の混合ガスの場合、K=4J/
A.S,R=3mΩ/cm,l=20mmとすれば、入熱
量8.74Jouleと設定した場合、 400×τ×4+(400)2×τ×0.003×2 =8.74 ∴τ=3.41ms ∴Q1=400×3.41=1.37 クーロンとなる。 第1表には、同様の操作で求めたQ1の適正範
囲も示した。なお、用いた定数の値は第3表に示
す通りである。lとしてはすべて20mmに統一し
た。
[Table] On the other hand, the amount of heat W injected into the wire by the welding current per pulse is considered to be equal to the sum of the arc heat W 1 and the Joule heat W 2 at the protruding portion. The arc heat W 1 is larger than the Joule heat W 2 and is considered to have a ratio of about 8:2 or 7:3. Further, the former is proportional to the current, and the latter is proportional to the square of the current. Therefore, the relationship between the area Q 1 of the current waveform per pulse, the area Q 2 of the square of the current waveform, and the above W is as follows. W=W 1 +W 2 =KQ 1 +RlQ 2 Therefore, by detecting the current waveform and performing the calculation shown in the above equation, the amount of heat being injected can be grasped moment by moment. Therefore, W is W 0 shown in Table 1.
If the pulse generation is stopped when the pulse becomes equal to W, the amount of heat input W to the wire per pulse can be appropriately suppressed. A circuit configuration for concretely realizing the above operating principle is shown in FIG. 4, and its operation will be described below. First, the wire 4 is fed toward the base metal by the wire feeding device 5, and welding is performed by supplying welding current from the pulse generating power source 1 and the base power source 3. However, the welding current waveform is detected by the detector 9. They are detected moment by moment, and Q 1 is calculated by an integrator 11, and Q 2 is calculated by an integrator 12 (this integrator 12 integrates, for example, via a non-linear element). Therefore, the output of the multiplier 13 is the portion of the heat input W into the wire due to the arc heat, and the output of the multiplier 14 is the portion due to the Joule heat at the protruding portion. Adder 15 sums the outputs of multipliers 13 and 14, and its output indicates the total amount of heat input to the wire, W. Since the value of W 0 shown in Table 1 is set in the setter 16, the output W of the adder 15 is set in the setter 16.
When the set amount W becomes larger than 0 , a command is sent to the pulse trigger circuit 2 to turn off switching elements such as transistors in the pulse generation power supply 1.
Stop the pulse. Figure 5 shows the current waveform of this example. In the figure, the current waveform is detected and calculated from t1 , and detected and calculated at time t2 when the amount of heat input to the wire reaches the set value W0 . The calculation is reset, and the detection and calculation for the next cycle of pulses is performed again. Next, let's try to calculate the optimal range of Q 1 , which corresponds to the optimal calorific value range. At that time, it is necessary to set a peak current value I p , but this peak current value I p must be at least higher than the minimum necessary current value (critical current value) sufficient to cause spray transfer. However, if it is too large, the arc force on the base material will become strong and the bead will become disordered. Considering this, the value I p is set as shown in Table 1.
Now, since the base current is small (approximately 10 to 30 A), it is ignored, and the current waveform is also approximated by a rectangular wave as shown in FIG. If the wire is mild steel 1.2mmφ and the shielding gas is a mixed gas with a flow rate ratio of 8/2, K = 4J/
AS, R = 3mΩ/cm, l = 20mm, and when the heat input is set to 8.74Joule, 400×τ×4+(400) 2 ×τ×0.003×2 =8.74 ∴τ=3.41ms ∴Q 1 = 400×3.41=1.37 coulombs. Table 1 also shows the appropriate range of Q1 determined by the same procedure. Note that the values of the constants used are as shown in Table 3. The l is unified to 20mm for all.

