JPS58128254A - Method for stirring molten steel electromagnetically in continuous casting - Google Patents

Method for stirring molten steel electromagnetically in continuous casting

Info

Publication number
JPS58128254A
JPS58128254A JP1142082A JP1142082A JPS58128254A JP S58128254 A JPS58128254 A JP S58128254A JP 1142082 A JP1142082 A JP 1142082A JP 1142082 A JP1142082 A JP 1142082A JP S58128254 A JPS58128254 A JP S58128254A
Authority
JP
Japan
Prior art keywords
molten steel
unsolidified
thickness
segregation
electromagnetic stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1142082A
Other languages
Japanese (ja)
Other versions
JPS6348619B2 (en
Inventor
Minoru Kitamura
実 喜多村
Kenta Yoshii
吉井 賢太
Shozo Kawasaki
川崎 正蔵
Katsuyoshi Matsuo
松尾 勝良
Mitsuo Tomonaga
朝永 満男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1142082A priority Critical patent/JPS58128254A/en
Publication of JPS58128254A publication Critical patent/JPS58128254A/en
Publication of JPS6348619B2 publication Critical patent/JPS6348619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the V-shaped dense segregation and negative segregation of an ingot and to make mechanical properties homogeneous by limiting the mounting positions of electromagnetic stirrers, and the product of the magnetic flux density at the interface between an unsolidified part and a solidified part and stirring time. CONSTITUTION:One a number of pieces of electromagnetic stirrers 2 are provided below a casting mold 1, in the positions nearer the drawing direction side than the drawing position where the unsolidified thickness with respect to the thickness of the ingot in the thickness direction thereof is 45%. Molten steel is stirred in the casting direction in such a way that the product of the magnetic flux density at the interface between an unsolidified part and a solidified part and stirring time attains >=1,600 gauss min/m<3> with respect to the volume of the entire unsolidified molten steel existing in the drawing direction side from the positions where the electromagnetic stirrers exist.

Description

【発明の詳細な説明】 本発明は、連続鋳造において良好な凝固組織を与える為
の電磁攪拌方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnetic stirring method for providing a good solidified structure in continuous casting.

溶鋼中にはFe以外に種々の合金元素や不純元素が混入
しており、溶鋼の凝固過程でけc、p。
In addition to Fe, various alloying elements and impurity elements are mixed into molten steel, and during the solidification process of molten steel, c, p.

S等の偏析元素が鋼塊や鋳片の最終凝固部に濃厚偏析す
ることがある。この様な偏析部を有する素材から製造さ
れた製品は機械的性質の不均一に伴う劣化を露呈すると
共に、溶接時に欠陥を多発するという問題があり、偏析
対策は重要な課題となっている。特に連続鋳造法におい
ては、鋳片引抜方向に対して直交する方向に著しい偏析
が発生し色々な操業条件が検討されているにもかかわら
ず鋳片の機械的性質を均質化させることには成功を見て
いない。
Segregating elements such as S may be concentrated and segregated in the final solidification part of steel ingots and slabs. Products manufactured from materials with such segregation areas exhibit deterioration due to non-uniform mechanical properties, and also suffer from frequent defects during welding, making segregation countermeasures an important issue. Particularly in the continuous casting method, significant segregation occurs in the direction perpendicular to the direction of slab drawing, and although various operating conditions have been investigated, it has not been possible to homogenize the mechanical properties of the slab. I haven't seen it.

従来性なわれてきた対策のうちもつとも有望視されてい
るのは、冷却凝固過程中の溶鋼を電磁攪拌法によって攪
拌する方法であり、凝固過程において成長する柱状晶を
破断する効果が確認されているが、柱状晶を多少破断す
る程度でFi濃厚偏析の解消が不十分である。そこで攪
拌効果をしに顕著ならしめる為、電磁力を大きくして攪
拌力を高めるごとも検討されたが逆に負偏析杖のホワイ
トバンドが形成されるという欠点もある。ホワイトバン
ドの部分は合金組成が平均値よシ低ぐなって材質上の欠
陥部となるだけでなく外観上も好ましいものではない。
Among the conventional countermeasures, one that is considered to be the most promising is the method of stirring the molten steel during the cooling and solidification process using electromagnetic stirring, which has been confirmed to be effective in breaking the columnar crystals that grow during the solidification process. However, since the columnar crystals are broken to some extent, it is insufficient to eliminate the Fi-rich segregation. Therefore, in order to make the stirring effect more noticeable, it was considered to increase the stirring force by increasing the electromagnetic force, but this also has the disadvantage of forming a white band of negative segregation. In the white band area, the alloy composition is lower than the average value, which not only becomes a material defect but also has an unfavorable appearance.

