JPS6348619B2 - - Google Patents

Info

Publication number
JPS6348619B2
JPS6348619B2 JP1142082A JP1142082A JPS6348619B2 JP S6348619 B2 JPS6348619 B2 JP S6348619B2 JP 1142082 A JP1142082 A JP 1142082A JP 1142082 A JP1142082 A JP 1142082A JP S6348619 B2 JPS6348619 B2 JP S6348619B2
Authority
JP
Japan
Prior art keywords
stirring
electromagnetic stirring
segregation
molten steel
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1142082A
Other languages
Japanese (ja)
Other versions
JPS58128254A (en
Inventor
Minoru Kitamura
Kenta Yoshii
Shozo Kawasaki
Katsuyoshi Matsuo
Mitsuo Tomonaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1142082A priority Critical patent/JPS58128254A/en
Publication of JPS58128254A publication Critical patent/JPS58128254A/en
Publication of JPS6348619B2 publication Critical patent/JPS6348619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、連続鋳造において良好な凝固組識を
与える為の電磁撹拌方法に関するものである。 溶鋼中にはFe以外に種々の合金元素や不純元
素が混入しており、溶鋼の凝固過程ではC,P,
S等の偏析元素が鋼塊や鋳片の最終凝固部に濃厚
偏析することがある。この様な偏析部を有する素
材から製造された製品は機械的性質の不均一に伴
う劣化を露呈すると共に、溶接時に欠陥を多発す
るという問題があり、偏析対策は重要な課題とな
つている。特に連続鋳造法においては、鋳片引抜
方向に対して直交する方向に著しい偏析が発生し
色々な操業条件が検討されているにもかかわらず
鋳片の機械的性質を均質化させることには成功を
見ていない。 従来行なわれてきた対策のうちもつとも有望視
されているのは、冷却凝固過程中の溶鋼を電磁撹
拌法によつて撹拌する方法であり、凝固過程にお
いて成長する柱状晶を破断する効果が確認されて
いるが、柱状晶を多少破断する程度では濃厚偏析
の解消が不十分である。そこで撹拌効果を更に顕
著ならしめる為、電磁力を大きくして撹拌力を高
めることも検討されたが逆に負偏析状のホワイト
バンドが形成されるという欠点もある。ホワイト
バンドの部分は合金組成が平均値より低くなつて
材質上の欠陥部となるだけでなく外観上も好まし
いものではない。 本発明はこの様な現状を憂慮してなされたもの
であつて、柱状晶の破断効果を高めて負偏析の軽
減を図ると共にホワイトバンドの形成を伴なわな
い様な電磁撹拌条件の完成を目的とするものであ
る。しかして本発明に係る連鋳時の溶鋼電磁撹拌
法とは、鋳片の厚さ方向厚さに対する未凝固厚さ
が45%となる引抜位置よりも引抜方向側の位置に
電磁撹拌装置を設け、 未凝固部と凝固部の界面(以下凝固界面)にお
ける磁束密度をB(ガウス) 電磁撹拌装置の撹拌有効ド長(mm) 鋳造引抜速度をv(m/min) 撹拌時間T(min)=/v としたとき、B×Tが、電磁撹拌装置設定位置か
ら引抜方向側に存在する全未凝固溶鋼体積に対し
1m3当り1600ガウス・min以上となる様に鋳造方
向への撹拌を加える点に要旨を有するものであ
る。 上記の条件は、凝固過程における溶鋼の流動状
況を勘案して設定されたものであり、以下研究経
過を踏まえて本発明の構成及び作用効果を説明す
る。 連続鋳造において鋳片中心部に偏析の生じる原
因については、一般に次の様に考えられている。
鋳片中心部を鋳造方向(引抜方向)にみると温度
勾配は極めて少ないが、この様な部位における固
液共存層の流動は、所謂サクシヨン(溶鋼の凝固
末期に生じる固液共存層の収縮現象)によつて惹
起されることが知られているが、この場合固液共
存層の全てが一時に流動するというのではなく、
下方部(引抜方向側)で先行的に進む凝固収縮に
よつてその直上部(鋳型側)が下方へ向けて流動
し、当該流動部の凝固につれて更にその直上部が
下方へ流動及び凝固するという、段階的な流動が
繰り返されることによつてV偏析の周期性が成立
する。この状況を一層模式的に説明すると、固液
共存状態が鋳片引抜方向に沿つて幾つかの領域に
分かれて形成され、且つ各領域はまとまつて流動
するが、この流動は多少の時間的ずれをもつて起
こり、下部側から順々に流動していく。従つて各
領域相互間では流動時期のずれに伴なつてデンド
ライト樹間が開き、茲にある程度の周期性をもつ
た空隙が形成される。又この空隙内には鋳片引抜
方向と直角の方向に温度勾配があつて、デンドラ
イト樹間に溶鋼の流れが形成されているので、前
述のサクシヨン効果は鋳片中心部側へ行くほど強
くなる。これらの影響が重なり合う結果、上述の
空隙は軸心側に傾斜したV字型となり、デンドラ
イト樹間に存在している周辺の濃厚液がこのV字
型空隙に流れ込んで凝固し、これがそのままV偏
析になるものと思われる。 本発明者等はこの様な解析の上に立ち、電磁撹
拌力の調整によつて上述の凝固機構に変化を与え
鋳片軸心部における偏析の軽減を達成しようと考
えた。 即ちV偏析の生ずる領域は、結局のところ温度
勾配の少ない領域である。そしてこの領域の大き
さを左右する因子としては溶鋼組成(特に炭素濃
度)や溶鋼過熱温度等が考えられるにもかかわら
ず、現実にV偏析の形成されている領域を統計的
に調査したところ、鋳片の厚さ方向厚さに対して
最大でも45%の厚さを越えることは無いというこ
とが分かつた。即ち第1図は、炭素濃度と上面等
軸晶率の関係を表わすグラフであるが、図に見ら
れる如く低炭素領域と高炭素領域では上面等軸晶
率が低いのに対し中炭素領域では極めて高い。こ
の理由については、低炭及び高炭の領域では夫々
δ相及びγ相の単相凝固である為に等軸晶の形成
が少ないのに対し、中炭の領域では液体+δ相→
γ相の2相凝固を起こす為にこの変態途中で長時
間を要し、結果として生残る等軸晶の核が多くな
る為であろうと考えられる。又包晶反応によつて
局部的に発生した熱がデンドライトの枝を根元か
ら再溶解し、それぞれ等軸晶の核になるというこ
とも考えられる。これらの理由についてはともか
くとして、第1図に示した上面等軸晶率は、V偏
析を生じる部分の鋳片軸心からの距離を、鋳片厚
さ方向厚さに対する比率として表わしたものに相
当し、同図中に示した条件(vは鋳片引抜速度、
△tは溶鋼過熱度)における連続鋳造の結果によ