【表】 なお第1表に示す範囲内に設定したQ10と、
時々刻々求めたQ1の値と比較することによつて、
パルスの停止時刻を定めることもできる。第7図
は、この他の実施例方法を実現する電源回路構成
を示す図であり、この例では、積分器11は単に
検出器9の出力を積分するだけでよく、その出力
Q1と設定器16で設定された適正なクーロン量
Q10とが比較器17において比較され、積分器1
1の出力Q1の方が大きくなつた時点でパルス電
流を停止させる。第7図に示した例では第4図に
示した例に比べ、回路が簡単になるという利点が
ある。 この発明はアーク放電を維持するベース電流に
パルス電流を重畳させる溶接電流をワイヤ電極に
給電し、当該ワイヤ電極の溶滴を母材にスプレー
移行させて溶接するパルスアーク溶接方法におい
て、上記溶接電流を時々刻々検出し積分してクー
ロン量を演算し、演算した値が予め設定された1
パルス当りの最適溶接状態が得られ、クーロン量
より大きくなつたときに上記パルス電流を停止
し、上記1パルス当りの上記ワイヤ電極への入熱
を適正値とするか、または上記溶接電流を時々
刻々検出し積分してクーロン量を演算るととも
に、上記検出した溶接電流を2乗して積分してジ
ユール熱量を演算し、上記演算したクーロン量と
ジユール熱量とを加算して入熱量を演算し、この
演算した入熱量が予め設定された1パルス当りの
最適溶接状態が得られる入熱量の値より大きくな
つたときに上記パルス電流を停止し、上記1パル
ス当りの上記ワイヤ電極への入熱を適正値とした
ことを特徴とするもので、溶接電流を時々刻々検
出し、ワイヤへの入熱量を必ず適正値に入るよう
にパルス停止時刻を制御したので、簡単な調整で
も常に適正な溶滴移行形態が得られ、スパツタの
発生もなく、アンダーカツト等の溶接欠陥も除去
できるという効果がある。
[Table] Q 10 set within the range shown in Table 1,
By comparing with the value of Q 1 obtained from time to time,
It is also possible to determine the stop time of the pulse. FIG. 7 is a diagram showing a power supply circuit configuration for realizing this other embodiment method. In this example, the integrator 11 only needs to integrate the output of the detector 9;
Appropriate coulomb amount set with Q 1 and setting device 16
Q 10 is compared in comparator 17, and integrator 1
The pulse current is stopped when the output Q1 becomes larger. The example shown in FIG. 7 has the advantage that the circuit is simpler than the example shown in FIG. This invention provides a pulsed arc welding method in which a welding current that superimposes a pulsed current on a base current that maintains arc discharge is supplied to a wire electrode, and droplets of the wire electrode are spray-transferred to a base material for welding. is detected moment by moment and integrated to calculate the Coulomb quantity, and the calculated value is set as 1.
When the optimum welding state per pulse is obtained and the amount of coulomb is exceeded, the pulse current is stopped and the heat input to the wire electrode per pulse is set to an appropriate value, or the welding current is changed from time to time. In addition to calculating the amount of coulomb by detecting and integrating the welding current moment by moment, the amount of Joule heat is calculated by squaring and integrating the detected welding current, and the amount of heat input is calculated by adding the amount of coulombs calculated above and the amount of Joule heat. , when the calculated heat input amount becomes larger than the preset value of the heat input amount that provides the optimum welding state per pulse, the pulse current is stopped, and the heat input to the wire electrode per pulse is increased. The welding current is detected moment by moment, and the pulse stop time is controlled to ensure that the amount of heat input to the wire is within the appropriate value, so even simple adjustments can always ensure proper welding. This has the effect that a droplet transfer form is obtained, no spatter occurs, and welding defects such as undercuts can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のパルスアーク溶接機の電源回路
構成を示す図、第2図は従来のパルスアーク溶接
機による溶接電流波形を示す図、第3図は溶滴移
行の状態を示す図、第4図はこの発明の一実施例
方法に用いられるパルスアーク溶接機の電源回路
構成を示す図、第5図、第6図はそれぞれ第4図
のパルスアーク溶接機の溶接電流波形および矩形
波近似波形を示す図、第7図はこの発明の他の実
施例方法に用いられるパルスアーク溶接機の電源
回路構成図である。 図において、1はパルス発生電源、2はパルス
ゲート回路、3はベース電源、9は検出器、10
は積分回路、11は第1の積分器、12は第2の
積分器、13,14は掛算器、15は加算器、1
6は設定器、17は比較器である。なお、図中、
同一符号はそれぞれ同一または相当部分を示す。
Fig. 1 is a diagram showing the power supply circuit configuration of a conventional pulse arc welding machine, Fig. 2 is a diagram showing a welding current waveform by a conventional pulse arc welding machine, Fig. 3 is a diagram showing the state of droplet transfer, FIG. 4 is a diagram showing the power supply circuit configuration of a pulse arc welding machine used in one embodiment of the method of the present invention, and FIGS. 5 and 6 show the welding current waveform and rectangular wave approximation of the pulse arc welding machine of FIG. 4, respectively. FIG. 7, which is a diagram showing waveforms, is a power supply circuit configuration diagram of a pulse arc welding machine used in another embodiment method of the present invention. In the figure, 1 is a pulse generation power supply, 2 is a pulse gate circuit, 3 is a base power supply, 9 is a detector, 10
is an integration circuit, 11 is a first integrator, 12 is a second integrator, 13 and 14 are multipliers, 15 is an adder, 1
6 is a setting device, and 17 is a comparator. In addition, in the figure,
The same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 アーク放電を維持するベース電流にパルス電
流を重畳してなる溶接電流をワイヤ電極に給電
し、当該ワイヤ電極の溶滴を母材にスプレー移行
させて溶接するパルスアーク溶接方法において、
上記溶接電流を時々刻々検出し積分してクーロン
量を演算し、演算した値が予め設定された1パル
ス当りの最適溶接状態が得られるクーロン量より
大きくなつたときに上記パルス電流を停止し、上
記1パルス当りの上記ワイヤ電極への入熱を適正
値としたことを特徴とするパルスアーク溶接方
法。 2 アーク放電を維持するベース電流にパルス電
流を重畳してなる溶接電流をワイヤ電極に給電
し、当該ワイヤ電極の溶滴を母材にスプレー移行
させて溶接するパルスアーク溶接方法において、
上記溶接電流を時々刻々検出し積分してクーロン
量を演算するとともに、上記検出した溶接電流を
2乗して積分してジユール熱量を演算し、上記演
算したクーロン量とジユール熱量とを加算して入
熱量を演算し、この演算した入熱量が予め設定さ
れた1パルス当りの最適溶接状態が得られる入熱
量の値より大きくなつたときに上記パルス電流を
停止し、上記1パルス当りの上記ワイヤ電極への
入熱を適正値としたことを特徴とするパルスアー
ク溶接方法。
[Claims] 1. Pulsed arc welding in which a welding current made by superimposing a pulse current on a base current that maintains arc discharge is supplied to a wire electrode, and droplets from the wire electrode are sprayed and transferred to the base material for welding. In the method,
Detecting and integrating the welding current from time to time to calculate a coulomb amount, and stopping the pulse current when the calculated value becomes larger than a preset coulomb amount for obtaining an optimal welding state per pulse; A pulse arc welding method characterized in that heat input to the wire electrode per one pulse is set to an appropriate value. 2. In a pulsed arc welding method in which a welding current made by superimposing a pulsed current on a base current that maintains arc discharge is supplied to a wire electrode, droplets from the wire electrode are sprayed and transferred to the base material for welding,
The amount of coulomb is calculated by momentarily detecting and integrating the welding current, and the amount of heat is calculated by squaring and integrating the detected welding current, and the amount of coulomb and the amount of heat calculated above are added. The amount of heat input is calculated, and when the calculated amount of heat input becomes larger than the preset value of the amount of heat input that provides the optimal welding state per pulse, the pulse current is stopped, and the wire is A pulsed arc welding method characterized by setting the heat input to the electrode at an appropriate value.
JP9308480A 1980-07-08 1980-07-08 Pulse arc welding machine Granted JPS5719182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9308480A JPS5719182A (en) 1980-07-08 1980-07-08 Pulse arc welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9308480A JPS5719182A (en) 1980-07-08 1980-07-08 Pulse arc welding machine