本発明けこの様な現状を憂慮してなされたものであって
、柱状晶の破断効果を旨めて負偏析の軽減を図ると共に
ホワイトバンドの形成を伴なわない様な電磁攪拌条件の
完成を目的とするものである。しかして本発明に係る連
鋳時の溶鋼電磁攪拌法とけ、(鋳片の厚さ方向厚さに対
する未凝固厚さが4511となる引抜位置よりも引抜方
向側の位置に電磁攪拌装置を設け、 未凝固部と幌固部の界面(H下凝固界面)における磁束
密度をB(ガウス) 電磁攪拌装置の攪拌有効長をl’(ア。)$6引抜速度
をv (m /sin )攪拌時間T(欝in ’) 
= l / vとしたとき、BXTが、電磁攪拌裂断設
定位置から引抜方向側に存在する全未凝固溶鋼体積に対
し1m3当り1600ガウス・駆以上となる様に鋳造方
向への攪拌を加える点に要旨を有するものである。
The present invention was developed in consideration of the current situation, and aims to reduce negative segregation by improving the effect of columnar crystal rupture, and to perfect electromagnetic stirring conditions that do not involve the formation of white bands. This is the purpose. Therefore, in the electromagnetic stirring method for molten steel during continuous casting according to the present invention, (an electromagnetic stirring device is provided at a position on the drawing direction side from the drawing position where the unsolidified thickness with respect to the thickness in the thickness direction of the slab is 4511, The magnetic flux density at the interface between the unsolidified part and the solid part of the hood (solidified interface under H) is B (Gauss) The effective stirring length of the electromagnetic stirring device is l' (A.) $6 The withdrawal speed is V (m / sin ) Stirring time T (欝in')
= l/v, the point at which stirring is applied in the casting direction so that BXT is 1600 Gauss/cm3 or more for the total unsolidified molten steel volume existing in the drawing direction from the electromagnetic stirring fracture setting position. The main points are as follows.

上記の条件は、凝固過程における溶鋼の流動状況を勘案
して設定されたものであり、以下研究経過を踏まえて本
発明の構成及び作用効果を睨明する。
The above conditions were set in consideration of the flow situation of molten steel during the solidification process, and the configuration and effects of the present invention will be reviewed below based on the progress of the research.

連続鋳造において鋳片中心部に偏析の生じる原因につい
ては、一般に次の様に考えられている。
The causes of segregation in the center of slabs during continuous casting are generally considered as follows.