れば、V偏析の形成される領域は、鋳片の厚さ方
向厚さに対して軸心から45%迄の部分であるとの
結論を得た。そこで上記のV偏析を電磁撹拌によ
つて解消するという目的の達成の為には、当該領
域を撹拌することが必要であると考え、鋳片の厚
さ方向厚さに対する未凝固厚さが45%となる引抜
位置よりも引抜方向側の位置に電磁撹拌装置を設
けるのが良いとの結論に到達した。 第2図は本発明におけるV偏析軽減機構を説明
する為の模式図であり、(A)は電磁撹拌を加えない
場合、(B)は従来の電磁撹拌技術による場合、(C)は
本発明の場合を夫々示し、いずれも鋳造は上から
下へ進行するものとする。電磁撹拌を加えない(A)
のマクロ組織をみると、柱状晶が鋳片厚さの中心
部まで達してその会合部にセンターポロシテイを
生じていたが、(B)では柱状晶の分断によつて等軸
晶が増殖され、中心部の凝固組織が著しく軽減さ
れてはいるもののV偏析やミクロポロシテイを完
全に消滅させるには至つていない。しかし本発明
法による(C)では、V字状の偏析角度を極めて鋭角
に、換言すれば鋳片表面に対して平行になる様
に、即ち鋳片引抜方向へ偏光させることに成功し
た。つまり本発明の電磁撹拌では、V偏析形成部
の鋳造方向への流動現象を中心方向へ集中しない
様に分散させようとするものであり、具体的には
凝固末期の収縮力による前記流動現象を、鋳片引
抜方向と直交する方向への温度勾配形成によつて
人工的に該直交方向へ分散させるものである。従
つて凝固末期に形成される濃化液は軸心部にV型
偏析することなく、周方向へ分散移動されて凝固
する。尚この様な人工的流動を与えるに際して
は、鋳片引抜方向と反対方向に、即ち逆らう方向
に与えることもできるが、電源容量等の経費面か
ら考えて不利であり、鋳片引抜方向に向けて与え
る方が有利である。第3〜7図は本発明の実施状
況を示す概念図であり鋳型1の下方において前述
の条件を満足する位置よりも引抜方向側の位置
に、1〜数個の電磁撹拌装置2を設ける。しかし
本発明における所期の目的を達成する為には、更
に具体的な電磁撹拌条件を定める必要があり、凝
固界面における磁束密度(Bガウス)と撹拌時間
(Tmin)の積(以下B・T)を未凝固溶鋼の体
積に対して1600ガウス・min/m3以上にすべきで
あるとの結論を得たので、実験結果に基づいてこ
の間の事情を説明する。 第1表は、380mm×550mmの断面を有する鋳片の
連続鋳造において、撹拌有効長=1300mmの電磁
撹拌装置をメニスカスから13mの位置〔前述の設
置条件(45%以下)を満足する位置〕に設け、出
力を変更させた時の条件を一括して示すものであ
る。凝固部のmm表示は厚さを示し、例えば引抜速
度0.45m/minにおける凝固比率(%)は次の計
算によつて求めた。 125+125/380×100=65.8% 又スターラ(電磁撹拌装置)よりの未凝固体積
は当該部分が角錐形であると考え、同じく次の計
算によつて求めた。 (0.3−2×0.125)×0.55−2×0.125) ×17×1/3=0.22m3 又ガウス値は第2表に示すものを計算に用い
た。
The present invention relates to an electromagnetic stirring method for providing a good solidification structure in continuous casting. Molten steel contains various alloying elements and impurity elements other than Fe, and during the solidification process of molten steel, C, P,
Segregating elements such as S may be concentrated and segregated in the final solidification part of steel ingots and slabs. Products manufactured from materials with such segregation areas exhibit deterioration due to non-uniform mechanical properties, and also suffer from frequent defects during welding, making segregation countermeasures an important issue. Particularly in the continuous casting method, significant segregation occurs in the direction perpendicular to the direction of slab drawing, and although various operating conditions have been investigated, it has not been possible to homogenize the mechanical properties of the slab. I haven't seen it. Among the conventional measures, one that is considered to be the most promising is the method of stirring the molten steel during the cooling and solidification process using an electromagnetic stirring method, which has been confirmed to be effective in breaking the columnar crystals that grow during the solidification process. However, even if the columnar crystals are slightly broken, it is not sufficient to eliminate the dense segregation. Therefore, in order to make the stirring effect more pronounced, it has been considered to increase the stirring force by increasing the electromagnetic force, but this has the disadvantage that a negative segregation white band is formed. The white band portion has an alloy composition lower than the average value, which not only becomes a material defect but also is not desirable in terms