Publications (2)

Publication Number Publication Date
JPS5719182A JPS5719182A (en) 1982-02-01
JPS6348633B2 true JPS6348633B2 (en) 1988-09-29

Family

ID=14072652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9308480A Granted JPS5719182A (en) 1980-07-08 1980-07-08 Pulse arc welding machine

Country Status (1)

Country Link
JP (1) JPS5719182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009856A1 (en) * 1989-02-28 1990-09-07 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus
WO1990009858A1 (en) * 1989-02-27 1990-09-07 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121641A (en) * 1986-11-10 1988-05-25 Nippon Yakin Kogyo Co Ltd External coating of sheathed heater made of austenitic stainless steel
US7271365B2 (en) 2005-04-11 2007-09-18 Lincoln Global, Inc. System and method for pulse welding
CN103394795B (en) * 2013-07-30 2015-04-15 广州中医药大学 Method for adaptively detecting periodic phases of double-pulse welding current waveforms

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009858A1 (en) * 1989-02-27 1990-09-07 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus
GB2240888A (en) * 1989-02-27 1991-08-14 Mitsubishi Electric Corp Pulse welding apparatus
GB2240888B (en) * 1989-02-27 1994-09-14 Mitsubishi Electric Corp Pulse welding apparatus
WO1990009856A1 (en) * 1989-02-28 1990-09-07 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus

Also Published As

Publication number Publication date
JPS5719182A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
US8492678B2 (en) Method and apparatus for short-circuit welding utilizing cycle history
RU2217274C2 (en) Apparatus for electric arc welding with short-circuiting, controller for such apparatus and method for controlling apparatus
US6326591B1 (en) Method and apparatus for short arc welding
JP4291257B2 (en) Short-circuit arc welder and control method thereof
US3657724A (en) Method of and power supply for electric arc welding
JPH0144431B2 (en)
JPS6348633B2 (en)
JPS6245025B2 (en)
US3777113A (en) Method of intermittent arc welding using potassium and magnesium electrode additives
JPS5829575A (en) Electric power source device for welding
JPS6254585B2 (en)
JP5557515B2 (en) Plasma MIG welding method
JPS59199173A (en) Method and device for controlling power source for short circuit transfer welding
JPS6348632B2 (en)
JP4252636B2 (en) Consumable electrode gas shield arc welding method
JP2000015441A (en) Short circuit transfer type arc welding method
JP2819607B2 (en) MIG and MAG pulse arc welding method
JP2016022507A (en) Pulse arc weldment control method
JP2004042056A (en) Arc and control method
JPH0127827B2 (en)
JPH0615105B2 (en) Short circuit transfer arc welder
JP2000042740A (en) Short circuiting transfer type arc welding method
JP2000042737A (en) Short circuiting transfer type arc welding method
JPH01237075A (en) Consumable electrode type ac rectangular wave welding method
JPS58107268A (en) Arc welding device using nonconsumable electrode