鋳片中心部を鋳造方向(引抜方向)にみると温度勾配は
極めて少ないが、この様な部位における固液共存層の流
′vJは、所謂サクション(溶鋼の凝固末期に生じる固
液共存層の収縮現象)によって惹起されることか知られ
ているが、この場合固液共存層の全てが一時に流動する
というのではなく、下方部(引抜方向(Ill)で先行
的に進む凝固収縮によってその1葭上部(鋳型側)が下
方へ向けて流動し、当顔流動部の凝固につれて更にその
直上部が下方へ流動及び凝固するという、段階的な流動
が繰り返されることによって■偏析の周期性が成立する
。この状況を一層模式的に1キ?明すると、固液共存状
嘘が鋳片引抜方向に沿って幾つかの領域に分かれて形成
され、且つ各領域はまとまって流動するが、この流動は
多少の時間的ずれをもって起こり、下部側から順々に流
動してい〈。従って各領域相互間では流動時期のずれに
伴なってデンドライト極間が開き、並にある程度の周期
性を吃った空隙が形成される。又この空隙内には鋳片引
抜方向と直角の方向に温度勾配があって、デンドライト
極間に溶鋼の流れが形成されているので、前述のサクシ
ョン効果は鋳片中心部側へ行くほど強(なる。これらの
影響が重なし合う結果、上述の空隙は軸り側に傾斜した
V字型となシ、デンドライト極間に存在している周辺の
a厚液がこの7字型空隙に流れ込んで凝固し、これがそ
のままV偏析になるものと思われる。
When looking at the center of the slab in the casting direction (drawing direction), the temperature gradient is extremely small, but the flow of the solid-liquid coexistence layer in such a region is due to the so-called suction (solid-liquid coexistence layer that occurs at the final stage of solidification of molten steel). However, in this case, not all of the solid-liquid coexistence layer flows at once, but due to solidification and contraction that proceeds in advance in the lower part (the drawing direction (Ill)). 1) The upper part of the shingle (mold side) flows downward, and as the flowing part of the face flows, the part directly above it flows further downward and solidifies. By repeating this stepwise flow, the periodicity of segregation is reduced. To explain this situation more schematically, the solid-liquid coexistence state is formed in several regions along the slab drawing direction, and each region flows together. Flow occurs with some time lag, and flows sequentially from the bottom side. Therefore, as the flow timing lags between each region, the gap between dendrite poles opens, and there is also a certain periodicity. Also, within this gap there is a temperature gradient in the direction perpendicular to the slab drawing direction, and a flow of molten steel is formed between the dendrite poles. As a result of these effects overlapping, the above-mentioned void becomes V-shaped with an inclination toward the axis. It is thought that it flows into the figure 7-shaped void, solidifies, and becomes V-segregation as it is.

本発明者等はこの様な解析の上に立ち、電磁攪拌力の調
整によって上述の凝固機構に変化を与え鋳片軸・0部に
おける偏析の軽減を達成しようと考えた。
Based on such analysis, the present inventors thought of changing the above-mentioned solidification mechanism by adjusting the electromagnetic stirring force to reduce segregation at the slab axis/0 section.

即ちV偏析の生ずる領域は、結局のところ温度勾配の少
ない領域である。そしてこの領域の大きさを左右する因
子としては溶鋼組成(特に炭紫濃度)や溶鋼過熱温度等
が考えられるに亀かかわらず、現実にV偏析の形成され
ている領域を統計的に調査したところ、鋳片の厚さ方向
厚さに対して最大でも45壬の厚さを越えることは無い
ということが分かった。即ち第1図は、I#素濃度と上
面等軸孔率の関係を表わすグラフであるが、図に見られ
る如く低#素領域と高炭素領域では上面等軸晶率が低い
のに対し中炭素領域では極めて高い。
That is, the region where V segregation occurs is, after all, a region with a small temperature gradient. Although factors such as molten steel composition (particularly coal purple concentration) and molten steel superheating temperature are thought to influence the size of this region, we have statistically investigated the region where V segregation actually forms. It has been found that the maximum thickness in the thickness direction of the slab does not exceed 45 mm. In other words, Figure 1 is a graph showing the relationship between I# elemental concentration and upper surface equiaxed porosity.As seen in the figure, the upper surface equiaxed porosity is low in the low # elemental region and the high carbon region, whereas Extremely high in the carbon region.