of appearance. The present invention was made in consideration of the current situation, and aims to improve the fracture effect of columnar crystals, reduce negative segregation, and complete electromagnetic stirring conditions that do not involve the formation of white bands. That is. However, in the electromagnetic stirring method for molten steel during continuous casting according to the present invention, an electromagnetic stirring device is installed at a position on the drawing direction side from the drawing position where the unsolidified thickness of the slab is 45% of the thickness in the thickness direction. , The magnetic flux density at the interface between the unsolidified part and the solidified part (hereinafter referred to as the solidified interface) is B (Gauss), the effective stirring length of the electromagnetic stirring device (mm), the casting withdrawal speed is v (m/min), the stirring time T (min) = /v, the point where stirring is applied in the casting direction so that B x T becomes 1600 Gauss min per 1 m3 or more for the total unsolidified molten steel volume existing in the drawing direction from the electromagnetic stirring device setting position. The main points are as follows. The above conditions were set in consideration of the flow situation of molten steel during the solidification process, and the configuration and effects of the present invention will be explained below based on the research progress. The causes of segregation in the center of slabs during continuous casting are generally considered as follows.
When looking at the center of the slab in the casting direction (drawing direction), the temperature gradient is extremely small, but the flow of the solid-liquid coexistence layer in such a region is caused by the so-called suction (shrinkage phenomenon of the solid-liquid coexistence layer that occurs at the final stage of solidification of molten steel). ), but in this case, not all of the solid-liquid coexistence layer flows at once;
Due to the solidification shrinkage that progresses in advance in the lower part (the side in the drawing direction), the area just above it (mold side) flows downward, and as the flowing area solidifies, the area just above it further flows and solidifies downward. , the periodicity of V segregation is established by repeating the stepwise flow. To explain this situation more schematically, the solid-liquid coexistence state is formed in several regions along the slab drawing direction, and each region flows together, but this flow is caused by some time lag. It occurs with , and flows sequentially from the bottom side. Therefore, as the flow timing shifts between each region, the dendrite trees open up, and voids with a certain degree of periodicity are formed in the sheath. In addition, there is a temperature gradient in this gap in the direction perpendicular to the slab drawing direction, and a flow of molten steel is formed between the dendrite trees, so the suction effect described above becomes stronger toward the center of the slab. . As a result of the combination of these effects, the above-mentioned void becomes a V-shape inclined toward the axis, and the surrounding concentrated liquid existing between the dendrites flows into this V-shaped void and solidifies, resulting in V-segregation. It seems that it will become. Based on such analysis, the present inventors attempted to change the solidification mechanism described above by adjusting the electromagnetic stirring force to reduce segregation in the axial center of the slab. That is, the region where V segregation occurs is, after all, a region with a small temperature gradient. Although factors such as molten steel composition (particularly carbon concentration) and molten steel superheating temperature are thought to influence the size of this region, a statistical investigation of the region where V segregation is actually formed reveals that It was found that the thickness does not exceed at most 45% of the thickness in the thickness direction of the slab. In other words, Figure 1 is a graph showing the relationship between carbon concentration and upper surface equiaxed crystallinity. As seen in the figure, the upper surface equiaxed crystallization ratio is low in the low carbon region and high carbon region, while it is low in the medium carbon region. Extremely high. The reason for this is that in the low coal and high coal regions, the formation of equiaxed crystals is small due to single phase solidification of the δ phase and γ phase, respectively, whereas in the medium coal region, liquid + δ phase→
It is thought that this is because it takes a long time during this transformation to cause two-phase solidification of the γ phase, and as a result, a large number of equiaxed nuclei survive. It is also conceivable that the heat locally generated by the peritectic reaction remelts the dendrite branches from their roots, each becoming the nucleus of an equiaxed crystal. Regardless of these reasons, the top equiaxed crystallinity shown in Figure 1 is expressed as the ratio of the distance from the slab axis to the part where V segregation occurs to the thickness in the slab thickness direction. Corresponding to the conditions shown in the same figure (v is the slab drawing speed,
According to the results of continuous casting (Δt is the degree of superheating of molten steel), it was concluded that the region where V segregation is formed is up to 45% from the axis of the slab in the thickness direction. Obtained. Therefore, in order to achieve the purpose of eliminating the V segregation mentioned above by electromagnetic stirring, we considered that it was necessary to stir this region, and we determined that the unsolidified thickness relative to the thickness of the slab in the thickness direction was 45. We have reached the conclusion that it is better to provide the electromagnetic stirring device at a position closer to the drawing direction than the drawing position where %. Figure 2 is a schematic diagram for explaining the mechanism for reducing V segregation in the present invention. (A) is when no electromagnetic stirring is applied, (B) is when conventional electromagnetic stirring technology is used, and (C) is according to the present invention. The following cases are shown, and in both cases, casting proceeds from top to bottom. Do not apply electromagnetic stirring (A)