この理由については、低次及び高次の領域では夫々δ相
及びγ相の重相凝固である為に等軸孔の形成−7x少な
いのに対し、中脚の領域では液体+δ相→r相の2相凝
固を起こす為にこの変態途中で長時間を要し、結果とし
て生残る等軸孔の核が多くなる為であろうと考えられる
。又包晶反応によって局部的に発生した熱がデンドライ
トの枝を根元から再溶解し、それが等軸孔の核になると
いうことも考えられる。これらの理由についてはともか
くとして、第1図に示した上面等軸孔率は、V偏析を生
じる部分の鋳片軸心からの距離を、鋳片厚さ方向厚さに
対する比率として表わしたものに相当し、同図中に示し
た条件(Vは鋳片引抜速度、Δtは溶鋼過熱度)におけ
る連続鋳造の結果によれば、V偏析の形成される領域は
、鍔片の厚さ方向厚さに対して軸心から45哄迄の部分
であるとの結論を得た。そこで上記の■偏析を電磁攪拌
によって解消するという目的の達成の為には、当該領域
を攪拌することが必要であると考え、鋳片の厚さ方向厚
さに対する未凝固厚さが45哄となる引抜位置よりも引
抜方向側の位置に電磁攪拌装置を設けるのが良いとの結
論に到達した。
The reason for this is that in the low-order and high-order regions, there is heavy phase solidification of the δ phase and γ phase, so the formation of equiaxed holes is -7x less, whereas in the middle leg region, the liquid + δ phase → r phase It is thought that this is because it takes a long time during this transformation to cause two-phase solidification, and as a result, more equiaxed hole nuclei remain. It is also possible that the heat locally generated by the peritectic reaction remelts the dendrite branches from their roots, which becomes the nucleus of the equiaxed pore. Regardless of these reasons, the top equiaxed porosity shown in Figure 1 is expressed as the ratio of the distance from the slab axis where V segregation occurs to the thickness in the slab thickness direction. Correspondingly, according to the results of continuous casting under the conditions shown in the same figure (V is the slab drawing speed, Δt is the degree of superheating of molten steel), the area where V segregation is formed is the thickness of the flange piece in the thickness direction. It was concluded that this was the part up to 45 meters from the axis. Therefore, in order to achieve the above-mentioned objective of eliminating segregation by electromagnetic stirring, we considered that it was necessary to stir this area, and we determined that the unsolidified thickness relative to the thickness of the slab in the thickness direction was 45 mm. We have reached the conclusion that it is better to provide the electromagnetic stirring device at a position closer to the drawing direction than the drawing position.

第2図は本発明におけるV偏析軽減機構を説明する為の
模式図であり、(A)は電磁攪拌を加えない場合、CB
)は従来の電磁攪拌技術による場合、(C)は本発明の
場合を夫々示し、いずれも鋳造は上から下へ進行するも
のとする。電磁攪拌を加えない(A)のマクロ組織をみ
ると、柱状晶が鋳片厚さの中心部まで達してその会合部
にセンターポロシティを生じていたが、ω)では柱状晶
の分断によって等軸孔が増殖され、中心部の凝固組織が
著しく軽減されてはいるものの■偏析やミクロポロシテ
ィを完全に消滅させるには芋っていない。しかし本発明
法による(C)では、V字状の偏析角度を極めて鋭角に
、換言すれば鋳片表面に対して平行になる様に、即ち鋳
片引抜方向へ偏光させることに成功した。つまり本発明
の電磁攪拌では、V偏析形成部の鋳造方向への流動現象
を中1b方向へ簗申しない様に分散させようとするもの
であシ、具体的には凝固末期の収縮力による前記流動現
象を、鋳片引抜方向と直交する方向への温度勾配形成に
よって人工的に該直交方向へ分散させるものである。従
って凝固末期に形成される濃化液は軸心部にv5偏析す
ることなく、周方向へ分散移動されて凝固する。伺この
様な人工的流動を与えるに際しては、鋳片引抜方向と反
対方向に、即ち逆らう方向に与えることもできる力ヨ、
電源容量等の経費面から考えて不利であシ、鋳片引抜方
向に向けて与える方が有利である。第8〜7図は本発明
の賽′JN吠況を示す概念図であり鋳型1の下方におい
て前述の条件を満足する位置よりも引抜方向側の位置に
、1〜数個の電磁攪拌装置2を設ける。
FIG. 2 is a schematic diagram for explaining the mechanism for reducing V segregation in the present invention, and (A) shows that when no electromagnetic stirring is applied, CB
) shows the case of the conventional electromagnetic stirring technique, and (C) shows the case of the present invention, and in both cases, casting proceeds from top to bottom. Looking at the macrostructure of (A) without electromagnetic stirring, the columnar crystals reached the center of the thickness of the slab, creating center porosity at the meeting area, but in ω), the columnar crystals were divided, resulting in equiaxed Although the pores have been increased and the coagulation structure in the center has been significantly reduced, it has not yet been possible to completely eliminate segregation and microporosity. However, in (C) according to the method of the present invention, it was possible to polarize the V-shaped segregation angle to an extremely acute angle, in other words, to make it parallel to the surface of the slab, that is, to polarize the light in the direction of drawing the slab. In other words, the electromagnetic stirring of the present invention attempts to disperse the flow phenomenon of the V-segregation forming part in the casting direction in the direction of the center 1b without any noticeable effect. The flow phenomenon is artificially dispersed in the direction perpendicular to the slab drawing direction by forming a temperature gradient in the direction perpendicular to the drawing direction. Therefore, the concentrated liquid formed at the final stage of solidification is dispersed and solidified in the circumferential direction without v5 segregation in the axial center. When applying this kind of artificial flow, it is necessary to apply a force that can be applied in the opposite direction to the direction in which the slab is pulled out, that is, in the opposite direction.
It is disadvantageous in terms of cost such as power supply capacity, and it is more advantageous to provide it in the direction of drawing the slab. 8 to 7 are conceptual diagrams showing the casting process of the present invention, in which one to several electromagnetic stirring devices 2 are installed below the mold 1 at a position closer to the drawing direction than the position that satisfies the above-mentioned conditions. will be established.

しかし本発明における所期の目的を達成する為には、更
に具体的な電磁攪拌条件を定める必要があシ、凝固界面
における磁束密度(Bガウス)と攪拌時間(Tm)の積
(以下B・T)を未凝固溶鋼の体積に対して1600ガ
ウス・m/m3以上にすべきであるとの結論を得たので
、実験結果に基づいてこの間の事情を説明する。
However, in order to achieve the intended purpose of the present invention, it is necessary to determine more specific electromagnetic stirring conditions. Since it was concluded that T) should be 1600 Gauss·m/m3 or more relative to the volume of unsolidified molten steel, the circumstances during this time will be explained based on experimental results.

第1表は、R80+mXfi 50mの断面を有する鋳
片の連続鋳造において、攪拌有効長/ = 11100
前の電磁攪拌装置をメニスカスから18mの位置〔前述
の設置条件(45チ以下)を満足する位置〕に設け、出
力を変更させた時の条件を一括して示すものである。凝
固部の耐表示は厚さを示し、例えば引抜速度0.45m
/mにおける凝固比率(qb)は次の計算によって求め
た。
Table 1 shows the effective stirring length / = 11100 in continuous casting of slabs with a cross section of R80 + mXfi 50 m.
This shows all the conditions when the previous electromagnetic stirring device was installed at a position 18 m from the meniscus [a position that satisfies the above-mentioned installation conditions (45 inches or less)] and the output was changed. The resistance indication of the solidified part indicates the thickness, for example, the drawing speed is 0.45 m.
The coagulation ratio (qb) at /m was determined by the following calculation.

80 又スターク(電磁攪拌装置)よシの未凝固体積は当該部
分が角錐形であると考え、同じ(次の計算によって求め
丸。
80 Also, the unsolidified volume of the Stark (electromagnetic stirring device) is the same considering that the part is pyramid-shaped (calculated as follows: round).

(0,88−2X0.125 )X(0,55−2X0
.125 )刈7×ト0.22m3又ガウス値は第2表
に示すものを計算に用いた。
(0,88-2X0.125)X(0,55-2X0
.. 125) Mowing 7 x 0.22 m3 Also, the Gauss values shown in Table 2 were used in the calculations.

同凝固界面の磁束q!!!度Bは次式よシ求めた。Magnetic flux q at the same solidification interface! ! ! The degree B was calculated using the following formula.