Looking at the macrostructure of (B), the columnar crystals reached the center of the thickness of the slab, creating center porosity at the meeting area, but in (B), equiaxed crystals multiplied due to the division of the columnar crystals. Although the solidified structure in the center has been significantly reduced, V segregation and microporosity have not been completely eliminated. However, in (C) according to the method of the present invention, we succeeded in polarizing the V-shaped segregation angle to an extremely acute angle, in other words, to make it parallel to the surface of the slab, that is, to polarize it in the direction of drawing the slab. In other words, the electromagnetic stirring of the present invention is intended to disperse the flow phenomenon in the casting direction of the V-segregation forming part so as not to concentrate it toward the center. , by forming a temperature gradient in the direction perpendicular to the direction of drawing the slab. Therefore, the concentrated liquid formed at the final stage of solidification is dispersed and solidified in the circumferential direction without V-shaped segregation in the axial center. In addition, when applying such an artificial flow, it is possible to apply it in the opposite direction to the direction in which the slab is pulled out, that is, in the opposite direction, but this is disadvantageous in terms of costs such as power supply capacity, and it is not possible to It is more advantageous to give 3 to 7 are conceptual diagrams showing the state of implementation of the present invention, and one to several electromagnetic stirring devices 2 are provided below the mold 1 at a position closer to the drawing direction than the position that satisfies the above-mentioned conditions. However, in order to achieve the intended purpose of the present invention, it is necessary to define more specific electromagnetic stirring conditions. ) should be 1600 Gauss min/m 3 or more relative to the volume of unsolidified molten steel, so we will explain the circumstances during this time based on experimental results. Table 1 shows that in continuous casting of slabs with a cross section of 380 mm x 550 mm, an electromagnetic stirring device with an effective stirring length of 1300 mm is installed at a position 13 m from the meniscus [a position that satisfies the above installation conditions (45% or less)]. It collectively shows the conditions under which the output is changed. The mm representation of the solidified portion indicates the thickness, and for example, the solidification ratio (%) at a drawing speed of 0.45 m/min was determined by the following calculation. 125+125/380×100=65.8% Also, the unsolidified volume from the stirrer (electromagnetic stirring device) was determined by the following calculation, assuming that the part concerned was pyramid-shaped. (0.3-2 x 0.125) x 0.55-2 x 0.125) x 17 x 1/3 = 0.22 m The Gauss values shown in Table 2 were used for calculation.

【表】【table】

【表】
(単位ガウス)
尚凝固界面の磁束密度Bは次式より求めた。 B=Boe−τ/δ 但しBo:電磁撹拌装置表面の磁束密度(ガウ
ス) τ:電磁撹拌装置内のポールピツチ(mm) δ:深透深さ(mm) ρ:比抵抗(μΩ) :周波数(Hz) 第1表の値をグラフにプロツトしたのが第8図
であり、同図の縦軸に撹拌力(B・T)、横軸に
未凝固溶鋼体積(mm3)を夫々とつた。図中の〇
印は中心部V偏析を軽減せしめた例、●印はその
効果が無つた例であるが、各プロツトの縦軸/横軸比 (単位:ガウス・min/m3)を図に併記した。第
8図から、B・T/m3値が1600以上であればV偏
析の軽減効果が顕著であるとの結論を得た。 第9図は溶鋼過熱度△Tが15〜40℃で断面380
×550(mm)の鋳片を引抜速度0.6m/minで連続鋳
造したときの例で、●印は電磁撹拌無しの比較
例、〇印は未凝固厚40%位置に電磁撹拌装置を設
け、B・T/m3=1840の条件で電磁撹拌を行なつ
たときの本発明例を示す。図から明白である様
に、比較例のC偏析が極めて高かつたのに対し、
本発明例ではC偏析の少ない鋳片が得られた。又
負偏析も生じておらず、ホワイドバンドドの形成
は認められなかつた。 本発明は上記の如く構成されているので、鋳片
軸心部におけるV字状濃偏析は勿論のこと、負偏
析の形成をも防止することができ、連鋳製品の機
械的性質を均質化することに成功した。
【table】
(Unit Gauss)
The magnetic flux density B at the solidification interface was determined from the following equation. B=Boe−τ/δ where Bo: Magnetic flux density on the surface of the electromagnetic stirrer (Gauss) τ: Pole pitch inside the electromagnetic stirrer (mm) δ: Deep penetration depth (mm) ρ: Specific resistance (μΩ): Frequency (Hz) Figure 8 is a graph plotting the values in Table 1, where the vertical axis represents the stirring force (B・T) and the horizontal axis represents the unsolidified molten steel. The volume (mm 3 ) was calculated for each. The ○ mark in the figure is an example in which the center V segregation was reduced, and the ● mark is an example in which the effect was not achieved. Also listed. From FIG. 8, it was concluded that when the B·T/m 3 value is 1600 or more, the effect of reducing V segregation is significant. Figure 9 shows a cross section of 380 when the molten steel superheat degree △T is 15 to 40℃.
This is an example when a slab of ×550 (mm) was continuously cast at a drawing speed of 0.6 m/min. The ● mark is a comparative example without electromagnetic stirring, and the ○ mark is a comparative example with an electromagnetic stirring device installed at the unsolidified thickness position of 40%. An example of the present invention is shown in which electromagnetic stirring is performed under the condition of B·T/m 3 =1840. As is clear from the figure, C segregation in the comparative example was extremely high, whereas
In the examples of the present invention, slabs with less C segregation were obtained. Further, no negative segregation occurred, and no white band formation was observed. Since the present invention is configured as described above, it is possible to prevent not only the V-shaped concentrated segregation at the axial center of the slab, but also the formation of negative segregation, thereby homogenizing the mechanical properties of continuous cast products. succeeded in doing so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続鋳造における炭素濃度と上面等軸
晶率の関係を示すグラフ、第2図は本発明の効果
を示す模式図、第3図〜第7図は本発明の実施状
況を示す概念図、第8図は未凝固溶鋼体積と撹拌
力の関係における本発明効果の成否を示すグラ
フ、第9図はC偏析評点に及ぼす本発明の効果を
示すグラフである。
Figure 1 is a graph showing the relationship between carbon concentration and top equiaxed crystallinity in continuous casting, Figure 2 is a schematic diagram showing the effects of the present invention, and Figures 3 to 7 are conceptual diagrams showing the implementation status of the present invention. 8 is a graph showing the success or failure of the effect of the present invention in the relationship between unsolidified molten steel volume and stirring force, and FIG. 9 is a graph showing the effect of the present invention on C segregation score.