B=Boe  7 但しBO:電磁攪拌装置表面の磁束密P!(ガウス) τ:電磁攪拌装置内のポールピッチ(酊)δ:深透深さ
く tm ) δ= 5.04F ρ:比抵抗(μΩ) f二層波数(Hz ) 第1表の値をグラフにプロットしたのがts8図であシ
、同図の縦軸に攪拌力(B−T)、横軸に未凝固溶鋼体
積(m)を夫々とった。図中の○印は中心部V偏析を軽
減せしめた例、・印はその効位ニガウス・m/m )を
図に併記した。第8図から、B−17m値が1600以
上であればV偏析の軽減効果が顕著であるとの結論を得
た。
B=Boe 7 However, BO: Magnetic flux density P on the surface of the electromagnetic stirring device! (Gauss) τ: Pole pitch in the electromagnetic stirrer (drunk) δ: Deep penetration depth tm ) δ = 5.04F ρ: Specific resistance (μΩ) f double layer wave number (Hz) Plot the values in Table 1 on a graph This is shown in the ts8 diagram, in which the vertical axis represents the stirring force (B-T), and the horizontal axis represents the volume of unsolidified molten steel (m). The ○ mark in the figure is an example in which center V segregation was reduced, and the . mark indicates the effect level (Nigauss m/m). From FIG. 8, it was concluded that when the B-17m value is 1600 or more, the effect of reducing V segregation is significant.

第9図は溶鋼過熱度ΔTが15〜40℃で断面380 
X 550 (mm )の鋳片を引抜速度0. Pi 
mAixで連続鋳造したときの例で、・印は電磁攪拌無
しの比較例、○印は未凝固厚40q6位置に電磁攪拌装
置を設け、B −T/m3== 1840の条件で電磁
攪拌を行なったときの本発明例を示す。図から明白であ
る様に、比較例のC偏析が極めて高かったのに対し、本
発明例ではC偏析の少ない鋳片が得られた。又負偏析も
生じておらず、ホワイトパントドの形成は認められなか
った。
Figure 9 shows a cross section of 380° when the molten steel superheat degree ΔT is 15 to 40°C.
A slab of X 550 (mm ) was pulled out at a speed of 0. Pi
This is an example of continuous casting at mAix, where the * mark is a comparative example without electromagnetic stirring, and the ○ mark is an example where an electromagnetic stirring device was installed at the unsolidified thickness of 40q6 position, and electromagnetic stirring was performed under the condition of B - T / m3 = = 1840. An example of the present invention is shown below. As is clear from the figure, whereas the comparative example had extremely high C segregation, the inventive example produced a slab with low C segregation. Further, no negative segregation occurred, and no formation of white pantoids was observed.