Claims (1)

【特許請求の範囲】 1 連続鋳造法によつて鋳片を製造するに当り、
引抜き鋳片中の未凝固溶鋼に対して電磁撹拌力を
及ぼす電磁撹拌方法であつて、鋳片の厚さ方向の
厚さに対する未凝固厚さが45%となる引抜き位置
よりも引抜方向側の位置に電磁撹拌装置を設け、
未凝固部と凝固部の界面における磁束密度(単
位:ガウス)と撹拌時間〔但し撹拌時間は電磁撹
拌装置の撹拌有効長(mm)/鋳造引抜速度(m/
min)で比で与えられる。単位:min〕の積が、
電磁撹拌装置設定位置から引抜方向側に存在する
全未凝固溶鋼体積(単位:m3)に対し、1600ガウ
ス・min/m3以上となる様に鋳造方向への撹拌を
加えることを特徴とする連続鋳造における溶鋼の
電磁撹拌方法。
[Claims] 1. In manufacturing slabs by continuous casting method,
This is an electromagnetic stirring method that applies an electromagnetic stirring force to the unsolidified molten steel in a drawn slab. An electromagnetic stirring device is installed at the
The magnetic flux density (unit: Gauss) at the interface between the unsolidified part and the solidified part and the stirring time [however, the stirring time is determined by the effective stirring length of the electromagnetic stirring device (mm)/casting withdrawal speed (m/
min) given as a ratio. Unit: min] is the product of
The electromagnetic stirring device is characterized in that it applies stirring in the casting direction to the total unsolidified molten steel volume (unit: m 3 ) existing in the drawing direction from the set position so that the stirring rate is 1600 Gauss min/m 3 or more. Electromagnetic stirring method for molten steel in continuous casting.
JP1142082A 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting Granted JPS58128254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142082A JPS58128254A (en) 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142082A JPS58128254A (en) 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting

Publications (2)

Publication Number Publication Date
JPS58128254A JPS58128254A (en) 1983-07-30
JPS6348619B2 true JPS6348619B2 (en) 1988-09-29

Family

ID=11777559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142082A Granted JPS58128254A (en) 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting

Country Status (1)

Country Link
JP (1) JPS58128254A (en)

Also Published As

Publication number Publication date
JPS58128254A (en) 1983-07-30

Similar Documents

Publication Publication Date Title
US3153820A (en) Apparatus for improving metal structure
US3693697A (en) Controlled solidification of case structures by controlled circulating flow of molten metal in the solidifying ingot
US4960163A (en) Fine grain casting by mechanical stirring
WO2007122736A1 (en) Casting method and apparatus
KR100335228B1 (en) Method and apparatus for casting moltel metal, and cast piece
JPS5845338A (en) Alloy remelting method
US2087347A (en) Method of solidifying molten metals
SE450999B (en) WANT TO MANUFACTURE TURBINE BLADES WITH HYBRID STRUCTURE
KR930006299B1 (en) Method for producing thin plate of phosphor bronze
JP6264524B1 (en) Steel continuous casting method
Bingbo Unidirectional dendritic solidification under longitudinal resonant vibration
JPH05254817A (en) Production of polycrystal silicon ingot
JP3119203B2 (en) Unsolidified rolling method of slab
US4573515A (en) Method for electromagnetically stirring molten steel in continuous casting
JPS6348619B2 (en)
KR870000820B1 (en) Method for electronic stirring of continuous casting
EP0120153B1 (en) Method of electromagnetically stirring molten steel in continuous casting
KR870002050B1 (en) Electromagnetic stirring method of molten steel in continuous casting
CN113857449B (en) Preparation method of oriented silicon steel casting blank and casting blank system
JP3208941B2 (en) Continuous casting method of high purity aluminum alloy
JP2019030892A (en) Continuous casting method for steel
JP6500630B2 (en) Continuous casting method for molten steel and continuous cast slab
JP4683695B2 (en) Casting method or casting apparatus for slab or ingot having finely solidified structure
JPH0314541B2 (en)
CA1195089A (en) Method for electromagnetically stirring molten steel in continuous casting