本発明は上記の如く構成されているので、鋳片軸心部に
おけるV字状濃偏析は勿論のこと、負偏析の形成をも防
止することができ、連鋳製品の機械的性質を均質化する
ことに成功した。
Since the present invention is configured as described above, it is possible to prevent not only the V-shaped concentrated segregation at the axial center of the slab, but also the formation of negative segregation, thereby homogenizing the mechanical properties of continuous cast products. succeeded in doing so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造における炭素濃度と上面等軸孔率の関
係を示すグラフ、第2図は本発明の効果を示す模式図、
第8図〜第7図は本発明の実施状況を示す概念図、第8
図は未凝固溶鋼体積と攪拌力の関係におはる本発明効果
の取合を示すグラフ、第9図けC偏析評点に及ぼす本発
明の効果を示すグラフである。 第2rI!J 図 第7図
Fig. 1 is a graph showing the relationship between carbon concentration and upper surface equiaxed porosity in continuous casting, Fig. 2 is a schematic diagram showing the effects of the present invention,
8 to 7 are conceptual diagrams showing the implementation status of the present invention,
Figure 9 is a graph showing the effect of the present invention on the relationship between unsolidified molten steel volume and stirring force, and Figure 9 is a graph showing the effect of the present invention on the C segregation score. 2nd rI! J Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造法によって鋳片を製造するに当シ、引v
i@鋳片中の未凝固溶鋼に対して電磁攪拌力を及ぼす電
磁攪拌方法であって、鋳片の厚さ方向の厚さに対する未
凝固厚さが45係となる引抜き位置よりも引抜方向側の
位置に電磁攪拌装置を設け。 未凝固部と凝固部の界面における磁束密度(単位ニガウ
ス)と攪拌時間〔但し攪拌時間は電磁攪拌装置の攪拌有
効長(m)/m造引抜速度(m / m)の比で与えら
れる。単位:鯛〕の積が、電磁攪拌装置設定位置から引
抜方向側に存在する全未凝固溶鋼体積C単位二m)に対
し、1600ガウス・xi/m3以上となる様に鋳造方
向への攪拌を加えることを特徴とする連続鋳造における
溶鋼の電磁攪拌方法。
(1) When producing slabs by continuous casting method,
i@ An electromagnetic stirring method that applies an electromagnetic stirring force to unsolidified molten steel in a slab, which is on the side in the pulling direction from the pulling position where the unsolidified thickness is 45 times the thickness in the thickness direction of the slab. An electromagnetic stirring device is installed at the location. The magnetic flux density (in Gauss) at the interface between the unsolidified part and the solidified part and the stirring time [however, the stirring time is given by the ratio of the effective stirring length (m) of the electromagnetic stirring device/the drawing speed in meters (m/m). Stir in the casting direction so that the product of the total unsolidified molten steel volume C (unit: 2 m) existing in the drawing direction from the electromagnetic stirring device setting position is 1600 Gauss xi/m3 or more. A method for electromagnetic stirring of molten steel in continuous casting, characterized by adding:
JP1142082A 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting Granted JPS58128254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1142082A JPS58128254A (en) 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1142082A JPS58128254A (en) 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting

Publications (2)

Publication Number Publication Date
JPS58128254A true JPS58128254A (en) 1983-07-30
JPS6348619B2 JPS6348619B2 (en) 1988-09-29

Family

ID=11777559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142082A Granted JPS58128254A (en) 1982-01-26 1982-01-26 Method for stirring molten steel electromagnetically in continuous casting

Country Status (1)

Country Link
JP (1) JPS58128254A (en)

Also Published As

Publication number Publication date
JPS6348619B2 (en) 1988-09-29

Similar Documents

Publication Publication Date Title
US3693697A (en) Controlled solidification of case structures by controlled circulating flow of molten metal in the solidifying ingot
US3153820A (en) Apparatus for improving metal structure
CN105598402B (en) A kind of steel continuous casting crystallizer feeds core-spun yarn and the dynamic control method of line feeding process
CN113000803B (en) Continuous casting process method for improving internal quality of high-carbon steel bloom
JP3488093B2 (en) Continuous casting method of molten steel
JPS58128254A (en) Method for stirring molten steel electromagnetically in continuous casting
US4573515A (en) Method for electromagnetically stirring molten steel in continuous casting
JPH1110299A (en) Method for executing rolling-reduction of unsolidified part in cast slab
CN113857449B (en) Preparation method of oriented silicon steel casting blank and casting blank system
CN105400974A (en) Low-segregation fine crystalline preparation process of high-temperature mother alloy
JP2937707B2 (en) Steel continuous casting method
JP2019030892A (en) Continuous casting method for steel
JPH0314541B2 (en)
KR870002050B1 (en) Electromagnetic stirring method of molten steel in continuous casting
JP6500630B2 (en) Continuous casting method for molten steel and continuous cast slab
US4562881A (en) Method for stirring in continuous casting
EP0120153B1 (en) Method of electromagnetically stirring molten steel in continuous casting
KR100423427B1 (en) Method for electro-magnetic stirring molten steel to reducing center segregation at continuous casting
JPS6124105B2 (en)
CA1195089A (en) Method for electromagnetically stirring molten steel in continuous casting
JP2000094101A (en) Continuously cast slab, continuous casting method thereof and production of thick steel plate
Kudoh et al. Step casting
RU1787660C (en) Method of casting killed steel ingots
JPH0763819B2 (en) Method for homogenizing solidification structure of continuously cast slab
JPH02274350A (en) Casting method for making solidified structure in metal fine